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Abstract—This paper addresses the problem of detecting and
retrieving amplitude- and frequency-modulated (AM-FM) com-
ponents or modes of a multicomponent signal from its time-
frequency representation (TFR) corresponding to its short-time
Fourier transform. For that purpose, we introduce a novel tech-
nique that combines a high order synchrosqueezing transform
(FSSTN) with a demodulation procedure. Numerical results on a
multicomponent signal, both in noise-free and noisy cases, show
the benefits for mode reconstruction of the proposed approach
over similar techniques that do not make use of demodulation.

Index Terms—time-frequency analysis, AM-FM mode, multi-
component signals, synchrosqueezing techniques, demodulation.

I. INTRODUCTION

Multicomponent signals (MCSs), defined as sums of
amplitude- and frequency-modulated (AM-FM) waves, have
received great interest from the signal processing community
over the last decades because of their ability to accurately
represent non-stationary signals arising from a wide range of
applications e.g., audio recordings, structural stability [1], [2],
or physiological signals [3]. Time-frequency (TF) representa-
tions (TFRs) play a central role for characterizing such sig-
nals, among which the continuous wavelet transform (CWT)
and the short-time Fourier transform (STFT) are the most
popular [4]. However, the effectiveness of these transforms
is constrained by the choice of window or wavelet. Indeed,
the Heisenberg uncertainty principle limits both the adaptivity
and the readability of these TFRs. To improve the readability, a
reassignment method (RM) was proposed by Kodera et al. [5]
in the 1970s and then further developed in [6]. Unfortunately,
the reassigned representation given by RM was not invertible:
when applied to an MCS, it did not allow for easy retrieval
of signal components. Alternatively, a technique using the
same principle as RM but keeping the invertibility property,
and known as the synchrosqueezing transform (SST), was
developed in the wavelet framework [7], and then theoretically
studied in [8]. In essence, the retrieval procedure consists of
estimating, on the TFR associated with the modulus of CWT,
so-called ridges which are estimators of the instantaneous
frequencies (IFs) of the modes, reassigning the transform in
the vicinity of the detected ridges, and finally inverting the
reassigned transform. Such an approach was then adapted to
the TFR given by STFT in [9], and is now known as the
STFT-based synchrosqueezing transform (FSST). However, all

these transforms suffer from a serious limitation which is
that they cannot deal with modes containing strong frequency
modulations, commonly encountered in real-world situations
e.g., radar [10], speech processing [11], or gravitational waves
[12], [13]. To better handle this case, an extension of FSST
known as the second-order FSST (FSST2) was proposed in
[14] and its theoretical foundations settled in [15]. Moreover,
this new transform was recently used in conjunction with a
demodulation operator leading to better mode reconstruction
results [16]. FSST2 was also further extended to better deal
with modes with very fast oscillating phase and denoted
by FSSTN with N = 3, 4,... [17]. To investigate how the
combination of FSSTN with a demodulation operator can be
beneficial to mode reconstruction is the main goal of the
present paper.

To this end, after having recalled some useful background
associated with SST in Section II, we revisit the idea of the
demodulation algorithm based on FSST (or FSST2) for mode
reconstruction and then detail its variant based on FSSTN
context in Section III. Finally, we provide, in Section IV,
numerical simulations, involving both noise-free and noisy
MCSs, to demonstrate the improvement brought by the pro-
posed approach over some state-of-the-art methods.

II. BACKGROUND TO SYNCHROSQUEEZING TRANSFORMS

Prior to starting, we recall useful notation, definitions and
basic elements related to synchrosqueezing transforms.

A. Basic Notation and Definitions

Consider a signal f ∈ L1(R), its Fourier transform corre-
sponds to:

f̂(ξ) = F{f}(ξ) =

∫
R
f(t)e−i2πξtdt, (1)

and its short-time Fourier transform (STFT) is defined using
any sliding window g ∈ L∞(R) by:

V gf (t, ξ) =

∫
R
f(τ)g(τ − t)e−2iπξ(τ−t)dτ

=

∫
R
f(t+ τ)g(τ)e−2iπξτdτ. (2)



If f, f̂ , g and ĝ are all in L1(R), f can be reconstructed from
its STFT as soon as g is non-zero at 0:

f(t) =
1

g(0)

∫
R
V gf (t, ξ)dξ, (3)

where Z denotes the complex conjugate of Z.
In this paper, we will intensively study multicomponent

signals (MCSs) defined as a superimposition of AM-FM
components or modes:

f(t) =

K∑
k=1

fk(t) with fk(t) = Ak(t)ei2πφk(t), (4)

for some finite K ∈ N, Ak(t) and φ′k(t) being respectively the
instantaneous amplitude (IA) and frequency (IF) fk satisfying:
Ak(t) > 0, φ′k(t) > 0 and φ′k+1(t) > φ′k(t) for all t. Such a
signal admits an ideal TF (ITF) representation defined as:

