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Pully Adaptive Ridge Detection Based on STFT 

Phase Information 
Marcelo A. ColominasG, Sylvain MeignenG, and Duong-Hung PhamG

Abstract-This letter deals with the problem of the estimation 
of the instantaneous frequencies of the modes of multicomponent 
signais from their linear time-frequency representations. ln most 
approaches, such an estimation consists of extracting the ridges 
associated with each mode in the time-frequency plane. A major is­
sue associated with these techniques is that ridge detection relies on 
some ad-hoc parameters which essentially bound the modulation of 
the studied modes and put some constraints on the type of fil ter used 
in the time-frequency representation. ln this paper, we alternatively 
propose a nove! fully adaptive approach for ridge detection whose 
relevance is sho,m throughout numerical simulations. 

Index Terms-Time-frequency, short-time Fourier transform, 
synchrosqueezing, instantaneous frequency, ridge detection. 

1. INTRODUCTION

M 
ULTICOMPONENT signais, defined as superimposi­
tions of amplitude- and frequency-modulated (AM-FM)

waves, have been an active subject of study for at least 5 0  years.
Such signais are encountered in varions practical non-linear
systems, for instance, pathology diagnosis [l]-[3], or structural
damage [4], [5]. The most common way to deal with them is
to compute their linear time-frequency (TF) representation such
as the short-time Fourier transform (STFT) or the continuons
wavelet transform (CWT), and then look for the ridges of its dif­
ferent modes in the TF plane. These ridges constitute estimations
of the instantaneous frequencies (IFs), which are often used sub­
sequently for the retrieval of the modes [6]. Altematively, there
exist many other techniques performing mode reconstruction
without considering TF representation (TFR), as for instance
variational methods [7], [8], empirical wavelet transform [9]
or empirical mode decomposition [10]. However, ail of them
basically extract band-lirnited modes, and thus are essentially
different from those obtained with TF techniques.

Traditionally, ridge detection (RD) is carried out on the mod­

ulus of the TFR, but this way to proceed ignores half of the
information of the latter, namely its phase [11], [12]. Our goal
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is thus to show that this phase information, which is often esti­
mated using reassignment operators in reassignment techniques

like synchrosqueezing transforms (SSTs) [13]-[18], is useful to
design adaptive RD. Indeed, a serions issue related to RD from
TFR is that it often relies on some arbitrary upper bound on
the modulation of the modes and depends on some hypotheses
made on the filter used for TFR computation. Therefore, we
propose, in this paper, a fully adaptive RD computed on STFT 
magnitude using modulation operators introduced in [15], [17].
To do so, we first recall, in Section Il, some useful definitions
and notations, and then a commonly used parametric RD based
on STFT. Our main contribution, in Section m, then explains
how to use the just mentioned modulation operators to design a
more adaptive RD. Finally, numerical simulations carried out in
Section IV validate the new technique on both artificial and real
signais.

Il. MULTICOMPONENT SJGNALS, STFT, RIDGE DETECTION
AND MODE RECONSTRUCTION

Multicomponent signals (MCSs) consist of the superimpo­
sition of a finite number L of components modulated both in
amplitude and frequency (AM-FM):

L L 

x(t) = I:xi(t) = I:A1(t)ei21r</>i(t), (1) 

l=l l=l 

where A
p

(t) and ef>�(t) are, respectively, the instantaneous am­
plitude (IA) and instantaneous frequency (IF): A1 (t), ef>Ht) >
0'v't, ef>�(t) - ef>Ht) > O'v'k >land IA\(t)I are assumed to be
small. The (modified) Short-Time Fourier Transform (STFT)
corresponds to [19]:

F}(t, f) = 1-:00 x(u)g(u - t)e-i21rf(v.-t)du, (2)

where g(t) is an even real window with supp{g(f)} Ç
[-B, +B]. 1 In a discrete-time setting, x[n] is a finite time series
of length N, defined on [O, l], and its STFT is written as:

