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This paper addresses the problem of detecting and retrieving amplitude-and frequency-modulated (AM-FM) components or modes of a multicomponent signal from its timefrequency representation (TFR) corresponding to its short-time Fourier transform. For that purpose, we introduce a novel technique that combines a high order synchrosqueezing transform (FSSTN) with a demodulation procedure. Numerical results on a multicomponent signal, both in noise-free and noisy cases, show the benefits for mode reconstruction of the proposed approach over similar techniques that do not make use of demodulation.

I. INTRODUCTION

Multicomponent signals (MCSs), defined as sums of amplitude-and frequency-modulated (AM-FM) waves, have received great interest from the signal processing community over the last decades because of their ability to accurately represent non-stationary signals arising from a wide range of applications e.g., audio recordings, structural stability [START_REF] Costa | Noise and poise: Enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy[END_REF], [START_REF] Cummings | Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand[END_REF], or physiological signals [START_REF] Herry | Heart beat classification from single-lead ecg using the synchrosqueezing transform[END_REF]. Time-frequency (TF) representations (TFRs) play a central role for characterizing such signals, among which the continuous wavelet transform (CWT) and the short-time Fourier transform (STFT) are the most popular [START_REF] Flandrin | Time-frequency/time-scale analysis[END_REF]. However, the effectiveness of these transforms is constrained by the choice of window or wavelet. Indeed, the Heisenberg uncertainty principle limits both the adaptivity and the readability of these TFRs. To improve the readability, a reassignment method (RM) was proposed by Kodera et al. [START_REF] Kodera | Analysis of time-varying signals with small bt values[END_REF] in the 1970s and then further developed in [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF]. Unfortunately, the reassigned representation given by RM was not invertible: when applied to an MCS, it did not allow for easy retrieval of signal components. Alternatively, a technique using the same principle as RM but keeping the invertibility property, and known as the synchrosqueezing transform (SST), was developed in the wavelet framework [START_REF] Daubechies | A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models[END_REF], and then theoretically studied in [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[END_REF]. In essence, the retrieval procedure consists of estimating, on the TFR associated with the modulus of CWT, so-called ridges which are estimators of the instantaneous frequencies (IFs) of the modes, reassigning the transform in the vicinity of the detected ridges, and finally inverting the reassigned transform. Such an approach was then adapted to the TFR given by STFT in [START_REF] Thakur | Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[END_REF], and is now known as the STFT-based synchrosqueezing transform (FSST). However, all these transforms suffer from a serious limitation which is that they cannot deal with modes containing strong frequency modulations, commonly encountered in real-world situations e.g., radar [START_REF] Skolnik | Radar Handbook, Technology and Engineering[END_REF], speech processing [START_REF] Pitton | Applications of positive time-frequency distributions to speech processing[END_REF], or gravitational waves [START_REF] Candes | Detecting highly oscillatory signals by chirplet path pursuit[END_REF], [START_REF] Abbott | Observation of gravitational waves from a binary black hole merger[END_REF]. To better handle this case, an extension of FSST known as the second-order FSST (FSST2) was proposed in [START_REF] Oberlin | The Fourier-based synchrosqueezing transform[END_REF] and its theoretical foundations settled in [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF]. Moreover, this new transform was recently used in conjunction with a demodulation operator leading to better mode reconstruction results [START_REF] Meignen | On demodulation, ridge detection and synchrosqueezing for multicomponent signals[END_REF]. FSST2 was also further extended to better deal with modes with very fast oscillating phase and denoted by FSSTN with N = 3, 4,... [START_REF] Pham | High-order synchrosqueezing transform for multicomponent signals analysis -with an application to gravitational-wave signal[END_REF]. To investigate how the combination of FSSTN with a demodulation operator can be beneficial to mode reconstruction is the main goal of the present paper.

To this end, after having recalled some useful background associated with SST in Section II, we revisit the idea of the demodulation algorithm based on FSST (or FSST2) for mode reconstruction and then detail its variant based on FSSTN context in Section III. Finally, we provide, in Section IV, numerical simulations, involving both noise-free and noisy MCSs, to demonstrate the improvement brought by the proposed approach over some state-of-the-art methods.