TIf (t, ω) =

K∑
k=1

Ak(t)δ (ω − φ′k(t)) , (5)

where δ denotes the Dirac distribution. In practice, the IF of
the modes cannot be recovered by estimating the IF of f as
is done in the theory of analytical signals, and to locate the
modes in the TF plane is essential before computing their IFs:
this is one of the goals of SST whose construction is recalled
hereafter.

B. STFT-based synchrosqueezing transform

The STFT based synchrosqueezing (denoted by FSST in the
sequel) starts with defining the local instantaneous frequency
ω̂f , wherever V gf (t, ξ) 6= 0, by [6]:

ω̂f (t, ξ) =
∂ arg V gf (t, ξ)

∂t
= <

{
1

2iπ

∂tV
g
f (t, ξ)

V gf (t, ξ)

}
. (6)

The FSST of f with threshold γ is obtained by moving any
coefficient V gf (t, ξ) with magnitude larger than γ to location
(t, ω̂f (t, ξ)). One then define the synchrosqueezing transform
as:

T γf (t, ω) =

∫
|V gf (t,ξ)|>γ

V gf (t, ξ)δ(ω − ω̂f (t, ξ))dξ. (7)

Any mode fk can then be reconstructed by summing FSST
coefficients around the kth ridge, which amounts to modifying
the synthesis formula (3) to select only the coefficients related
to the kth mode, namely:

fk(t) ≈ 1

g(0)

∫
|ω−ϕk(t)|<d

T γf (t, ω)dω, (8)

where ϕk is an estimation of φ′k, and parameter d is used
to compensate for errors in IF estimation; it should be kept
small enough to avoid mode-mixing, and its influence will be
discussed later.

C. Second order synchrosqueezing transforms

The applicability of FSST is however restricted to a class
of MCSs composed of slightly perturbed purely harmonic
modes. To overcome this limitation, an extension of FSST,
called second-order STFT-based synchrosqueezing transform
(FSST2) [15], [18], was introduced based on a more accurate
IF estimate than ω̂f . More precisely, one first defines a second-
order local modulation operator used to compute the new
IF estimate. To do so, one introduces complex reassignment
operators ω̃f (t, ξ) =

∂tV
g
f (t,ξ)

2iπV gf (t,ξ)
and t̃f (t, ξ) = t− ∂ξV

g
f (t,ξ)

2iπV gf (t,ξ)
,

and then defines a complex frequency modulation operator as
[18]:

q̃f (t, ξ) =
∂tω̃f (t, ξ)

∂tt̃f (t, ξ)
=

∂t

(
∂tV

g
f (t,ξ)

V gf (t,ξ)

)
2iπ − ∂t

(
∂ξV

g
f (t,ξ)

V gf (t,ξ)

) . (9)

The second-order local modulation operator then corresponds
to <{q̃f (t, ξ)}, and the second order complex IF estimate of
f is defined by:

ω̃
[2]
f (t, ξ) =

{
ω̃f (t, ξ) + q̃f (t, ξ)(t− t̃f (t, ξ)) if ∂tt̃f (t, ξ) 6= 0

ω̃f (t, ξ) otherwise,
(10)

and one then puts ω̂[2]
f (t, ξ) = <

{
ω̃
[2]
f (t, ξ)

}
. It was proven in

[15] that ω̂[2]
f (t, ξ) = φ′(t), when f is a Gaussian modulated

linear chirp. It is also worth mentioning here that q̃f (t, ξ) can
be computed by means of five different STFTs. Finally, FSST2
is defined by replacing ω̂f (t, ξ) by ω̂[2]

f (t, ξ) in (7), to obtain
the so-called T γ2,f , and mode reconstruction is then performed
by replacing T γf by T γ2,f in (8).