( n kN) N-l . k u-n 

F; N, l( � F}[n, k] := � x[u]g[u - n]e-•2"�,

with k E {O, ... , J( - 1} and n E {O, ... , N - 1 }.
When a signal is modeled as in (1), every component occupies

a "ribbon" around its IF ef>; ( t). In addition, if the IFs are separated

1 g(f) = JR g(t)e-i2"' ftdt is the Fourier transform (FT) of g(t). 



enough (i.e. |φ′
k(t)− φ′

l(t)| > 2B, ∀k �= l), then each mode
“lives” in non-overlapping domains [11], [15]. Besides, RD con-
sists of extracting the dominant lines, called ridges around which
the ribbons are arranged, by solving iteratively the following
optimization problem, for l from 1 to L by means of a peeling
algorithm [12], [20]:

max
cl

N−1∑

n=0

|F g
x,l[n, cl[n]]|2, s.t. |Δcl[n]|N

2

K
≤ Bf , (3)

where cl is the lth estimated ridge, Δz[n] = z[n+ 1]− z[n],
while Bf is a fixed a priori upper bound for the frequency
modulation of the modes. Note that L is assumed to be known,
and we refer to [21] for an analysis on how to assess the
number of ridges. The constraint in (3) means that cl[n+ 1] ∈
[cl[n]− BfK

N2 , cl[n] +
BfK
N2 ]. Further,F g

x,l is recursively defined
as follows:

F g
x,l[n, k]=

{
0, if k ∈ [cl[n]− η−l [n], cl[n] + η+l [n]]

F g
x,l−1[n, k], otherwise,

(4)

where F g
x,1 = F g

x (i.e. RD for the first ridge is carried out on the
initial STFT), while η−l and η+l should be defined. It is important
to emphasize that the quality of RD strongly depends on how
the latter are defined. For example, the most traditional RD
technique sets them to constant values:η−l [n] = η+l [n] = 
BK

N �,
where 
·� denotes the ceiling function, andB is the half-width of
supp{ĝ}. In what follows, this technique is denoted by CFB-RD
(CFB for constant frequency bandwidth).

Alternatively, one can make η−l and η+l time-dependent by
exploring the noise behavior of the signal in the TF plane. To
this end, one considers a noisy signal x̃ modeled by x̃[n] =
x[n] + r[n], where r is a complex white Gaussian noise with
variance σ2

r . The STFT of the noise, being also Gaussian with
zero mean, satisfies: var(�{F g

r [n, k]}) = var(
{F g
r [n, k]}) =

σ2
r‖g‖22, where �{X} and 
{X} stand for the real and imag-

inary parts of complex number X , respectively, and ‖ · ‖2 for
the �2 norm. Also, it was shown in [22] that |F g

r [n, k]|2/σ2
r‖g‖22

is χ2 distributed with 2 degrees of freedom, and a threshold of
9 corresponds to a probability of false alarm smaller than 1%.
Therefore, the thresholded STFT with threshold T = 3σr‖g‖2
can be written as:

F
g
x̃[n, k] =

{
F g
x̃ [n, k], if |F g

x̃ [n, k]| ≥ T = 3σr‖g‖2
0, otherwise

(5)

Note that in practical situations,σr‖g‖2 is not known, and can be
estimated, for example, by median(|�{F g

x̃ [n, k]}|)/0.6745 [23],
[24]. Inspired by (5), one proposes to define η−l [n] and η+l [n]
such that [cl[n]− η−l [n], cl[n] + η+l [n]] is the longest interval
containing cl[n] in which the modulus of the STFT remains
larger than T [24], [25]. In the sequel, such a strategy is denoted
by VFB-RD (VFB for varying frequency bandwidth).