II. BACKGROUND TO SYNCHROSQUEEZING TRANSFORMS

Prior to starting, we recall useful notation, definitions and basic elements related to synchrosqueezing transforms.

A. Basic Notation and Definitions

Consider a signal f ∈ L 1 (R), its Fourier transform corresponds to:

f (ξ) = F{f }(ξ) = R f (t)e -i2πξt dt, (1) 
and its short-time Fourier transform (STFT) is defined using any sliding window g ∈ L ∞ (R) by:

V g f (t, ξ) = R f (τ )g(τ -t)e -2iπξ(τ -t) dτ = R f (t + τ )g(τ )e -2iπξτ dτ. (2) 
If f, f , g and ĝ are all in L 1 (R), f can be reconstructed from its STFT as soon as g is non-zero at 0:

f (t) = 1 g(0) R V g f (t, ξ)dξ, (3) 
where Z denotes the complex conjugate of Z.

In this paper, we will intensively study multicomponent signals (MCSs) defined as a superimposition of AM-FM components or modes:

f (t) = K k=1 f k (t) with f k (t) = A k (t)e i2πφ k (t) , (4) 
for some finite K ∈ N, A k (t) and φ k (t) being respectively the instantaneous amplitude (IA) and frequency (IF) f k satisfying: A k (t) > 0, φ k (t) > 0 and φ k+1 (t) > φ k (t) for all t. Such a signal admits an ideal TF (ITF) representation defined as:

TI f (t, ω) = K k=1 A k (t)δ (ω -φ k (t)) , (5) 
where δ denotes the Dirac distribution. In practice, the IF of the modes cannot be recovered by estimating the IF of f as is done in the theory of analytical signals, and to locate the modes in the TF plane is essential before computing their IFs: this is one of the goals of SST whose construction is recalled hereafter.

B. STFT-based synchrosqueezing transform

The STFT based synchrosqueezing (denoted by FSST in the sequel) starts with defining the local instantaneous frequency ωf , wherever V g f (t, ξ) = 0, by [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF]:

ω f (t, ξ) = ∂ arg V g f (t, ξ) ∂t = 1 2iπ ∂ t V g f (t, ξ) V g f (t, ξ) . (6) 
The FSST of f with threshold γ is obtained by moving any coefficient V g f (t, ξ) with magnitude larger than γ to location (t, ωf (t, ξ)). One then define the synchrosqueezing transform as:

T γ f (t, ω) = |V g f (t,ξ)|>γ V g f (t, ξ)δ(ω -ω f (t, ξ))dξ. (7) 
Any mode f k can then be reconstructed by summing FSST coefficients around the k th ridge, which amounts to modifying the synthesis formula (3) to select only the coefficients related to the k th mode, namely:

f k (t) ≈ 1 g(0) |ω-ϕ k (t)|<d T γ f (t, ω)dω, (8) 
where ϕ k is an estimation of φ k , and parameter d is used to compensate for errors in IF estimation; it should be kept small enough to avoid mode-mixing, and its influence will be discussed later.

C. Second order synchrosqueezing transforms

The applicability of FSST is however restricted to a class of MCSs composed of slightly perturbed purely harmonic modes. To overcome this limitation, an extension of FSST, called second-order STFT-based synchrosqueezing transform (FSST2) [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF], [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF], was introduced based on a more accurate IF estimate than ωf . More precisely, one first defines a secondorder local modulation operator used to compute the new IF estimate. To do so, one introduces complex reassignment operators ωf (t, ξ) =

