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Abstract

In this paper, we investigate the determination of an optimal window length associated with the computation

of the short time Fourier transform of multicomponent signals. In recent years the Rényi entropy has been widely

used for that purpose, but the understanding of the significance of the obtained minimum in relation with the studied

signal is still partial. In this paper, we explain in what way the window minimizing the Rényi entropy reflects the

modulation of the modes making up the signal, and in which circumstances to use such a window is actually relevant.

Index Terms

Short time Fourier transform; multicomponent signals; Rényi entropy

I. INTRODUCTION

The study of multicomponent signals (MCSs) using the short-time Fourier transform (STFT) is very common in

the time-frequency (TF) literature. These signals are of great interest to the signal processing community because

of their ability to accurately represent non-stationary signals arising from a wide range of applications e.g., audio

recordings, structural stability [1], [2], or physiological signals [3]. However, the effectiveness of the STFT on
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these signals is constrained by the choice of the window, since the Heisenberg uncertainty principle limits both the

adaptivity and the readability of this TF representation. Many different techniques known under the generic term

of reassignment methods (RMs), initially proposed by Kodera et al. [4] in the 1970s and then further developed in

[5], aimed at compensating for the uncertainty principle by reallocating the coefficient in the TF plane.

Nevertheless, in spite of these efforts, the quality of the reassignment process is tightly related to the choice of

window, for which a very common choice is to consider the one associated with the minimal Rényi entropy [6] [7].

In practice such a choice usually leads to good results and an thorough analysis of the Rényi entropy of Gaussian

logons was carried out [8] [9]. Such an entropy also proved to be an interesting tool for mode counting [10].

However, the analysis of the minimum of the Rényi entropy in relation with the modulation of the modes contained

in the signal has never been carried out and is the subject of the present paper. After having introduced useful

notation, we investigate the significance of the minimal Rényi entropy for pure harmonic signals, parallel linear

chirps, and more general signals, to conclude how the minimal Rényi entropy is connected with the modulation of

the modes.

II. DEFINITIONS AND NOTATION

Prior to starting, we recall useful notation and definitions, that will be used throughout the paper. Consider a

signal f ∈ L1(R), its Fourier transform corresponds to:

f̂(ξ) = F{f}(ξ) =

∫
R
f(t)e−i2πξtdt, (1)

and its short-time Fourier transform (STFT) is defined using any sliding window g ∈ L∞(R) by:

V gf (t, ξ) =

∫
R
f(τ)g(τ − t)e−2iπξ(τ−t)dτ

=

∫
R
f(t+ τ)g(τ)e−2iπξτdτ. (2)

In this paper, we will intensively study multicomponent signals (MCSs) defined as a superimposition of AM-FM

components or modes:

f(t) =

K∑
k=1

fk(t) with fk(t) = Ak(t)ei2πφk(t), (3)

for some finite K ∈ N, Ak(t) and φ′k(t) being respectively the instantaneous amplitude (IA) and frequency (IF) fk

satisfying: Ak(t) > 0, φ′k(t) > 0 and φ′k+1(t) > φ′k(t) for all t.

We also assume that Ak is differentiable with A′k small compared with φ′k, that the modes are separated with

resolution ∆, i.e. for all time t,

∀1 ≤ k ≤ K − 1, φ′k+1(t)− φ′k(t) > 2∆ (4)

In practice, one has to deal with finite length f , typically defined, without loss of generality, on the interval [0, 1],

discretized into f(nL )n=0,··· ,L−1, and g supported on [−ML ,
M
L ] with M < L/2. The STFT of f is then computed
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as follows:

V gf (t, ξ) =

∫ M
L

−ML
f(t+ τ)g(τ)e−2iπτξdτ

≈ 1

L

M∑
n=−M

f
(
t+

n

L

)
g
(n
L

)
e−i2π

n
L ξ, (5)

which equals at time m
L and frequency kL

N to

V gf [m, k] :=

M∑
n=−M

f

(
(m+ n)

L

)
g
(n
L

) e−i2π nkN
L

, (6)

for some N ≥ 2M + 1 and then 0 ≤ k ≤ N − 1. In practical situations, M is fixed depending on N through

M = bN−1
2 c.

Let us now recall the definition of the Rényi entropy computed on the magntitude of the STFT, defined in the

continuous time and frequency context on R = [0, 1]× [0, L] [8]:

HR
α,g(f)

=
1

1− α
log2

(∫
R

(
|V gf (t, ξ)|∫

R
|V gf (t′, ξ′)|dt′dξ′

)α
dtdξ

)
. (7)

Discretizing R along the time axis by a factor of 1
L and along the frequency axis by a factor of L

N , one obtains

a grid G. Each value of the discrete STFT can be associated with a TF square of size 1
L ×

L
N = 1

N , and thus we

may discretize the Rényi entropy into:

HG
α,g[f ]

:=
1

1− α
log2

 ∑
(n,k)∈G

 |V gf [n, k]|∑
(n′,k′)∈G

|V gf [n′, k′]|


α

− log2(N). (8)

As explained in the next section, Rényi entropies are the basic tools for the determination of optimal window length.

