
HAL Id: hal-02573638
https://hal.science/hal-02573638v1

Submitted on 14 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-site Connectivity for Edge Infrastructures
DIMINET:DIstributed Module for Inter-site

NETworking
David Espinel Sarmiento, Adrien Lebre, Lucas Nussbaum, Abdelhadi Chari

To cite this version:
David Espinel Sarmiento, Adrien Lebre, Lucas Nussbaum, Abdelhadi Chari. Multi-site Connectivity
for Edge Infrastructures DIMINET:DIstributed Module for Inter-site NETworking. CCGRID 2020:
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, IEEE; The
University of Melbourne, May 2020, Melbourne, Australia. pp.1-10, �10.1109/CCGrid49817.2020.00-
81�. �hal-02573638�

https://hal.science/hal-02573638v1
https://hal.archives-ouvertes.fr


Multi-site Connectivity for Edge Infrastructures
DIMINET:DIstributed Module for Inter-site NETworking

David Espinel Sarmiento
Orange Labs Network

Orange
Lannion, France

davidfernando.espinelsarmiento@orange.com

Adrien Lebre
IMT-Atlantique

Inria/LS2N
Nantes, France

adrien.lebre@inria.fr

Lucas Nussbaum
Université de Lorraine

Inria/LORIA
Nancy, France

lucas.nussbaum@loria.fr

Abdelhadi Chari
Orange Labs Network

Orange
Lannion, France

abdelhadi.chari@orange.com

Abstract—The deployment of a geo-distributed cloud infras-
tructure, leveraging for instance Point-of-Presences at the edge
of the network, could better fit the requirements of Network
Function Virtualization services and Internet of Things appli-
cations. The envisioned architecture to operate such a widely
distributed infrastructure relies on executing one instance of a
Virtual Infrastructure Manager (VIM) per location and imple-
ment appropriate code to enable collaborations between them
when needed. However, delivering the mechanisms that allow
the collaborations is complex and error prone task. This is
particularly true for the one in charge of establishing connectivity
among VIM instances on-demand. Besides the reconfiguration
of the network equipment, the main challenge is to design a
mechanism that can offer usual network virtualization operations
to the users while dealing with scalability and intermittent
network properties of geo-distributed infrastructures.

In this paper, we present how such a challenge can be
tackled in the context of OpenStack. More precisely, we introduce
DIMINET, a DIstributed Module for Inter-site NETworking ser-
vices capable to interconnect independent networking resources
in an automatized and transparent manner. DIMINET relies
on a decentralized architecture where each agent communicates
with others only if needed. Moreover, there is no global view
of all networking resources but each agent is in charge of
interconnecting resources that have been created locally. This
approach enables us to mitigate management traffic and keep
each site operational in case of network partitions. A promising
approach to make other cloud-services collaborative on-demand.

Index Terms—IaaS, SDN, virtualization, networking, automa-
tion

I. INTRODUCTION

Internet of Things (IoT) applications, Network Function
Virtualization (NFV) services, and Mobile Computing [1] have
operational constraints that require to deploy computational
and storage resources at multiple locations closer to the end
users. While the deployment of such distributed cloud infras-
tructures (DCIs) has been debated initially due to economical
reasons, the question, now, is no more whether they will be
deployed but rather how we can operate them?

Among the different approaches that are investigated, the
use of a series of independent Virtual Infrastructure Manager
(VIM) instances looks to be the most promising one [2],
[3]. However VIMs such as OpenStack [4], have been de-
signed in a pretty stand-alone way in order to manage a
single deployment, and not, to peer each other in order to
establish inter-site services. Hence, most VIM services should

be extended with additional pieces of code in order to offer
the same functionality but over multiple instances. While the
use of distributed databases can help developers implement
such inter-site operations at the first sight [5], it is a bit
more complicated for a few services, in particular when
scalability and network partitions should be taken into account.
To illustrate this claim, we propose to address in this paper
the challenges related to the inter-site networking services.
In particular, we consider the two following points as the
cornerstone:

• Layer 2 network extension: being able to have a Layer 2
Virtual Network (VN) that spans several VIMs. This is
the ability to plug into the same VN, Virtual Machines
(VMs) that are deployed in different VIMs.

• Routing function: being able to route traffic between a
VN A on VIM 1 and a VN B on VIM 2.

Obviously, current proposals that leverage centralized ap-
proaches such as Tricircle [6] are not satisfactory. The chal-
lenge is to establish such inter-site networking services among
several VIMs in a decentralized way. By decentralized, we
mean that the networking service of a VIM needs to be
extended in order to guarantee the following characteristics:

• Scalability: The inter-site service should not be restricted
by design to a certain number of VIMs.

• Resiliency: All parts of a DCI should be able to survive to
network partitioning issues. In other words, cloud service
capabilities should be operational locally when a site is
isolated from the rest of the infrastructure.

• Locality awareness: VIMs should mitigate as much as
possible remote interactions. This implies that locally
created data should remain local as much as possible, and
only shared with other instances if needed, thus avoiding
to maintain a global knowledge base.

• Abstraction and automation: Configuration and instan-
tiation of inter-site services should be kept as simple
as possible to allow the deployment and operation of
complex scenarios. The management of the involved
implementations must be fully automatic and transparent
for the users.