∂tV g f (t,ξ) 2iπV g f (t,ξ) and tf (t, ξ) = t - ∂ ξ V g f (t,ξ) 2iπV g f (t,ξ) ,
and then defines a complex frequency modulation operator as [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF]:

qf (t, ξ) = ∂ t ωf (t, ξ) ∂ t tf (t, ξ) = ∂ t ∂tV g f (t,ξ) V g f (t,ξ) 2iπ -∂ t ∂ ξ V g f (t,ξ) V g f (t,ξ) . (9) 
The second-order local modulation operator then corresponds to {q f (t, ξ)}, and the second order complex IF estimate of f is defined by:

ω[2] f (t, ξ) = ωf (t, ξ) + qf (t, ξ)(t -tf (t, ξ)) if ∂ t tf (t, ξ) = 0 ωf (t, ξ) otherwise, (10) 
and one then puts

ω[2] f (t, ξ) = ω[2] f (t, ξ) . It was proven in [15] that ω[2] f (t, ξ) = φ (t)
, when f is a Gaussian modulated linear chirp. It is also worth mentioning here that qf (t, ξ) can be computed by means of five different STFTs. Finally, FSST2 is defined by replacing ωf (t, ξ) by ω [START_REF] Cummings | Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand[END_REF] f (t, ξ) in [START_REF] Daubechies | A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models[END_REF], to obtain the so-called T γ 2,f , and mode reconstruction is then performed by replacing T γ f by T γ 2,f in (8).

D. Higher order synchrosqueezing transforms

Despite FSST2 definitely sharpens the TFR it is based on, it is proven to provide a truly sharp TFR only for perturbations of linear chirps with Gaussian modulated amplitudes. To handle signals containing more general types of AM-FM modes having non-negligible φ (k) k (t) for k ≥ 3, especially those with fast oscillating phase, one defines new SST operators based on third-or higher-order approximations of both amplitude and phase [START_REF] Pham | High-order synchrosqueezing transform for multicomponent signals analysis -with an application to gravitational-wave signal[END_REF]. To introduce the technique, we restrict ourselves to the STFT context but the technique presented hereafter could easily be extended to the CWT setting. Let f (τ ) = A(τ )e i2πφ(τ ) with A(τ ) (resp. φ(τ )) being equal to its L th -order (resp. N th -order) Taylor expansion for τ close to t, namely:

log(A(τ )) = L k=0 [log(A)] (k) (t) k! (τ -t) k and φ(τ ) = N k=0 φ (k) (t) k! (τ -t) k , (11) 
where Z (k) (t) denotes the k th derivative of Z evaluated at t. Such a mode, with L ≤ N , can be written as:

f (τ ) = exp N k=0 1 k! [log(A)] (k) (t) + i2πφ (k) (t) (τ -t) k , (12) 
since

[log(A)] (k) (t) = 0 if L + 1 ≤ k ≤ N . Its corresponding STFT reads: V g f (t, ξ) = R exp N k=0 1 k! [log(A)] (k) (t) + i2πφ (k) (t) τ k g(τ )e -i2πξτ dτ.
Taking the partial derivative of V g f (t, ξ) with respect to t and then dividing by i2πV g f (t, ξ), the local complex reassignment operator ωf (t, ξ) defined in Section II-C can be written, when V g f (t, ξ) = 0, as:

ωf (t, ξ) = N k=1 r k (t) V t k-1 g f (t, ξ) V g f (t, ξ) = 1 i2π [log(A)] (t) + φ (t) + N k=2 r k (t) V t k-1 g f (t, ξ) V g f (t, ξ) , (13) 
where

r k (t) = 1 (k-1)! 1 i2π [log(A)] (k) (t) + φ (k) (t)
. It is clear that to get an exact IF estimate for the studied signal, one needs to subtract

   N k=2 r k (t) V t k-1 g f (t, ξ) V g f (t, ξ)    to {ω f (t, ξ)},
which requires the calculation of r k (t) for k = 2, . . . , N .