III. A NEW STRATEGY FOR RD

The above introduced RD techniques depend greatly on an a
priori fixed parameter Bf , and on how the bandwidth functions

η−l and η+l are defined. Indeed, on one hand, to fix Bf a priori
somewhat limits the adaptivity of RD, and, on the other hand,
regarding the definition of bandwidth functions, CFB-RD does
not take into account potential frequency modulation of the
modes. Finally, VFB-RD requires an estimation of the noise
level, and is thus inappropriate in noiseless situations. Therefore,
we propose herein a novel technique that adaptively modifies RD
by first getting rid of Bf and then by defining new bandwidth
functions.

A. Frequency Modulation Operators

Let us first introduce an estimate of the frequency modulation
of the modes used in the definition of second order STFT-based
synchrosqueezing transform (FSST2) [15], which relies on a
complex estimate:

q̃x̃[n, k] =
1

2iπ

F g′′
x̃ [n, k]F g

x̃ [n, k])− (F g′
x̃ [n, k])2

F tg
x̃ [n, k]F g′

x̃ [n, k]− F tg′
x̃ [n, k]F g

x̃ [n, k]
, (6)

in which F g′
x̃ , F tg

x̃ , F g′′
x̃ , F tg′

x̃ are respectively STFTs of f com-
puted with windows n �→ g′[n], (tg)[n], g′′[n] and (tg′)[n] is
such that q̂x̃[n, k] := �{q̃x̃[n, k]} consists of an approximation
of φ′′( n

N ), when x is a linear chirp. In the case of an MCS,
when kN

K lies in the vicinity of φ′
l(

n
N ), q̂x̃[n, k] is an estimate

of φ′′
l (

n
N ) [17]. In what follows, we are going to explain how to

use q̂x̃[n, k] in the definition of a new adaptive RD.

B. RD Based on Frequency Modulation Estimate

As highlighted above, a great limitation associated with exist-
ing RD is that the upper bound Bf is kept constant regardless of
the frequency modulation of the modes. So, using the frequency
modulation estimate q̂x̃[n, k] described in Section III-A, we now
propose to improve RD by relaxing the constraint on Bf in the
optimization problem (3) as follows:

max
cl

N−1∑

n=0

|F g
x̃,l[n, cl[n]]|2,

s.t.

∣∣∣∣Δcl[n]− K

N2
q̂x̃[n, cl[n]]

∣∣∣∣ ≤ C,

(7)

where C is some integer corresponding to the number of
frequency bins Δcl[n] can depart from K

N2 q̂x̃[n, cl[n]]. It is
worth mentioning that in (3), no assumption were made on
the sign of the modulation because Bf was a bound to the
absolute value of the maximum modulation, while in (7), cl
and �{q̃x̃[n, cl[n]]} are constrained to have the same sign.
Moreover, unlike (3), the constraint in (7) means that c[n+ 1] ∈
[cl[n] +

K
N2 q̂x̃[n, cl[n]]− C, cl[n] +

K
N2 q̂x̃[n, cl[n]] + C], with

the interval center being a “predictor” for the ridge at timen+ 1.
After having relaxed the constraint onBf , we now define new

frequency bandwidth functions, η−l [n] and η+l [n], associated
with the ridge cl at each time instant n. For that purpose,
let us consider the lth mode: xl(t) = Al(t)e

i2πφl(t), which
locally admits a linear chirp approximation [15], [26]: xl(u) ≈
Al(t)e

i2π(φl(t)+φ′
l(t)(u−t)+

φ′′
l
(t)

2 (u−t)2), for u sufficiently close



to t. Its STFf is then approximated as: 

FJ
1 
(t, f) � x1(t)'§ii;(f - <f>Ht)), (8) 

,t," 

where g<l>ï,, (t) = g(t)ei21r:.ft
2

• It is interesting to note that
contrary to CFB-RD which ignores the frequency modulation 

,t," 

te i21r,;,j-t2 . . th . f rm e , we propose to use 1t m e computation o new 
bandwidth fonctions. It was shown in [26] that for a Gaus­
sian window g( N) = e-o-( ;v >2 , and for a given time instant n,

we have that IF!, [n, k] 1 is almost zero when I If - qS1 ( j) 1 2:: 
3 a-2+1r2q,"( .Z:. )2 