D. Higher order synchrosqueezing transforms

Despite FSST2 definitely sharpens the TFR it is based on, it
is proven to provide a truly sharp TFR only for perturbations of
linear chirps with Gaussian modulated amplitudes. To handle
signals containing more general types of AM-FM modes
having non-negligible φ

(k)
k (t) for k ≥ 3, especially those

with fast oscillating phase, one defines new SST operators
based on third- or higher-order approximations of both ampli-
tude and phase [17]. To introduce the technique, we restrict
ourselves to the STFT context but the technique presented
hereafter could easily be extended to the CWT setting. Let
f(τ) = A(τ)ei2πφ(τ) with A(τ) (resp. φ(τ)) being equal to
its Lth-order (resp. N th-order) Taylor expansion for τ close
to t, namely:

log(A(τ)) =

L∑
k=0

[log(A)](k)(t)

k!
(τ − t)k

and φ(τ) =

N∑
k=0

φ(k)(t)

k!
(τ − t)k , (11)



where Z(k)(t) denotes the kth derivative of Z evaluated at t.
Such a mode, with L ≤ N , can be written as:

f(τ) = exp

(
N∑
k=0

1

k!

(
[log(A)](k)(t) + i2πφ(k)(t)

)
(τ − t)k

)
,

(12)

since [log(A)](k)(t) = 0 if L+ 1 ≤ k ≤ N . Its corresponding
STFT reads:

V gf (t, ξ)

=

∫
R

exp

(
N∑
k=0

1

k!

(
[log(A)](k)(t) + i2πφ(k)(t)

)
τk

)
g(τ)e−i2πξτdτ.

Taking the partial derivative of V gf (t, ξ) with respect to t and
then dividing by i2πV gf (t, ξ), the local complex reassignment
operator ω̃f (t, ξ) defined in Section II-C can be written, when
V gf (t, ξ) 6= 0, as:

ω̃f (t, ξ) =

N∑
k=1

rk(t)
V t

k−1g
f (t, ξ)

V gf (t, ξ)
=

1

i2π
[log(A)]′(t) + φ′(t) +

N∑
k=2

rk(t)
V t

k−1g
f (t, ξ)

V gf (t, ξ)
, (13)

where rk(t) = 1
(k−1)!

(
1

i2π
[log(A)](k)(t) + φ(k)(t)

)
. It is

clear that to get an exact IF estimate for the studied signal, one

needs to subtract <

 N∑
k=2

rk(t)
V t

k−1g
f (t, ξ)

V gf (t, ξ)

 to <{ω̃f (t, ξ)},

which requires the calculation of rk(t) for k = 2, . . . , N .
For that purpose, one derives a frequency modulation oper-
ator q̃[k,N ]

f (t, ξ), equal to rk(t) for the type of modes just
introduced, and the definition of the Nth-order IF estimate
then follows [17]:

ω̃
[N ]
f (t, ξ) =


ω̃f (t, ξ) +

N∑
k=2

q̃
[k,N ]
f (ξ, t) (−xk,1(t, ξ)) ,

if V gf (t, ξ) 6= 0, and ∂ξxj,j−1(t, ξ) 6= 0,

2 ≤ j ≤ N
ω̃f (t, ξ) otherwise.

with xk,1(t, ξ) =
V t
k−1g
f (t,ξ)

V gf (t,ξ)
. ω̂[N ]

f (t, ξ) = <{ω̃[N ]
f (t, ξ)} is

then the desired IF estimate which is, by construction, exact for
f satisfying (12). As for FSST2, the N th-order FSST (FSSTN)
is defined by replacing ω̂f (t, ξ) by ω̂[N ]

f (t, ξ) in (7) to obtain
T γN,f (t, ω) and the modes of the MCS can be reconstructed
by replacing T γf (t, ω) by T γN,f (t, ω) in (8).

III. DEMODULATION ALGORITHM BASED ON HIGHER
ORDER FSST FOR MODE RECONSTRUCTION

In this section, we recall the concept of the demodulation
algorithm based on FSST (or FSST2) which was introduced in
[16]. Then, we propose a variant of this algorithm that we coin

DFSSTN in the sequel and show how the use of FSSTN results
in better IF estimation and improved mode reconstruction by
means of demodulation. The demodulation algorithm is based
on a ridge extraction technique from the reassigned transform
which we first recall.

A. Ridge Estimation

Any mode reconstruction technique based on the syn-
chrosqueezing transform requires an estimate of the ridges
(t, φ′k(t)), for which, assuming knowledge of the number K
of modes, we use the same algorithm as in [8] or [6], and
originally proposed in [19]. This computes a local minimum
of the functional

Ef (ψ1, · · · , ψK)

=

K∑
k=1

−
∫
R
|TFf (t, ψk(t))|2 + λψ′k(t)2 + βψ′′k (t)2dt,

where TFf is one of the TF representations introduced above,
i.e. FSST, FSST2, or FSSTN. In [16], it was shown that
to use regularization parameters λ and β did not bring any
improvement in terms of ridge detection (especially when
synchrosqueezed transforms are considered), so we set them
to zero.