For that purpose, one derives a frequency modulation operator q[k,N] f (t, ξ), equal to r k (t) for the type of modes just introduced, and the definition of the N th -order IF estimate then follows [START_REF] Pham | High-order synchrosqueezing transform for multicomponent signals analysis -with an application to gravitational-wave signal[END_REF]:

ω[N] f (t, ξ) =              ωf (t, ξ) + N k=2 q[k,N] f (ξ, t) (-x k,1 (t, ξ)) , if V g f (t, ξ) = 0, and ∂ ξ x j,j-1 (t, ξ) = 0, 2 ≤ j ≤ N ωf (t, ξ) otherwise. with x k,1 (t, ξ) = V t k-1 g f (t,ξ) V g f (t,ξ) . ω[N] f (t, ξ) = {ω [N ]
f (t, ξ)} is then the desired IF estimate which is, by construction, exact for f satisfying [START_REF] Candes | Detecting highly oscillatory signals by chirplet path pursuit[END_REF]. As for FSST2, the N th -order FSST (FSSTN) is defined by replacing ωf (t, ξ) by ω[N] f (t, ξ) in ( 7) to obtain T γ N,f (t, ω) and the modes of the MCS can be reconstructed by replacing T γ f (t, ω) by T γ N,f (t, ω) in (8).

III. DEMODULATION ALGORITHM BASED ON HIGHER ORDER FSST FOR MODE RECONSTRUCTION

In this section, we recall the concept of the demodulation algorithm based on FSST (or FSST2) which was introduced in [START_REF] Meignen | On demodulation, ridge detection and synchrosqueezing for multicomponent signals[END_REF]. Then, we propose a variant of this algorithm that we coin DFSSTN in the sequel and show how the use of FSSTN results in better IF estimation and improved mode reconstruction by means of demodulation. The demodulation algorithm is based on a ridge extraction technique from the reassigned transform which we first recall.

A. Ridge Estimation

Any mode reconstruction technique based on the synchrosqueezing transform requires an estimate of the ridges (t, φ k (t)), for which, assuming knowledge of the number K of modes, we use the same algorithm as in [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[END_REF] or [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF], and originally proposed in [START_REF] Carmona | Characterization of signals by the ridges of their wavelet transforms[END_REF]. This computes a local minimum of the functional

E f (ψ 1 , • • • , ψ K ) = K k=1 - R |T F f (t, ψ k (t))| 2 + λψ k (t) 2 + βψ k (t) 2 dt,
where T F f is one of the TF representations introduced above, i.e. FSST, FSST2, or FSSTN. In [START_REF] Meignen | On demodulation, ridge detection and synchrosqueezing for multicomponent signals[END_REF], it was shown that to use regularization parameters λ and β did not bring any improvement in terms of ridge detection (especially when synchrosqueezed transforms are considered), so we set them to zero.

B. Mode Reconstruction with Demodulation Based on Higher Order Synchrosqueezing (DFSSTN)

The previous section has provided us with a means to extract the ridges from the reassigned transforms, and these correspond to piecewise constant approximations of the IFs of the modes which are subsequently used in the mode reconstruction by putting ϕ k (t) = ψ k (t) for k = 1, • • • , K. In [START_REF] Meignen | On demodulation, ridge detection and synchrosqueezing for multicomponent signals[END_REF], these IFs estimates were used in a demodulation algorithm but the obtained results, though encouraging, were strongly dependent on the frequency resolution when computing STFT. Indeed, assume f is with finite length, typically defined on the interval

[0, T ], discretized into f ( nT R ) n=0,••• ,R-1 , and g supported on [-LT R , LT R ] with L < R/2
, the STFT of f is then computed as follows:

V g f (t, ξ) = LT R -LT R f (t + τ )g(τ )e -2iπτ ξ dτ ≈ T R L n=-L f t + nT R g nT R e -i2π nT R ξ , ( 14 
)
from which we infer that, for 0 ≤ p ≤ R -1:

V g f qT R , pR M T ≈ T R L n=-L f (q + n)T R g nT R e -i2π np M ,
for some M ≥ 2L + 1. The last sum is computed by means of a discrete Fourier transform, and the frequency resolution equals R M T . This has the consequence that STFT is all the more compact that the frequency resolution is low, and that the IFs estimation based on crude ridges extraction is very inaccurate in that case.