;- 2,,.1 M • U sing also the frequency modulation estimate 
qx [n, ct[n]] of <t>n N ), as introduced in Section ill-A, we de-

fine: TJj [n] = TJ( [n] = f-f&-¾ ✓ "2
+"'

2
q2in ,c, [n)l

2 l, as frequency
bandwith fonctions when the signal is noisy. The just introduced 
RD is called MB-RD (MB for modulation-based) in the sequel. 
Note that this technique could be easily extended to TFRs based 
on CWT since the modulation operators are also computable in 
that context [27]. 

IV. ExPERIMENTS AND REsULTS

This section presents some numerical experiments conducted 
on artificial and real signals to illustrate the improvement 
achieved by the proposed approach MB-RD over the state of­
the-art methods, CFB-RD and VFB-RD. 

A. Artificial Signals

First of all, we consider synthesized signais which are uni­
formly sampled over time interval [0,1] with sampling rate 
at M = 1024 Hz. Their STFfs are computed with J( = N
frequency bins and with a Gaussian window whose length a
is determined by the minimum of the Rényi entropy computed 
on the STFf magnitude [28]. The signais are also contarninated 
by white Gaussian noises with different signal-ta-noise ratios
(SNRs ). The performance of RD is evaluated by SN Rout ( ef>�) = 
20 log10(1lef>�erlb/(llef>�ef - ef>�ll2)), where </>� is the estimated IF 
corresponding to the detected ridges and ef>�ef is the reference IF. 

1) Monocomponent Signals: Let us first consider monocom­
ponent artificial signais x

p
(t) = ei2"'<Pp(t) ,p = l, 2, in which the 

frequency modulation is important. Since in the monocompo­
nent case CFB-RD and VFB-RD are the same, only CFB-RD 
is reported here. In particular, we investigate the following two 
cases: 

• <Pl (t) = 250t + 25e-120(t-½)2
, with ef>�,rer(t) = 250 -

6000(t - ½)e-120(t-½)2 .
• ef>2(t) = 50t+ f( ferf(25(t-½))+f )dt, with ef>�,ref

(t) = 50 + ferf(25(t - ½)) + f, where erf(x) = j; 
fox e-t2 

dt is the error fonction. 
On these signais, MB-RD is compared with CFB-RD com­

puted with BI equal either to 2N, 5N or 50N. On the first 
row of Fig. 1, we depict the moduli of their STFfs, while the 
performance of RD with these techniques are displayed on the 
second row. For the first signal (first column), it can be shown 
that I max(ef>1(t))I = 6000, and therefore, as expected, CFB-RD 
with BI = 2N performs poorly. On the contrary, when BI is 
set to a bigger value, for instance Bi = 50N, such a technique 

time 
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time 

:i�-
-"

�� ,;' B'·'f' 
20 ·::.·::.-

'i"� ;� 

10 
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Fig. 1. First row: STFT moduli of the monocomponent signais. Second row: 

CFB-RD (black) using Bt = 2N (circles), B1 = 5N (stars), or Bt = 50N 
(squares). MB-RD (red) using C = 2 (circles), C = 5 (stars), or C = 10 
(squares). The average performance over 30 realizations is displayed. 
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Fig. 2. First row: STFT moduli of the multicomponent signais. Second and 
tblrd rows: CFB-RD (black) and VFB-RD (blue) using B f = 2N (circles), 

B f = 5N (stars), or B f = 50N (squares). MB-RD (red) using C = 2 (cir­
cles), C = 5 (stars), or C = 10 (squares). The average performance over 30 

realizations is displayed. 