Our contribution to tackle this challenge is the DIMINET
proposal, a DIstributed Module for Inter-site NETworking
services. To the best of our knowledge this is the first inter-



site service tool that satisfies all of the aforementioned prop-
erties. The architecture of DIMINET extends concepts that
have been proposed in Software Defined Networking (SDN)
technologies, in particular in the DISCO and OpenDayLight
SDN controllers [7], [8]: On each site, a module is in charge
of managing its local site networking services, and is capable
of communicating with remote modules, on-demand, in order
to provide virtual networking constructions spanning several
VIMs.

We implemented a first proof-of-concept of DIMINET as
a module deployed besides the networking service of Open-
Stack, Neutron, using an horizontal API to communicate
among modules. This approach enabled us to keep the col-
laboration code outside the Neutron one. Although additional
experiments should be done to validate how our PoC behaves
in presence of untimely network disconnections, preliminary
experiments conducted on top of Grid’5000 demonstrated the
correct functioning of our proposal.

It is noteworthy that the contribution of DIMINET goes
beyond the technical contribution on the Neutron OpenStack
service. Actually, we are investigating how can the DIMINET
proposal be generalized to other services to make them col-
laborative with minimal efforts in terms of developments.
Indeed, a significant part of the abstractions that has been
implemented can be reused to share information in an effi-
cient manner between services while mitigating the impact of
network partitions. Such generic pieces of code may represent
a huge contribution to deliver building blocks for collaboration
between independent systems. Such building block are critical
to operate and use DCIs such as envisioned in Fog and Edge
computing platforms.

The rest of this paper is organized as follows. Section II
describes challenges related to inter-site networking services.
Section III presents related work. DIMINET architecture is
given in Section IV. Preliminary evaluations of our PoC are
discussed in Section V. Finally, Section VI concludes and
discusses future work.

II. INTER-SITE NETWORKING CHALLENGES

As mentioned before, programming collaboration mecha-
nisms between several instances of the same service is a
tedious task, especially in a geo-distributed context where net-
work disconnections can prevent one instance from synchro-
nizing with others for more or less long durations. Considering
this point as the norm when designing inter-site services, in
particular for the cloud networking ones, brings forth new
challenges and questions, In this section, we discuss the major
ones. We classified them in two categories: those related to the
organization of networking information and those related to the
implementation of inter-site networking services.For the sake
of clarity, we remind that our DCI architecture is composed of
several sites. Each site is managed by a VIM instance, which
is itself composed of several services. An inter-site operation
consists in interacting with at least two remote instances of
the same service.

A. Organization of networking information’s challenges

In order to mitigate as much as possible overheads due to
data exchanges while being robust enough w.r.t. network dis-
connections and partitioning issues, it is important to identify
(i) which is the minimal information we have to share and at
which granularity, (ii) how this information should be shared
and (iii) how the inter-site networking resources that have been
created behave in presence of network disconnections.

1) Identifying which networking information should be
shared: A first aspect to consider is related to the organization
of information related to the cloud network resources. For
instance, the provisioning of a Layer 2 segment with its
respective IP range between two VIMs will require to share
information related to the IP addresses that have been allocated
at each VIM to avoid conflicts. On the contrary, other informa-
tion related to local router gateways, external gateways, fixed
host routes . . . may not be likely to be shared with remote sites.
In consequence, depending on the inter-site operation, the
information that should be shared needs to be well specified
to avoid conflicts among the networking management entities.
Understanding the different structures that are manipulated
by the operations of the networking service will enable the
definition of efficient and robust sharding strategies between
multiple VIMs.

Fig. 1: Layer 2 extension Request

2) Defining how networking information should be
shared: A second aspect to consider is related to the scope of
each networking service call. Taking into account the scope
for each request is critical as sharing information across all
VIMs could lead to heavy synchronization and communica-
tion needs. For instance,network information like MAC/IP
addresses of ports and identifiers of a network related to one
VIM does not need to bes hared with the other VIMS that
composed the DCI. Similarly,information related to a Layer
2 network shared between two VIMs as depicted in Figure 2
does not need to be shared with the 3rd VIM. The extension of
this Layer 2 network could be done later. That is, only when
it will be relevant to extend this network to VIM 3.

3) Facing network disconnections: Each VIM should be
able to deliver networking services even in case of network



partitions. Two situations must be considered in this context:
(i) the inter-site networking service (for instance a Layer 2
network) has been deployed before the network disconnection
and (ii) the provisioning of a new inter-site networking service
while some sites cannot be contacted. In the first case, the
isolation of a VIM (for instance VIM2 in Figure 2 should not
impact the inter-site network elements: VIM2 should still be
able to assign IPs to VMs using the "local" part of the inter-
site Layer 2 network. Meanwhile, VIM1 and VIM3 should
continue to manage inter-site traffic from/to the VMs deployed
on this same shared Layer 2 network.

In the second case, because the VIM cannot reach other
VIMs due to the network partitioning issue, the information
that is mandatory to finalize the provisioning process will
be impossible to obtain. The question is whether to decide
to completely revoke such a request or if instead it will be
desirable to provide the appropriate mechanisms in charge of
finalizing the provisioning request partially.

Fig. 2: Operate in a local any mode

B. Implementation challenges

The Networking domain is a large area with multiple
standards as well as different technological solutions. To
avoid facing heterogeneity issues in the DCI context, the
technological choices need to be coordinated in advance in
order to ease the networking service provisioning.