III. OPTIMAL WINDOW LENGTH DETERMINATION BASED ON RÉNYI ENTROPY AND MODE MODULATION

A crucial aspect to obtain meaningful STFT is the determination of an appropriate window length supported on

{−bN−1
2 c, · · · , b

N−1
2 c}. For that purpose, a very popular approach consisting of computing the minimum of the

Rényi entropy on the magnitude of the STFT and then define the optimal filter as the one realizing this minimum

[6] [11]. The meaning of this minimum with respect to the studied MCS being however unclear, we aim, in what

follows, to analyze this minimum to put forward its relation with the modulation of the modes making up the signal.

A. Determining the Optimal Window for MCS Made of Purely Harmonic modes Using Rényi Entropy

The first study we carry out is on a pure tone signal f(t) = e2iπω1t, for t ∈ [0, 1], for which |V gf (t, ξ)| =

|ĝ(ξ−ω1)|. Now assume the Gaussian window g(t) := gs(t) = e
−π t2

σ2s is used, then we may write that |V gsf (t, ξ)| =
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σse
−πσ2

s(ξ−ω1)2 , so that:

HR
α,gs(f)

=
1

1− α
log2

(∫
R

(
σse
−πσ2

s(ξ−ω1)
2∫

R
σse−πσ

2
s(ξ
′−ω1)2dt′dξ′

)α
dtdξ

)

≈ 1

1− α
log2

(∫
R

(
e−π(ξ−σsω1)

2∫
R
e−π(ξ′−σsω1)2dt′dξ′

)α
dtdξ

)
− log2(σs), (9)

the approximation being valid only if:

e−πσ
2
s(L−ω1)2 ≤ ε if σs ≤ 1, (10)

for a small ε. We will see a bit later that only σs ≤ 1 has to be considered. Assuming this condition is satisfied,

we may write

HR
α,gs(f) ≈ HR

α,g1(f(σs.))− log2(σs)

≈ HR
α,g1(f)− log2(σs), (11)

provided, when σs ≤ 1, e−πσ
2
sω

2
1 ≤ ε, meaning√

− log(ε)
π

ω1
≤ σs. (12)

When (11) is satisfied, the Rényi entropy is a decreasing function with respect to σs. Note that condition (12) is

always stronger than (10) (because it means 2ω1 ≤ L, which is true due to Nyquist principle).

In practice, one also has to take into account that the Gaussian window is truncated, and, to minimize truncation

errors, an upper bound σmax for σs has to be imposed, typically e
−π
bN−1

2
c2

σ2maxL
2 = ε, meaning:

σs ≤ σmax =
bN−1

2 c
L

√
−π

log(ε)
. (13)

This upper bound for σs being always much lower than one this justifies a posteriori that σs > 1 need not be

considered. As a first numerical illustration we consider ω1 = 400, L = 4096, N = 512 and ε = 10−3, leading

σmax = 0.042, while (12) leads σs ≥
√
− log(ε)

π

400 = 0.0037. The interval of interest for σs is thus I = [0.0037, 0.042].

Now, consider the signal f made of these two pure tones signals, namely f(t) = f1(t)+f2(t) = 2e2iπ400t+2e2iπ800t.

Assuming the modes are slightly interfering in the TF plane, the constraints (12) and (13) for each mode lead to

the same interval of interest as in the single mode case. Then, and as remarked in [8] for two Gaussian logons,

one can easily prove that the Rényi entropy should satisfy:

HR
α,gs(f1 + f2) ≈ HR

α,gs(f1) + 1, (14)

this property being also true for the discretized version of the Rényi entropy HG
α,gs . However, if the modes are

moved closer, namely if one changes f2 into 2e2iπ600t and then into 2e2iπ450t, for small values for σs the separation
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Fig. 1. (a): computation of the Rényi entropy as a function of σs when f1(t) = 2e2iπ400t and f2(t) = 2e2iπ800t, the plain line is for f1

only and the dashed line corresponds to f1 + f2, the line marked with circle corresponds to f2(t) = 2e2iπ600t, f1 being unchanged, and the

line marked with stars to f2(t) = 2e2iπ450t, f1 being still unchanged, the squares represent the entropies at σs =

√
− log(ε)

π
min(ω1,ω2−ω1)

; (b): same

as (a) except that the amplitude of f2 is 6 instead of 2.

of the modes is not achieved in the sense that (14) is not satisfied. One can however still define an interval for σs

in which the modes can be considered as separated in the TF plane replacing (12) by :√
− log(ε)

π

min(ω1,
ω2−ω1

2 )
≤ σs, (15)

where ω2 is the frequency of the second mode, the definition of σmax remaining unchanged. This lower bound can

be interpreted as follows: the STFT of the two mode signal can be considered as that of two separated modes if at

frequency ω1+ω2

2 the second mode is not interfering with the first one, i.e. namely e−πσs(
ω1−ω2

2 ) ≤ ε, which leads

to (15).