behaves nicely. On the contrary, MB-RD appear to be slightly 
sensitive to the choice of C, behaves sirnilarly to CFB-RD 
with BI = 5N, and performs consistently better as the noise 
level decreases (input SNR of 30 or 40 dB). For the second 
signal (second column), one has I max(ef>�(t))I = 5N, and thus 
CFB-RD with BI = 2N behaves poorly, while MB-RD remains 
only relatively unsensitive to C. In addition, the RD results given 
by MB-RD or CBF-RD with B1 = 5N are still of compara­
ble quality, but clearly MB-RD has the advantage to be folly 
adaptive. In short, when using CFB-RD on a monocomponent 
signal, BI can be chosen arbitrarily large so that it is always 
more efficient than MB-RD. However, we are going to see, in 
the following subsection, that this is no longer the case when 
dealing with MCSs 

2) Multicomponent Signals: We now investigate synthetic
signais made of two components, both of which are amplitude­
modulated and the second component has its phase equal to twice
that of the first one: x(t) = a(t)ei21r</>p(t) + b(t)ei21r2</>p(t), p =
1, 2, with a(t) = 1 + e-lO(t-1/2)2 and b(t) = 2 - e-lO(t-1/2)2 . 
To be in line with the study of the monocomponent case, we
consider the following phase fonctions:

• ef>1(t) = 150t + 8e-120<t-½)2 10ot2 , with ef>' (t) 1,ref =
150 - 1920(t -½ )e-120(t-½ )2 .
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• ef>2(t) = 50t + J(3,fo erf(20(t - ½)) + 3,fo)dt, with ef>2,ref
(t) = 50 + 3,fo erf(20(t - ½)) + 3,fo.

The STFf moduli of such signals are displayed on the first 
row of Fig. 2, while the second row exhibits the performance 
of RD with the different methods. It should be noted that the 
Lower frequency (LF) mode is always detected first therefore the 
behaviors of CFB-RD and VFB-RD are the same for that mode. 
Thus, on the second row of Fig. 2, we only display the results 
related to CFB-RD, along with those corresponding to MB-RD. 
We first remark that these two techniques produce similar results 
on the LF mode provided B f is not chosen too large in CFB-RD, 
namely if mode rnixing does not drive down the performance, as 
for example when Bi= 50N. Unlike in the monocomponent 
case, a large value for B f is no longer allowed, since the ridge 
detector rnight then "jump" from one ridge to another at two 
successive time instants. On the contrary, MB-RD exhibits little 
dependence on the value of C.

Then, since RD methods are ail associated with a peeling 
scheme, after having extracted the first ridge, the neighborhood 
of this ridge is removed in the TF plane before proceeding with 
the extraction of the second one. It should be noted that this 
neighborhood depends on the RD technique used: with VFB­
RD, at high input SNRs, the frequency bandwidth parameters 
77ï[n] and 7Ji[n] (corresponding here to the LF mode) are too 
large which is problematic when the modes exhibit interference 
in the TF plane (around t = 0.5 in the studiedcases). This results 
in a failure of VFB-RD on the highfrequency (HF) mode (third 
row of Fig. 2). Switching to the results calculated by CFB-RD, 
we notice that, as expected, for the HF mode, this technique is 
more sensitive to B f than for the LF mode (see third row of 
Fig. 2). On the contrary, MR-RD behaves sirnilarly for ail these 
modes, with only a slight dependency on parameter C.

B. Real Signais

Voice signals have been widely studied using TF analysis
techniques [30)-(33), and we here investigate how the proposed 
MB-RD technique can be beneficial in that context. To do so, 

we consider two signals from the Saarbruecken voice database 
[29), both of which are sustained /a/ vowels of the type "low­
high-low", meaning there is a change on their pitch. 

The first signal corresponds to the recording of a 19-years­
old healthy female speaker (called recording 8 [29)). On the 
first row of Fig. 3, we depict its STFf magnitude, along with 
the RD results given by VFB-RD with B1 = 2N, 5N or 50N 
(first to third columns) and those computed with MB-RD (Jourth
column). It is clear that only MB-RD accurately extracts the 
three ridges, while VFB-RD leads to ridges containing •�umps" 
and undesired fast oscillations, regardless of the value of B f. 