1) Standard automatized interfaces: A first aspect to take
into account is related to the definition of the vertical and
horizontal interfaces to allow the provisioning of inter-site
services from the end-users viewpoint but also to make the
communication/collaboration possible between the different
VIMs. This means that the interface which faces the user (user-
side or vertical as traffic flows in a vertical way) and the
interface which faces other VIMs (VIM-side of horizontal as
traffic flows in a horizontal way) have to be bridged among
them. This integration needs to be done in order to provide
the necessary user abstraction and the automation of the VIMs
communication process.

Consequently, this necessitates the specification and de-
velopment of well-defined vertical and horizontal interfaces.
These interfaces should present an abstract enough list of the
available inter-site networking services and constructions.

2) Support and adaptation of networking technologies:
Along with the necessary exchange of networking information
among VIMs to provide inter-site services as described in
II-A1, the identification of the mechanism to actually do
the implementation (i.e., control plane) and allow the VMs
traffic to be exchanged (i.e., data plane) will be needed.
This implementation information is pretty important since it
indicates to each VIM what technologies it should use to
forward the VMs traffic and where it should be send (i.e.,
consider a VM with its private IP address reachable through
a VXLAN tunnel endpoint in a physical server with a public
IP). Although there are many existing networking protocols
to rely on to do the implementation (BGP-EVPN/IPVPN,
VXLAN, GRE, Geneve, IPSec, etc.), they will need adaptation
in the DCI case. Since the configuration of the networking
mechanisms needs to be known by all the participant VIMs
in a requested inter-site service, the exchange of additional
implementation information will be required among the sites
in an automatized way.

This automation is required due to the fact that the user
should not be aware of how these networking constructions
are configured at the low-level implementation. Since a DCI
infrastructure could scale up to hundred of sites, manual
networking stitching techniques like [9], [10] will be simply
not enough.

Table I summarizes the challenges explained in this section.
These challenges will be referenced in the following sections
to explain our architectural choices.

III. RELATED WORK

A few solutions have been proposed to deal with inter-
site virtualized networking services in IaaS systems [8], [11],
[12], [6], [13], [14]. In [12], the authors describes an Hybrid
Fog and Cloud interconnection framework to enable a simple
and automated provision and configuration of virtual networks
to interconnect multiple sites. It sustains the entire manage-
ment in a single entity called the HFC manager which is a
centralized entity acting as the networking orchestrator. The
Tricircle project [6] is also another solution that leverages a
centralized architecture. In this proposal, an API gateway node
is used as an entry point to a geo-distributed set of OpenStack
deployments. Each instance of the Neutron service is not aware
of the existence of other Neutron instances, but instead always
communicate with the API gateway which is also the only
interface exposed to the user. These solutions, which relies
on a centralized entity, are not scalable not robust w.r.t. to
network partitions.

Among the decentralized approaches that have been de-
scribed, we should emphasize the ODL federation project [8]
and the DISCO SDN controller [7]. The project Federation
for OpenDayLight (ODL) [8] aims to facilitate the exchange
of state information between multiple ODL instances by
levearging an AMQP communication bus to send and receive
messages among instances. The project relies on a fully
decentralized architecture where each instance maintains its
own view of the system. In that sense, the project might



TABLE I: DCI Challenges summary

Challenge Summary
Organization of networking information’s challenges
Identifying which networking information should be shared Propose good information sharding strategies
Defining how network information should be shared Avoid heavy synchronization by contacting only the relevant

sites
Facing network disconnections Continue to operate in cases of network partitioning and be

able to recover
Implementation challenges
Standard automatized and distributed interface Well-defined and bridged vertical and horizontal interfaces
Support and adaptation of networking technologies Capacity to configure different networking technologies

be a good solution for our objectives in terms of scalability
and robustness. However, ODL Federation does not ensure
that information related to the inter-site networking resources
is consistent across the whole DCI. Actually, the inter-site
services are proposed at the controller level while the Neutron
instances of OpenStack remain unconscious of the information
shared at the ODL level. During a network failure, every
Neutron instance will continue to provide its local services
without knowing that there are potential conflict-operations
when executing actions in resources that are shared between
ODLs. Once the connectivity is reestablished, ODLs cannot
provide a recovery method and information like IP addresses
could be duplicated without coordination among controllers.
This is an important flaw for the controller when it needs
to recovery from networking disconnections. In the DISCO
approach[7], the DCI is divided into several logical groups,
each managed by one controller. Each controller peers with the
other ones only when traffic needs to be routed. In other words,
there is no need to maintain a global view among all instances.
However, the design of DISCO is rather simple as DISCO
does not a cloud-oriented solution (i.e., it delivers mainly
domain-forwarding operations, which includes only conflict-
less exchanges). Offering usual VIM operations such as on-
demand networks creation, dynamic IP assignment, security
groups creation, etc. is prone to conflict and thus is harder to
implement.

DIMINET goes one step ahead of these solutions by deliv-
ering an inter-site networking service at the cloud level and in
a decentralized manner.

IV. DIMINET ARCHITECTURE

This section describes the architecture of DIMINET. First,
we give a general overview of the architecture. Second, we
discuss important design choices, in particular by focusing on
how DIMINET instances communicate and how L3 forward-
ing and L2 network services have been implemented. Finally
and for the sake of clarity, we explain how the network traffic
is effectively routed among the different sites.

A. Overview

As shown in Figure 3, DIMINET is fully decentralized: each
DIMINET instance is deployed besides a VIM networking
service.