B. Mode Reconstruction with Demodulation Based on Higher
Order Synchrosqueezing (DFSSTN)

The previous section has provided us with a means to extract
the ridges from the reassigned transforms, and these corre-
spond to piecewise constant approximations of the IFs of the
modes which are subsequently used in the mode reconstruction
by putting ϕk(t) = ψk(t) for k = 1, · · · ,K. In [16], these
IFs estimates were used in a demodulation algorithm but the
obtained results, though encouraging, were strongly dependent
on the frequency resolution when computing STFT. Indeed,
assume f is with finite length, typically defined on the interval
[0, T ], discretized into f(nTR )n=0,··· ,R−1, and g supported on
[−LTR , LTR ] with L < R/2, the STFT of f is then computed
as follows:

V gf (t, ξ) =

∫ LT
R

−LTR
f(t+ τ)g(τ)e−2iπτξdτ

≈ T

R

L∑
n=−L

f

(
t+

nT

R

)
g

(
nT

R

)
e−i2π

nT
R ξ, (14)

from which we infer that, for 0 ≤ p ≤ R− 1:

V gf

(
qT

R
,
pR

MT

)
≈ T

R

L∑
n=−L

f

(
(q + n)T

R

)
g

(
nT

R

)
e−i2π

np
M ,

for some M ≥ 2L + 1. The last sum is computed by means
of a discrete Fourier transform, and the frequency resolution
equals R

MT . This has the consequence that STFT is all the
more compact that the frequency resolution is low, and that
the IFs estimation based on crude ridges extraction is very
inaccurate in that case.



We now propose to use, for the purpose of mode recon-
struction using a demodulation algorithm, much more relevant
IFs estimates than those based on crude ridges extraction.
Indeed, while performing FSST, FSST2, or FSSTN, one com-
putes ω̂f (t, ξ), ω̂[2]

f (t, ξ), and ω̂
[N ]
f (t, ξ), respectively. These,

evaluated on the ridge associated with the kth mode, i.e.
ω̂f (t, ϕk(t)), ω̂[2]

f (t, ϕk(t)), and ω̂[N ]
f (t, ϕk(t)), lead to much

smoother IF estimates than those proposed in [16]. Based on
the IFs estimates we use the demodulation procedure proposed
in [16] (see Algorithm 1).

Algorithm 1 Demodulation based on FSSTN (DFSSTN)
Estimate the ridges (ψ1, · · · , ψK) from FSSTN.
for k = 1 to K do

1. Compute ϕ̃k(t) = ω̂
[N ]
f (t, ψk(t)).

2. Compute fD,k(t) = f(t)e−i2π(
∫ t
0
ϕ̃k(x)dx−ψ0t).

3. From T γfD,k , extract the ridge ψD,k corresponding to
mode k of fD,k, by considering single ridge detection in
[ψ0 −∆, ψ0 + ∆].

4. Reconstruct the kth mode of fD,k and then multiply
it by the inverse of demodulation operator to recover fk:
fk(t) ≈

(∫
|ω−ψD,k(t)|<d T

γ
fD,k

(t, ω)dω
)
ei2π(

∫ t
0
ϕ̃k(x)dx−ψ0t).

IV. RESULTS AND DISCUSSION

This section provides some numerical experiments on an
MCS, in both noise-free and noisy cases, illustrating the
benefits of using Algorithm 1, with N = 3 or 4, rather
than other existing techniques including FSST2, FSST3,
FSST4 [17] and DFSST2 [16]. The MATLAB scripts gen-
erating all the figures of this paper can be downloaded from
github.com/phamduonghung/EUSIPCO2019.

Let us first consider a synthetic MCS composed of two
AM-FM modes defined as: f(t) = f1(t) + f2(t) with
f1(t) = e2(1−t)

3

ei2π(50t+30t3−20(1−t)4) and f2(t) = (1 +

7(1 − t)4)ei2π(340t−2e
−2(t−0.2) sin(14π(t−0.2))), for t ∈ [0, 1].

Note that f1 is a polynomial chirp fitting in the model defined
by (11) and f2 is a damped-sine function containing very
strong nonlinear sinusoidal frequency modulations. Such a
signal is sampled at a rate R = 1024 Hz on [0, 1]. We
use the L1−normalized Gaussian window g(t) = σ−1e−π

t2

σ2

to compute the STFT of f , where σ is the optimal value
determined minimizing Rényi entropy [20].