Moreover, on the second row of Fig. 3, we display the same 
computations as above, but for the signal corresponding to a 
recording of a 22-years-old healthy female speaker (recording 
62 [29)). Note that such a signal is different from the previous 
one in the fact that it exhibits a vibrato on its final third. We 
clearly observe from these figures that VFB-RD leads to mode 
rnixing whatever the value of B f: the algorithm "jumps" from 
one ridge to another. On the contrary, MB-RD catches perfectly 
the vibrato on the final third pitch of the signal. 

V. CONCLUSIONS

In this letter, a nove! fully adaptive technique for the detec­
tion of time-frequency ridges associated with the modes of a 
multicomponent signal was proposed. It was based on the local 
estimate of the frequency modulation of the modes used for the 
computation of the second-order synchrosqueezing transform. 
ln particular, a new unsupervised way to dealing with the jump 
when detecting ridges was introduced, which showed the im­
portance of taking into account the frequency modulation when 
using a peeling algorithm. Numerical experiments demonstrated 
the effectiveness of the proposed technique on both simulated 
and real signals. Future work will be dedicated to embed this 
new technique into the downsampled short-time Fourier trans­
form [25) or synchrosqueezing transform-based demodulation 
context [34), for the purpose of mode reconstruction. 



REFERENCES

[1] S. Cerutti, A. L. Goldberger, and Y. Yamamoto, “Recent advances in heart
rate variability signal processing and interpretation,” IEEE Trans. Biomed.
Eng., vol. 53, no. 1, pp. 1–3, Feb. 2006.

[2] U. R. Acharya, K. P. Joseph, N. Kannathal, L. C. Min, and J. S. Suri,
“Heart rate variability,” in Advances in Cardiac Signal Processing. Berlin,
Germany: Springer, 2007, pp. 121–165.

[3] M. Malik and A. J. Camm, Dynamic Electrocardiography. Hoboken, NJ,
USA: Wiley, 2008.

[4] O. Salawu, “Detection of structural damage through changes in frequency:
A review,” Eng. Struct., vol. 19, no. 9, pp. 718–723, 1997.

[5] C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration–based structural
damage identification,” Philos. Trans. Royal Soc. London A: Math., Phys-
ical Eng. Sci., vol. 359, no. 1778, pp. 131–149, 2001.

[6] F. Auger et al., “Time-frequency reassignment and synchrosqueezing:
An overview,” IEEE Signal Process. Mag., vol. 30, no. 6, pp. 32–41,
Nov. 2013.

[7] S. Chen, X. Dong, Z. Peng, W. Zhang, and G. Meng, “Nonlinear chirp
mode decomposition: A variational method,” IEEE Trans. Signal Process.,
vol. 65, no. 22, pp. 6024–6037, Nov. 2017.

[8] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,” IEEE
Trans. Signal Process., vol. 62, no. 3, pp. 531–544, Feb. 2013.

[9] J. Gilles, “Empirical wavelet transform,” IEEE Trans. Signal Process.,
vol. 61, no. 16, pp. 3999–4010, Aug. 2013.

[10] N. E. Huang et al., “The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis,” in Proc.
Royal Soc. London A: Math., Physical Eng. Sci., vol. 454, pp. 903–995,
1998.

[11] R. Carmona, W. L. Hwang, B. Torrésani, “Characterization of signals
by the ridges of their wavelet transforms,” IEEE Trans. Signal Process.,
vol. 45, no. 10, pp. 2586–2590, Oct. 1997.

[12] R. Carmona, W. L. Hwang, B. Torrésani, “Multiridge detection and time-
frequency reconstruction,” IEEE Trans. Signal Process., vol. 47, no. 2,
pp. 480–492, Feb. 1999.

[13] I. Daubechies and S. Maes, “A nonlinear squeezing of the continuous
wavelet transform based on auditory nerve models,” Wavelets Medicine
Biol., pp. 527–546, 1996.