This architecture guarantees the DCI characteristics as ex-
plained as follows.

Fig. 3: DIMINET overview

Scalability: New DIMINET instances representing remotes
sites can join the deployment without affecting the normal
behaviour of other instances.

Resiliency: Because of the fully distributed architecture,
DIMINET does not present the centralized architecture limita-
tions. This means that in case of network partitions, as every
DIMINET instance and its respective VIM are independent of
the others, they will continue to provide, at least, their cloud
services locally.

Locality awareness: Because of its horizontal commu-
nication between instances that happens only on demand,
DIMINET does not build a global knowledge but instead relies
on the collaboration among instances to share the necessary
inter-site service-related information.

Abstraction and automation: Thanks to its rather simple
but powerful APIs, DIMINET does the creation and configura-
tion of inter-site services in an automatic way without further
actions needed from the user besides the initial service creation
request.

Figure 4 depicts more in detail the internal architecture of
a DIMINET instance. It is composed of the communication
interfaces, which allows collaboration among VIMs and end-
users, and the logic core, which implements the necessary
strategies to manage and deploy inter-site services.



Fig. 4: DIMINET architecture

B. Logic Core

The core of DIMINET is the Logic Core, which is in charge
of the actual management and coordination of the inter-site
services, including communication when required with other
DIMINET instances and with the VIM’s Network service (in
our case the Neutron service from OpenStack).

In order to effectively address the consistency challenge
detailed in II-A1, the information sharding strategy for each
service is defined in the Logic Core.

The Logic Core stores inter-site service information in a
local database. To relate the same inter-site service stored in
different locations, the Logic Core generates a global unique
identifier that will identify the same service either in Site 1 or
Site N of the service. This global identifier will be created at
the DIMINET instance that receives the initial user vertical
request and will be transmitted to remote sites inside the
horizontal creation request. In this way, all sites will be capable
to reference the same inter-site service.

Table 5 shows the schema of the objects used by the Logic
Core to represent an inter-site resource.

• Service: Main object of DIMINET which represents the
inter-site service. A service is composed by some Param-
eters, a list of Resources, and a list of local Connections.

• Param: As we already mentioned, since every proposed
inter-site feature has their own needs, it is necessary to
store different information per service. The Param class
is used to store service-related information to support the
main functionalities of the Logic Core. If for instance, the
Service is of L3 type, it will not store information into
the All_pool parameter. At the contrary, an L2 service
will store the IP allocation pool assigned by the master
instance.

• Resource: A Resource represents a virtual networking
object belonging to a site. The Service class holds a list
of resources (the local one and a series of remote ones).
This list exists in every DIMINET instance composing a
service.

• Connection: A Connection represents the mechanism
enabling the interconnection for resources to contact or
be contacted by remote VIMs in order to forward/route
VMs traffic. Unlike Resources objects, Connections are
only stored locally.

Service
Global_ID Name Type Params Ressources Connections

Param
ID All_pool Local CIDR IPv Service_Global_ID

Resource
UUID Site Service_Global_ID

Connection
UUID Service_Global_ID

Fig. 5: DIMINET database relationship diagram

We emphasize that for each inter-site resource, there is a
master in charge of maintaining the consistency of the related
information. In our current model, the master is defined as
the VIM that received the initial service request. The use of a
more advanced database engine leveraging CRDT [15] would
probably be relevant. However, answering this question is let
as future work as this does not change the key concepts of
DIMINET (i.e., for each resource, there is a mechanism used
to maintain the consistency of the information). The use of a
per resource master enables DIMINET to deal with network
partitions for inter-site resources in a straightforward manner:
When an end-user request cannot be satisfied due to network
issues (either a remote site cannot be reached or reciprocally
when a remote site cannot interact with the master), the request
is simply revoked and a notification is sent to the end-user,
who is in charge of invoking it once again later.

C. Communication Interfaces

To accept end-user requests and make communication
among VIMs possible, DIMINET relies in a two interface
division (inspired from the DISCO SDN controller): the North
interface and the East-West interface as depicted in Figure 3.
These two interfaces are coupled among them and with
the Logic Core in order to automatize the inter-site service
provisioning.

Both North and East-West interfaces are REST APIs us-
ing standard HTTP traffic presenting to the users and to
remote instances Create/Read/Update/Delete actions (CRUD).
The implemented vertical and horizontal CRUD and their
explanation are summarized in Table II.

1) North interface: The north or vertical interface allows
the user to request the establishment of inter-site network-
ing services among several sites. This interface exposes an
abstract-enough API to allow the user to execute CRUD
actions on inter-site services. For instance, if the user wants
to create a new inter-site service, it has to provide the list of
resources that will compose the service and the type of service.



2) East-West interface: Once the networking instance re-
ceives an inter-site networking provisioning request from the
user using the North interface, it will communicate with the
appropriate distant instances using the East-West interface.

This interface allows DIMINET instances to communicate
with the relevant neighbor instances to exchange information
about the distant networking objects and to request the creation
of the symmetric remote inter-site service. The exchanged
information are both the logical information to do the dis-
tributed management of the networking constructions and the
necessary implementation low-level mechanism information
allowing the communication of the virtualized instances.

This interface is only used on-demand and with service-
related instances. In other words, contacting only the relevant
sites for a request will mitigate the network communication
overhead and the limitations regarding scalability as well as
network disconnections.