We now propose to use, for the purpose of mode reconstruction using a demodulation algorithm, much more relevant IFs estimates than those based on crude ridges extraction. Indeed, while performing FSST, FSST2, or FSSTN, one computes ωf (t, ξ), ω [START_REF] Cummings | Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand[END_REF] f (t, ξ), and ω[N] f (t, ξ), respectively. These, evaluated on the ridge associated with the kth mode, i.e. ωf (t, ϕ k (t)), ω [START_REF] Cummings | Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand[END_REF] f (t, ϕ k (t)), and ω[N] f (t, ϕ k (t)), lead to much smoother IF estimates than those proposed in [START_REF] Meignen | On demodulation, ridge detection and synchrosqueezing for multicomponent signals[END_REF]. Based on the IFs estimates we use the demodulation procedure proposed in [START_REF] Meignen | On demodulation, ridge detection and synchrosqueezing for multicomponent signals[END_REF] (see Algorithm 1).

Algorithm 1 Demodulation based on FSSTN (DFSSTN)

Estimate the ridges

(ψ 1 , • • • , ψ K ) from FSSTN. for k = 1 to K do 1. Compute φk (t) = ω[N] f (t, ψ k (t)). 2. Compute f D,k (t) = f (t)e -i2π( t 0 φk (x)dx-ψ0t) . 3. From T γ f D,k , extract the ridge ψ D,k corresponding to mode k of f D,k , by considering single ridge detection in [ψ 0 -∆, ψ 0 + ∆].
4. Reconstruct the kth mode of f D,k and then multiply it by the inverse of demodulation operator to recover f k :

f k (t) ≈ |ω-ψ D,k (t)|<d T γ f D,k (t, ω
)dω e i2π( t 0 φk (x)dx-ψ0t) .

IV. RESULTS AND DISCUSSION

This section provides some numerical experiments on an MCS, in both noise-free and noisy cases, illustrating the benefits of using Algorithm 1, with N = 3 or 4, rather than other existing techniques including FSST2, FSST3, FSST4 [START_REF] Pham | High-order synchrosqueezing transform for multicomponent signals analysis -with an application to gravitational-wave signal[END_REF] and DFSST2 [START_REF] Meignen | On demodulation, ridge detection and synchrosqueezing for multicomponent signals[END_REF]. The MATLAB scripts generating all the figures of this paper can be downloaded from github.com/phamduonghung/EUSIPCO2019.

Let us first consider a synthetic MCS composed of two AM-FM modes defined as: 4 )e i2π(340t-2e -2(t-0.2) sin(14π(t-0.2))) , for t ∈ [0, 1]. Note that f 1 is a polynomial chirp fitting in the model defined by [START_REF] Pitton | Applications of positive time-frequency distributions to speech processing[END_REF] and f 2 is a damped-sine function containing very strong nonlinear sinusoidal frequency modulations. Such a signal is sampled at a rate R = 1024 Hz on [0, 1]. We use the

f (t) = f 1 (t) + f 2 (t) with f 1 (t) = e 2(1-t) 3 e i2π(50t+30t 3 -20(1-t) 4 ) and f 2 (t) = (1 + 7(1 -t)
L 1 -normalized Gaussian window g(t) = σ -1 e -π t 2 σ 2
to compute the STFT of f , where σ is the optimal value determined minimizing Rényi entropy [START_REF] Stanković | A measure of some time-frequency distributions concentration[END_REF].

In Figure 1, we depict the modulus of STFT and close-ups of reassigned representations given by FSST2, FSST3, FSST4, respectively. It is clear that all the studied techniques lead to relatively sharp TFRs for this mode (f 1 behaves locally as a Gaussian modulated linear chirp). In contrast, for f 2 , the higher the order of FSST the sharper the TFR; especially when the IF of the mode has a non negligible curvature φ (t). It was shown in [START_REF] Pham | High-order synchrosqueezing transform for multicomponent signals analysis -with an application to gravitational-wave signal[END_REF] that the better TF concentration when using FSSTN also meant better mode reconstruction performance. However, the latter can be further improved by using DFSSTN as shown hereafter, in noise-free and noisy situations. 