[14] I. Daubechies, J. Lu, and H.-T. Wu, “Synchrosqueezed wavelet transforms:
An empirical mode decomposition-like tool,” Appl. Comput. Harmon.
Anal., vol. 30, no. 2, pp. 243–261, 2011.

[15] T. Oberlin, S. Meignen, and V. Perrier, “Second-order synchrosqueezing
transform or invertible reassignment? Towards ideal time-frequency rep-
resentations,” IEEE Trans. Signal Process., vol. 63, no. 5, pp. 1335–1344,
Mar. 2015.

[16] D.-H. Pham and S. Meignen, “High-order synchrosqueezing transform
for multicomponent signals analysis - with an application to gravitational-
wave signal,” IEEE Trans. Signal Process., vol. 65, no. 2, pp. 3168–3178,
Jun. 2017.

[17] R. Behera, S. Meignen, and T. Oberlin, “Theoretical analysis of the second-
order synchrosqueezing transform,” Appl. Comput. Harmon. Anal., vol. 45,
no. 2, pp. 379–404, 2018.

[18] H. Yang, “Statistical analysis of synchrosqueezed transforms,” Appl. Com-
put. Harmon. Anal., vol. 45, no. 3, pp. 526–550, 2018.

[19] L. Cohen, Time-Frequency Analysis, vol. 1, Englewood Cliffs, NJ, USA:
Prentice-Hall, 1995.

[20] D. Iatsenko, P. V. McClintock, and A. Stefanovska, “Extraction of in-
stantaneous frequencies from ridges in time–frequency representations of
signals,” Signal Process., vol. 125, pp. 290–303, 2016.

[21] N. Saulig, N. Pustelnik, P. Borgnat, P. Flandrin, and V. Sucic, “Instanta-
neous counting of components in nonstationary signals,” in Proc. 21st Eur.
Signal Process. Conf., 2013, pp. 1–5.

[22] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way. New
York, NY, USA: Academic, 2009.

[23] D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[24] D.-H. Pham and S. Meignen, “A novel thresholding technique for the
denoising of multicomponent signals,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2018, pp. 4004–4008.

[25] S. Meignen and D.-H. Pham, “Retrieval of the modes of multi-
component signals from downsampled short-time Fourier transform,”
IEEE Trans. Signal Process., vol. 66, no. 23, pp. 6204–6215, Dec.
2018.

[26] M. A. Colominas, S. Meignen, and D.-H. Pham, “Time-frequency filtering
based on model fitting in the time-frequency plane,” IEEE Signal Process.
Lett., vol. 26, no. 5, pp. 660–664, May 2019.

[27] T. Oberlin and S. Meignen, “The second-order wavelet synchrosqueezing
transform,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2017,
pp. 3994–3998.

[28] R. G. Baraniuk, P. Flandrin, A. J. Janssen, and O. J. Michel,
“Measuring time-frequency information content using the Rényi en-
tropies,” IEEE Trans. Inf. Theory, vol. 47, no. 4, pp. 1391–1409, May
2001.

[29] B. Woldert-Jokisz, “Saarbruecken voice database,” 2007.
[30] R. K. Potter, G. A. Kopp, and H. C. Green, Visible speech, 1947.
[31] L. Pimonow, Vibrations en Régime Transitoire. Paris, France: Dunod,

1962.
[32] M. Sondhi and J. Schroeter, “A hybrid time-frequency domain articula-

tory speech synthesizer,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-35, no. 7, pp. 955–967, Jul. 1987.

[33] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via time-
frequency masking,” IEEE Trans. Signal Process., vol. 52, no. 7, pp. 1830–
1847, Jul. 2004.

[34] D.-H. Pham and S. Meignen, “Demodulation algorithm based on higher
order synchrosqueezing,” in Proc. 27th Eur. Signal Process. Conf., 2019,
pp. 1–5.