D. Layer 3 routing

The inter-site Layer 3 routing feature is provided for
traffic to be routed among different virtual networks (VN)
subnetworks. By design, subnetworks should not overlap.
That is, the range of addresses in one subnetwork should be
unique compared to all other subnetworks. If two subnetworks
overlap, when a router needs to send a packet to an IP address
inside that range of overlapped addresses, the router may
forward the packet to the wrong subnetwork. In this context,
the organization of the information of the local VN subnetwork
does not need to be coordinated with remotes VIMs, but for the
service to be correctly provided, the VN subnetworks Classless
Inter Domain Routing (CIDRs) must not overlap.

Let be {SN1, SN2, SN3, ..., SNn−1, SNn} a set of inde-
pendent subnetworks deployed on n VIM sites which are
requested to have L3 routing among them. The condition⋂n

i=0 SN(CIDR)i = ∅ (the sets of subnetworks CIDRs have
to be disjoint sets) needs to be true for traffic to be routed.

This verification is done on the first instance that receives
the service request. Once the user provides the identifiers of
the resources to interconnect in a Layer 3 service and the site

North Interface
Operation Prefix Description
GET /intersite-vertical Retrieve local information of

all services
POST /intersite-vertical Create a new service
DELETE /intersite-vertical/{global_id} Delete a service with id

global_id
GET /intersite-vertical/{global_id} Retrieve local information of

service with id global_id
PUT /intersite-vertical/{global_id} Modify a service with id

global_id
East-West interface
Operation Prefix Description
POST /intersite-horizontal Horizontal request to create a

service
DELETE /intersite-horizontal/{global_id} Horizontal request to delete a

service with id global_id
GET /intersite-horizontal/{global_id} Read the distant parameters of

a service with id global_id
PUT /intersite-horizontal/{global_id} Horizontal request to modify

a service with id global_id

TABLE II: REST API Operations

where they belong, the instance proceeds to query the network
information from every pertinent sites to ensure that the IP
ranges are not overlapping among them. Once this condition
is verified, the instances do the exchange of information to
allow the low-level mechanism to do the virtualized traffic
forwarding.

Fig. 6: DIMINET L3 Routing service sequence diagram

For example, if the user requests to the DIMINET instance
of VIM A a Layer 3 routing service among two networks
A and B, belonging to VIMs A and B respectively, this
DIMINET instance will contact the remote site in order to
find the subnetwork CIDR related to the remote network,
and of course, it does the same search locally. Consider
the IPv4 CIDRs 10.1.2.0/23 and 10.1.4.0/23 for network
A and B respectively. The DIMINET instance will do the
overlapping verification with the ranges [10.1.2.0-10.1.3.255]
for 10.1.2.0/23 and [10.1.4.0-10.1.4.255] for 10.1.4.0. Thus,
10.1.2.0/23

⋂
10.1.4.255/23 = φ (the two subnetworks do

not overlap). Since the verification is satisfactory, DIMINET
instance A will send a horizontal service creation request to
instance B with the information of the two resources and the
type of service. Then, the instance A proceeds to send its local
information for the data place connection to instance B. The
same information is sent as an answer in order for both sites to
have the respective reachability information. Figure 6 shows
the sequence diagram of the communication among the users
and the DIMINET instances when no overlapping is verified.

Obviously, when CIDRs overlap, DIMINET does not satisfy
the request and notifies the user that the service cannot be
provided due to overlapping subnetworks CIDRs.

Finally, DIMINET instances then only interact with the
master of the L3 resource each time a site wants to join or
leave this network.

E. Layer 2 extension

The inter-site Layer 2 extension feature gives the possibility
to plug into the same virtual network, VMs belonging to
different sites. To belong to the same virtual network, hosts
must have the same subnetwork prefix (CIDR) and do not have



duplicate MAC or IP addresses. Since every network exists as
an independent network in each site, they can each one have
their own DHCP service for IP assignment. Thus, MAC and
IP assignment have to be coordinated among the requested
sites in order for the service to be correctly provided.

At this point, there are two operations that need to be
considered over VNs: the join and the extension. The join
operation refers to combining multiple independent L2 re-
sources to create a single L2 resource. This implies that every
independent L2 resource could have already deployed VMs
on it. If the join operation is applied between two resources,
it will be potentially necessary for each VIM to change the IP
addresses already allocated and thus, interrupting the services
that are being provided by those VMs, which is not desirable
in operational environments. The extension operation refers to
expanding one of the L2 resources into the others to create
a single L2 resource. This implies that these resources need
to be clean in order to do the initial request. Since this last
operation does not impact the operation of every segment, we
preferred to use it in our design.

For this reason, we have decided to propose the following
approach:

• The instance receiving the initial service request assumes
the role of master for that particular service.

• This master instance does a logical split of the range of IP
addresses within the same CIDR between, for instance,
two VIMS at the creation of the inter-site L2 network.

In this sense, the master instance will be in charge of provid-
ing the IP allocation pools to the other instances composing
the service, and thus, to do the L2 extension. To avoid to
spend all the IP addresses from the first service request, the
master instance delivers mid-sizes allocation pools to the other
participants. If in any case, one of these instances needs more
IP addresses or a new instance arrives to compose the service,
it will be enough with querying the master instance to have a
new allocation pool.