In Fig. 1 (a), we display the Rényi entropy (with α = 3) associated with the single mode signal, i.e. f1, or the

two mode signal, i.e. f1 + f2, when σs varies in I = [0.0037, 0.042] and when mode f2 varies, f1 being fixed.

Condition (15) implies that σs has to be larger that 0.0148 (resp. 0.0593) for the case associated with the line

marked with stars (resp. circle) in Fig. 1 (a). A closer look at Fig. 1 (a) tells us that the separation condition (14) is

satisfied even when condition (15) is not, that is when the modes are slightly interfering. In this regard, to assume

that at frequency ω1, the STFT of the second mode is negligible, meaning replacing ω2−ω1

2 by ω2−ω1 is sufficient

to fulfill condition (14) (we have plotted on Fig. 1 squares to show this lower bound for σs). From this study,

the interval of interest for σs becomes [

√
− log(ε)

π

min(ω1,ω2−ω1) ,
bN−1

2 c
L

√
−π

log(ε) ], and the minimum for the Rényi entropy

corresponds to the larger value for σs in that interval.

More generally, when one considers a sum of K pure tones with possibly different amplitudes , the lower bound
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for σs rewrites: √
− log(ε)

π

min(ω1, 2∆)
≤ σs. (16)

The separation condition (14) no longer holds and has then to be replaced by, HR
α,gs(f) ≈ HR

α,gs(f1)+C(f1, · · · , fK),

where C(f1, · · · , fK) is a function varying between 0 and 1 which is maximal when all the components have equal

amplitudes [9]. As a simple illustration, we display in Fig. 1 (b), the Rényi entropy of two modes with different

amplitudes for which we clearly see that C(f1, f2) < 1 but remains constant when σs is appropriately chosen

(note that a simple computation leads to C(f1, f2) = 1
1−α log2

(
Aα1 +Aα2

(A1+A2)α

)
). As previously, the interval of interest

where the separation actually occurs is [

√
− log(ε)

π

min(ω1,2∆) ,
bN−1

2 c
L

√
−π

log(ε) ], and is not a function of the amplitude (see the

squares plotted on Fig. 1 (b) corresponding to the lower bound for σs), and the minimum entropy is always attains

for the larger values for σs in that interval.

B. Computing the Optimal Window Length on Parallel Linear Chirps

Now let us consider the case of parallel linear chirps. It was remarked that if f is a linear chirp with constant

amplitude A, one has (still assuming gs(t) = e
−π t2

σ2s ) [12]:

|V gf (t, ξ)| = Aσs(1 + σ4
sφ
′′(t)2)−

1
4 e
−π σ

2
s(ξ−φ

′(t))2

1+σ4sφ
′′(t)2 . (17)

Then, carrying out the same computation as for the pure tone signal, putting σ̃s = σs√
1+σ4

sφ
′′(t)2

, one can rewrite

the Rényi entropy of a linear chirp as:

HR
α,gs(f)

=
1

1− α
log2

(∫
R

(
e−πσ̃

2
s(ξ−φ

′(t))2∫
R
e−πσ̃

2
s(ξ
′−φ′(t))2dt′dξ′

)α
dtdξ

)

≈ 1

1− α
log2

(∫
R

(
e−π(ξ−σ̃sφ

′(t))2∫
R
e−π(ξ′−σ̃sφ′(t))2dt′dξ′

)α
σ̃α−1
s dtdξ

)
,

=
1

1− α
log2

(∫
R

(
e−π(ξ−σ̃sφ

′(t))2∫
R
e−π(ω′−σ̃sφ′(t))2dt′dξ′

)α
dtdξ

)
− log2(σ̃s), (18)

the approximation being valid if forall t, e−πσ̃
2
s(L−φ′(t))2 ≤ ε, because σs will be, as in the previous case, lower

than 1. We may then write:

HR
α,gs(f) ≈ HR

α,g1(f)− log2(σ̃s),

if, for each t √
− log(ε)

π

φ′(t)
≤ σs√

1 + σ4
sφ
′′(t)2

≤ σmax, (19)

σmax being defined in the previous section. A similar computation could be carried out for the dicrete version of

Rényi entropy. When these conditions are satisfied, HR
α,gs(f) decreases (resp. increases) when σ̃s increases (resp.