A. Noise-Free Case

We display, in Figures 2 (a) and (b), the quality of retrieval processes associated with f 1 and f 2 , respectively, with respect to parameter d defined in (8), using FSST4, DFSST2 and DFSST4 computed either with M = R and M = R/8 = 128. It is worth noting that, in our simulations, the optimal σ as determined above leads to a filter length 2L + 1 = 123, and M = R/8 = 128 is close to the smallest value one can choose. Besides, the performance of mode reconstruction are evaluated by SNR out = 20 log 10 f k 2 / f k,r -f k 2 , where f k,r is the kth reconstructed mode and . 2 is the l 2 norm. We first remark from Figure 2 that a bigger d results in better reconstruction qualities, which is consistent with earlier research [START_REF] Meignen | On demodulation, ridge detection and synchrosqueezing for multicomponent signals[END_REF], [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF]. Moreover, it can be seen that the tested techniques computed with M = R/8 (low frequency resolution) perform much better than those calculated with higher frequency resolution M = R: a compact representation should clearly be favored. Finally, yet most importantly, for each M used, while DFSST4 produces quite similar results to DFSST2, these are much better than those obtained with FSST4 for f 1 . For mode f 2 , DFSST4, taking into account the curvature in the demodulation operator, outperforms all the other studied techniques. 

B. Noisy Case

To further challenge the different tested techniques in the presence of noise, we consider a noisy signal defined f ζ (t) = f (t) + ζ(t), where ζ(t) is a complex white Gaussian process with variance Var ( {ζ(t)}) = Var ( {ζ(t)}) = σ 2 ζ , where {Z} and {Z} stand for the real and imaginary parts of complex number Z. Furthermore, the noise level is measured by: SNR in [dB] = 20 log 10 f 2 / f ζ -f 2 . Then, we again investigate the reconstruction qualities for modes f 1 and f 2 , for FSST4, DFSST2 and DFSST4, when M = R or M = R/8 = 128 and with d = 1. Note that these qualities are the means of the reconstruction accuracies obtained by repeating each simulation 100 times. As in the previous case, DFSST4 still exhibits the best mode reconstruction performance, as reported in Figure 3 (a) and (b). To conclude, our simulations plead in favor of using FSSTN, with a low frequency resolution, followed by a demodulation procedure (DFSSTN) to reconstruct the modes of an MCS rather than FSSTN alone or DFSST2.

V. CONCLUSION

In this paper, we have introduced a new technique for the retrieval of the modes of multicomponent signals from their time-frequency representation, based on high-order synchrosqueezing transforms (FSSTN) together with a demodulation procedure. Numerical experiments demonstrated the improvement brought by the proposed technique over state-ofthe-art methods for both noise-free and noisy signals. Future work should now be devoted to a more theoretical analysis of the proposed techniques in more general noisy situations, including both Gaussian and non-Gaussian noises, as was done in [START_REF] Thakur | The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications[END_REF], [START_REF] Yang | Statistical analysis of synchrosqueezed transforms[END_REF] for synchrosqueezing transforms.
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 1 Fig. 1. (a): modulus of the STFT of f with a small patch (delimited by a red rectangle); (b): zoom in FSST2 computed from the patched STFT shown in (a); from (c) to (d), same as (b) but for FSST3 and FSST4 respectively.
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 2 Fig. 2. Noise-free case: (a) reconstruction accuracy measured by ouput SNR with respect to d for mode f 1 using FSST4, DFSST2 and DFSST4 (with M = R and M = R/8); (b): same as (a) but for mode f 2 .
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 823 Fig. 3. In a noise-free case: (a) reconstruction accuracy measured using output SNR with respect to different input SNR for f 1 using FSST4, DFSST2 and DFSST4 computed with both M = R and M = R/8 and choosing d = 1; (b): same as (a) but for f 2 .