With this approach, we will avoid the communication over-
head of sharing the information between the concerned VIMS
each time an IP address is allocated to one resource. At the
same time, we will avoid the static division of only doing a
CIDR allocation pool division at the service creation time. This
approach will allow the instances to maintain a segment logic
division while providing a more dynamic sharding strategy.

With our approach, if the user requests to the DIMINET
instance of VIM A a Layer 2 extension service to a VIM
B, this DIMINET instance will contact the instance of site
B in order to verify that a corresponding subnetwork CIDR
can be created. If so, the instance of site B will create the
corresponding subnetwork and the instance of Site A will take
the role of master of that specific L2 inter-site resource. This
implies that this instance will decide how to do the CIDR IP
allocation pool among the participant sites for the request and
to manage further requests concerning the modification of the
service.

This information of the master instance as well as the
allocated IP range will be sent through the East-West interface

Fig. 7: DIMINET L2 extension service sequence diagram

to remote instances sharing this L2 inter-site resource. When
receiving the horizontal L2 creation request, remote instances
will store the service information in their local database and
will use the service-related information dictated by the master
instance to do the appropriate changes in local networking
constructions (i.e., change the local IP allocation pool). This
changes are also done in the master site to provide the afore-
mentioned logical division. Once this is done, the instances
proceed to exchange the necessary implementation information
to allow VMs traffic to be forwarded among them. Figure 7
shows the sequence diagram of the communication among the
users and the DIMINET instances when the same CIDR is
verified.

F. Virtualized traffic interconnection

As we proposed DIMINET to be deployed besides Neu-
tron, we do not implement the information exchange for the
virtualized traffic connectivity over the horizontal interface,
but instead we rely on the Interconnection Service Plug-
in [11]. The Interconnection plug-in allows to create an
"interconnection" resource which references a local resource
(e.g. network A in VIM1) and a remote resource (e.g. network
B in VIM2) having the semantic informing that connectivity is
desired between the two sites. The proposition then leverages
the use of Border Gateway Protocol based Virtual Private
Networks (BGPVPNs) [9] at both sides to create an overlay
network connecting the two local segments.

The BGPVPN Service Plug-in itself uses the well-
known networking protocol BGP for the establishment of
IPVPN/EVPN [16], [17]. In BGP-based VPNs, a set of identi-
fiers called Route Targets are associated with a VPN. Similarly
to the publish/subscribe pattern, BGP-peers use an export and
import list to let know the interest of receiving updates about
announced routes. A Route Target export identifier is used
to advertise the local routes of the VPN to the other BGP-
peers. At the other hand, a Route Target import identifier is
used to import remote routes to the VPN. For instance, two



sites belonging to the same BGP-VPN will have the following
informations to exchange their BGP routes: site A will have
route-target-export 100 and route-target-import 200, while site
B will have route-target-export 200 and route-target-import
100.

V. PROOF-OF-CONCEPT

In this section, we discuss preliminary evaluations we
performed on top of a proof-of-concept (PoC) we implemented
to experimentally assess the DIMINET architecture.

Since OpenStack already posses an authentication service
(Keystone) that is used for client authentication, service dis-
covery and authorization, we rely on this service to find out
distant DIMINET instances knowing that they are deployed in
the same IP address as Neutron.

A. Testbed and setup

Fig. 8: DIMINET testbed setup

Figure 8 shows the experimental platform: each gray box
corresponds to a physical machine of Grid’5000 on which
a Devstack version of the OpenStack Stein release has been
deployed with the following networking services: ML2 OVS
driver, neutron-interconnection Plug-in, networking-bgpvpn
Plug-in, and networking-bagpipe driver, and a DIMINET
instance. This federation of Devstack enabled us to emulate
our DCI infrastructure.

Since the Interconnection Service Plug-in also relies in the
BGPVPN Service Plug-in, it is necessary to either deploy a
BGP peering overlay on top of the IP WAN connectivity or
have a BGP peering with WAN IP/MPLS BGP-VPN underlay
routing instances. Because Grid’5000 does not allow to inter-
act with the physical routers (underlay BGP), we deployed the
first scenario using GoBGP [18] to provide the functionality
of the BGP instances in each site. These BGP instances are
deployed on the same Grid’5000 machines used for the Open-
Stack and DIMINET deployments. Moreover, we deployed
some Route Reflector (RR) instances in independent physical
machines to advertise the BGP VPN Route Targets used to
advertise the routes of the virtual networking constructions.

We have deployed 14 sites in total, each RR is connected to
3 sites and the BGP sessions are pre-configured among them
and among each RR and its BGP instances clients in each site.

B. Evaluation: Inter-site networking services deployment

The first purpose of this demonstration is to show the
feasibility of using a distributed architecture to create inter-site
networking services. For this, we measured the time needed
to create the inter-site service for both kind of services. Since
the data plane interconnection depends on the number of
instances booted at every segment, we do not measure this
time but instead we rely on former works on BGP performance
proving the benefits and disadvantages of BGP VPN routes
exchanges [19], [20].

Each test has been executed 100 times and Table III sum-
marizes the creation time of services varying the quantity of
resources/sites by service up to N=6 sites. Moreover, Figure 9
shows a graphical representation of this service mean creation
time with the standard error.

Feature # of sites per request
2 3 4 5 6

L3 routing 3.5006 3.56017 3.61324 3.8076 4.08032
L2 extension 3.47927 3.66885 3.98471 4.07191 4.40295

TABLE III: Performance measure time in seconds

1) Layer 3 routing service: For every experiment a random
instance has been chosen to receive the user request and
start the inter-site Layer 3 routing service creation. These
experiments have been done using resources/sites of size 2,
3, 4, 5, and 6.