June 2, 2020 DRAFT
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decreases) . Computing the derivative of σ̃s, one gets:

1√
1 + σ4

sφ
′′(t)2

+ σs(−
1

2

4σ3
sφ
′′(t)2

(1 + σ4
sφ
′′(t)2)

3
2

),

which is null provided σ4
sφ
′′(t)2 = 1, and the Rényi entropy decreases if σs ≤ 1√

φ′′(t)
and increases otherwise.
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Fig. 2. (a): Computation of the Rényi entropy as a function of σs, with N = 512, when f1(t) = 2e2iπ400t+180πt2 and f2(t) =

2e2iπ800t+180πt2 , the plain line is for f1 only and the dashed line corresponds to f1 + f2, then f2 is replaced by 2e2iπ600t+180πt2 (plain

line marked with stars) and then by 2e2iπ450t+180πt2 (plain line marked with circles), the squares correspond to the value of the Rényi entropy

at σs =

√
− log(ε)

π
min(φ′1(t),φ

′
2(t)−φ

′
1(t))

.; (b): same as (a) except the amplitude of the second mode is 6.

We check that this is actually the case, by computing the Rényi entropy on f = f1 or f = f1 + f2, with

f1(t) = 2e2iπ400t+180πt2 and f2(t) = 2e2iπ800t+180πt2 . The results, displayed in Fig. 2 (a), confirm that the Rényi

entropy passes through a minimum when σs = 1√
φ′′1 (t)

, when f = f1 but also when f = f1 + f2 since the two

chirps are parallel and sufficiently far apart. Furthermore, the entropy of the two mode signal is again almost parallel

to that of the single mode signal when, as in the pure harmonics case, σs is larger than

√
− log(ε)

π

min(φ′1(t),φ′2(t)−φ′1(t)) .

To check these points, we consider two other two mode signals by moving f2 closer to f1 in the TF plane, the two

chirps f1 and f2 remaining parallel, namely by considering f2(t) = 2e2iπ(600t+180πt2) or f2(t) = 2e2iπ(450t+180πt2),

and plot a square on the graphs of Fig. 2 (a) when the Rényi entropy is evaluated at σs =

√
− log(ε)

π

min(φ′1(t),φ′2(t)−φ′1(t)) .

For σs larger than this lower bound the Rényi entropy of the two mode signal is parallel to that in the single mode

case. We also check that the minimum of the Rényi entropy is still connected to the chirp rate in all these cases.

Finally, the Rényi entropy associated with several parallel linear chirps with different amplitudes is also considered,

and the results of Fig. 2 (b), reveal no significant difference with the case of modes with the same amplitude.
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Fig. 3. (a): Rényi entropy made of two linear chirps, f1(t) = 2ei2π(400t+180πt2) and f2(t) = 2ei2π(1600t+90πt2) (plain line) or f2(t) =

2ei2π(1600t+10πt2) (dashed line). Then, f2 is replaced by 6ei2π(1600t+90πt2) (plain line marked with stars) and then by 6ei2π(1600t+10πt2)

(plain line marked with circles). The Rényi entropy at σs = 1√
φ′′1 (t)+φ′′2 (t)

2

is also plotted in each case (circle).

C. Behavior of the Rényi Entropy on Non Parallel Linear Chirps

In this section, we investigate the following conjecture. When the Rényi entropy associated with two linear

chirps of possibly different amplitudes has a minimum inside the interval of interest, this minimum corresponds to

σs = 1√
φ′′1 (t)+φ′′2 (t)

2

. As an illustration we consider the two mode signal with modes f1(t) = 2e2iπ(400t+180πt2) and

f2(t) = 2e2iπ(1600t+90πt2) or f2(t) = 2e2iπ(1600t+10πt2), for which we compute the Rényi entropies displayed in

Fig. 3 along with the value of the Rényi entropy at σs = 1√
φ′′1 (t)+φ′′2 (t)

2

in each case (circles in Fig. 3). We see that

in the first case, the minimum actually exists and corresponds to what we conjecture, while in the second case,

f2 being only slightly modulated the Rényi entropy does not pass through a minimum in the interval of interest,

and the minimum of the optimal filter corresponds to the largest one compatible with the frequency resolution. By

changing the amplitude of the second mode we see that the conclusions are the same with chirps with different

amplitudes.

IV. CONCLUSION

In this paper, we have investigated the significance of the minimum of the Rényi entropy for the determination

of the optimal window length for the computation of the short-time Fourier transform of multicomponent signals.

Simple examples have shown us that when that minimum exists in some interval of interest, it reflects the modulation

of the studied modes. For parallel linear chirps, the relation between window length and modulation can be derived

analytically, but a more complex relation had to be conjectured for non parallel linear chirps. Future work should

involve the analysis of the significance of the minimum of the Rényi entropy when the signal is made of more than

two modes and then investigate local Rényi entropy to deal with more complicated modulated signals than linear

chirps.
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