In Figure 1, we depict the modulus of STFT and close-ups
of reassigned representations given by FSST2, FSST3, FSST4,
respectively. It is clear that all the studied techniques lead to
relatively sharp TFRs for this mode (f1 behaves locally as
a Gaussian modulated linear chirp). In contrast, for f2, the
higher the order of FSST the sharper the TFR; especially when
the IF of the mode has a non negligible curvature φ′′(t). It
was shown in [17] that the better TF concentration when using
FSSTN also meant better mode reconstruction performance.
However, the latter can be further improved by using DFSSTN
as shown hereafter, in noise-free and noisy situations.
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Fig. 1. (a): modulus of the STFT of f with a small patch (delimited by a
red rectangle); (b): zoom in FSST2 computed from the patched STFT shown
in (a); from (c) to (d), same as (b) but for FSST3 and FSST4 respectively.
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Fig. 2. Noise-free case: (a) reconstruction accuracy measured by ouput SNR
with respect to d for mode f1 using FSST4, DFSST2 and DFSST4 (with
M = R and M = R/8); (b): same as (a) but for mode f2.

A. Noise-Free Case

We display, in Figures 2 (a) and (b), the quality of retrieval
processes associated with f1 and f2, respectively, with respect
to parameter d defined in (8), using FSST4, DFSST2 and
DFSST4 computed either with M = R and M = R/8 = 128.
It is worth noting that, in our simulations, the optimal σ as
determined above leads to a filter length 2L + 1 = 123,
and M = R/8 = 128 is close to the smallest value one
can choose. Besides, the performance of mode reconstruction
are evaluated by SNRout = 20 log10

(
‖fk‖2 / ‖fk,r − fk‖2

)
,

where fk,r is the kth reconstructed mode and ‖.‖2 is the l2
norm. We first remark from Figure 2 that a bigger d results
in better reconstruction qualities, which is consistent with
earlier research [16], [18]. Moreover, it can be seen that the
tested techniques computed with M = R/8 (low frequency
resolution) perform much better than those calculated with
higher frequency resolution M = R: a compact representation



should clearly be favored. Finally, yet most importantly, for
each M used, while DFSST4 produces quite similar results
to DFSST2, these are much better than those obtained with
FSST4 for f1. For mode f2, DFSST4, taking into account the
curvature in the demodulation operator, outperforms all the
other studied techniques.
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Fig. 3. In a noise-free case: (a) reconstruction accuracy measured using
output SNR with respect to different input SNR for f1 using FSST4, DFSST2
and DFSST4 computed with both M = R and M = R/8 and choosing
d = 1; (b): same as (a) but for f2.

B. Noisy Case

To further challenge the different tested techniques in
the presence of noise, we consider a noisy signal defined
fζ(t) = f(t) + ζ(t), where ζ(t) is a complex white Gaussian
process with variance Var (<{ζ(t)}) = Var (={ζ(t)}) = σ2

ζ ,
where <{Z} and ={Z} stand for the real and imaginary
parts of complex number Z. Furthermore, the noise level
is measured by: SNRin[dB] = 20 log10

(
‖f‖2 / ‖fζ − f‖2

)
.

Then, we again investigate the reconstruction qualities for
modes f1 and f2, for FSST4, DFSST2 and DFSST4, when
M = R or M = R/8 = 128 and with d = 1. Note that
these qualities are the means of the reconstruction accuracies
obtained by repeating each simulation 100 times. As in the pre-
vious case, DFSST4 still exhibits the best mode reconstruction
performance, as reported in Figure 3 (a) and (b). To conclude,
our simulations plead in favor of using FSSTN, with a low
frequency resolution, followed by a demodulation procedure
(DFSSTN) to reconstruct the modes of an MCS rather than
FSSTN alone or DFSST2.

V. CONCLUSION

In this paper, we have introduced a new technique for
the retrieval of the modes of multicomponent signals from
their time-frequency representation, based on high-order syn-
chrosqueezing transforms (FSSTN) together with a demod-
ulation procedure. Numerical experiments demonstrated the
improvement brought by the proposed technique over state-of-
the-art methods for both noise-free and noisy signals. Future
work should now be devoted to a more theoretical analysis
of the proposed techniques in more general noisy situations,
including both Gaussian and non-Gaussian noises, as was done
in [21], [22] for synchrosqueezing transforms.
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[21] G. Thakur, E. Brevdo, N. S. FučKar, and H.-T. Wu, “The synchrosqueez-
ing algorithm for time-varying spectral analysis: Robustness properties
and new paleoclimate applications,” Signal Processing, vol. 93, no. 5,
pp. 1079–1094, May 2013.

[22] H. Yang, “Statistical analysis of synchrosqueezed transforms,” Applied
and Computational Harmonic Analysis, Jan. 2017.