As explained in the last section about the L3 routing
sharding strategy, the time needed to create the L3 service
is divided in the following elements:

• The first DIMINET instance requests the pertinent remote
sites about the network-related information to find out
the subnetworks’ identifiers. In our PoC, this is done
in parallel because remote network information can be
provided without dependency among the requests.

• The first DIMINET instance proceeds to query the sub-
network related CIDR information. Similarly to the pre-
vious step, this is done in parallel.

• Once the DIMINET instance finished to query, it does
the overlapping verification locally.

• Since the verification is false, the instance proceeds to
call the neutron-interconnection Plug-in to create the
interconnection resources.

• Next, the instance sends in parallel the horizontal create
API request to the remote DIMINET instances. The
instance waits for remote answers in order to continue.

• Once all the remote instances answered the horizontal
request, the first instance proceeds to answer the original
user request.

2) Layer 2 extension service: Similarly to the L3 service,
for every experiment a random instance has been chosen to
receive the user request and to start the inter-site Layer 2
extension service creation. This experiments have been done
using resources/sites of size 2, 3, 4, 5, and 6.



2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

n

Ti
m

e(
se

co
nd

s)

L3routing

L2extension

Fig. 9: DIMINET mean time service creation and standard
error

As explained in the last section about the L2 extension
sharding strategy, the time needed to create the L2 service
is divided in the following elements:

• The first DIMINET instance requests the pertinent remote
sites about the network-related information to find out if
the CIDR is available to use. Similarly to the L3 service,
this is done in parallel. This means that this first request
depends on the time expended by remote sites to answer
the query

• Once the DIMINET instance finished to query, it verifies
that the CIDR is available for all the requested resources.

• Since the verification is true, the instance creates a special
Parameter to gather the IP allocation pools and does the
splitting of the same among the remote sites.

• Then, the instance proceeds to call the neutron-
interconnection Plug-in to create the interconnection re-
sources.

• The instance proceeds to do the change of the DHCP
parameters of its local resource according to the splitting
done by itself.

• Next, the instance sends the horizontal create API request
to the remote DIMINET instances. In this request the
additional information about the master identity and the
allocated pool for the remote sites are added. The instance
waits for remote answers in order to continue.

• Once all the remote instances answer the horizontal
request, the first instance proceeds to answer the original
user request.

C. Evaluation: Inter-site networking services Resiliency

The second purpose of this demonstration is to show the
improved resiliency of a distributed architecture against net-
working partitioning issues. To explain this, we have deployed
an L2 extension service with CIDR IPv4 10.0.0.0/24 depicted
in Figure 10 (A) among sites A and B. Once the service has

been deployed, two VMs have also been deployed on each
site.

Fig. 10: DIMINET Resiliency test. (A) Initial deployed ser-
vice. (B) Inter-site service in presence of networking partition-
ing

Firstly, we have checked that the traffic was being carried at
the intra-site level, this is, between the VMs deployed in the
same site. We also checked that the traffic was being carried
at the inter-site level. At this point, thanks to the different
technologies used (BGP routes exchanges, VXLAN tunnels
among sites . . . ), traffic was correctly forwarded in both cases.

Secondly, we emulated a network disconnection using Linux
Traffic Control (TC) to introduce a network fault in the link
between the sites as shown in Figure 10 (B). We decided to
impact in the network allowing the BGP routes exchanges. We
verify that while intra-site traffic continues to being forwarded,
inter-site traffic will continue to be forwarded a little more
until the local BGP router finds that its distant BGP peer is
no longer reachable. At that point the local BGP router decides
to withdraw the remote routes from its local deployment, then
impacting the inter-site data plane traffic.

Traffic Scenarios
Before failure During failure After failure

Intra-site 3 3 3
Inter-site 3 7 3

TABLE IV: Traffic being forwarded in different scenarios



Because of the independence between the deployments and
the logical division done by our DIMINET instance, we
effectively arrived to instantiate new VMs during the net-
work failure. This corresponds to the behaviour we expected
since the OpenStack deployments are completely independent
among them.

Finally, when connectivity is reestablished, inter-site traffic
takes some time to be forwarded again between sites. This is
because the BGP peers waits the configured Keep Alive time
to query the distant peer about its availability to reestablish
the BGP peering among them, thus, impacting on the time
needed to reestablish the traffic. Table IV summarizes whether
the traffic is routed either in intra-site or inter-site.

D. Summary

Although these experiments enables the validation of our
PoC in terms of behaviour, deeper investigations should be
performed in order to clarify some trends. In particular, we
need to understand why the time to create an inter-site resource
increases w.r.t. to the number of sites involved. Conceptually
speaking this is a non sense as all internal requests are
handled in parallel. Moreover, we plan to perform additional
experiments to stress DIMINET by requesting the creation of
several inter-site resources simultaneously and across different
groups of sites. Such experiments should demonstrate also the
good properties of DIMINET as master roles are distributed
among the different instances of our DCI. Obviously, this can
lead to hotspots where some VIMs will be much more stressed
than others. However, these possible hotspots issues are due to
the locality-awareness as well as the resiliency w.r.t. network
partitions properties we are looking for.

VI. CONCLUSIONS

In this article, we have introduced DIMINET, a DIstributed
Module for Inter-site NETworking services capable to provide
automatized management and interconnection for independent
networking resources. DIMINET relies on a decentralized
architecture where each instance is in charge of managing its
local site networking services, and is capable of communi-
cating with remote instances, on-demand, in order to provide
virtual networking constructions spanning several VIMs. To
assess the design of our proposal, we implemented a first PoC
that extends the OpenStack Neutron service. We evaluated it
through a set of experiments conducted on top of Grid’5000.
Preliminary results demonstrated that the DIMINET model can
address the challenge of inter-site resources without requiring
intrusive modifications at the VIM level.

We are currently conducting additional experiments in order
to identify the time-consuming steps in the creation of inter-
site resources. We also plan to achieve additional experiments
to validate how DIMINET behaves in presence more complex
service requests scenarios, in particular in the presence of
simultaneous operations.

In parallel to these experimental studies, we are investigat-
ing how the use of advanced database engines can improve the
robustness of the DIMINET master concept. Across this study,

we identified the opportunity to deliver a more general model
of DIMINET. A model that can deal with more services than
just the networking one and deliver building blocks capable of
handle the life cycle of inter-site resources in a DCI resource
management system.

ACKNOWLEDGEMENT

All developments related to this work have been supported
by Orange Labs and Inria in the context of the Discovery
Open Science initiative. Experiments were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations.

REFERENCES

[1] A. Bousselmi, J. F. Peltier, and A. Chari, “Towards a Massively
Distributed IaaS Operating System: Composition and Evaluation of
OpenStack,” IEEE Conference on Standards for Communications and
Networking, 2016.

[2] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-Edge Computing Architecture: The role of MEC in the Internet
of Things,” IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 84–
91, Oct 2016.

[3] R.-A. Cherrueau, A. Lebre, D. Pertin, F. Wuhib, and J. M. Soares, “Edge
Computing Resource Management System: a Critical Building Block!”
HotEdge, 2018.

[4] OpenStack, “OpenStack,” https://docs.openstack.org/latest/, 2020.
[5] A. Lebre, J. Pastor, A. Simonet, and F. Desprez, “Revising OpenStack

to Operate Fog/Edge Computing Infrastructures,” IEEE International
Conference on Cloud Engineering, 2017.

[6] OpenStack, “Tricircle Project,” https://wiki.openstack.org/wiki/Tricircle,
2018.

[7] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed Multi-
domain SDN Controllers,” Network Operations and Management Sym-
posium, 2014.

[8] OpenDayLight, “OpenDaylight Federation Application,” https://wiki.
opendaylight.org/view/Federation:Main, 2016.

[9] OpenStack, “Neutron BGPVPN Interconnection,” https:
//docs.openstack.org/networking-bgpvpn/latest/, 2019.

[10] ——, “Neutron Networking-L2GW,” https://docs.openstack.org/
networking-l2gw/latest/readme.html, 2019.

[11] ——, “Neutron-Neutron Interconnections,” https://specs.openstack.org/
openstack/neutron-specs/specs/rocky/neutron-inter.html, 2018.

[12] R. Moreno-Vozmediano, R. S. Montero, E. Huedo, and I. Llorente,
“Cross-Site Virtual Network in Cloud and Fog Computing,” IEEE
Computer Society, 2017.

[13] OpenStack, “KingBird Project,” https://wiki.openstack.org/wiki/
Kingbird, 2019.

[14] F. Brasileiro, G. Silva, F. Arajo, M. Nbrega, I. Silva, and G. Rocha, “Fog-
bow: A middleware for the federation of iaas clouds,” 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2016.

[15] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia, “A commutative
replicated data type for cooperative editing,” in 2009 29th IEEE Inter-
national Conference on Distributed Computing Systems. IEEE, 2009,
pp. 395–403.

[16] E. Rosen and Y. Rekhter, “BGP/MPLS IP Virtual Private Networks
(VPNs),” Internet Requests for Comments, RFC Editor, RFC 4364,
February 2006. [Online]. Available: https://tools.ietf.org/html/rfc4364

[17] A. Sajassi, R. Aggarwal, N. Bitar, A. Isaac, J. Uttaro, J. Drake, and
W. Henderickx, “ BGP MPLS-Based Ethernet VPN,” Internet Requests
for Comments, RFC Editor, RFC 7432, February 2015. [Online].
Available: https://tools.ietf.org/html/rfc7432

[18] OSRG, “GoBGP,” https://osrg.github.io/gobgp/, 2019.
[19] F. Palmieri, “VPN scalability over high performance backbones eval-

uating MPLS VPN against traditional approaches,” Proceedings of the
Eighth IEEE International Symposium on Computers and Communica-
tion, 2003.

[20] J. Mai and J. Du, “BGP performance analysis for large scale VPN,”
2013 IEEE Third International Conference on Information Science and
Technology, 2013.

https://docs.openstack.org/latest/
https://wiki.openstack.org/wiki/Tricircle
https://wiki.opendaylight.org/view/Federation:Main
https://wiki.opendaylight.org/view/Federation:Main
https://docs.openstack.org/networking-bgpvpn/latest/
https://docs.openstack.org/networking-bgpvpn/latest/
https://docs.openstack.org/networking-l2gw/latest/readme.html
https://docs.openstack.org/networking-l2gw/latest/readme.html
https://specs.openstack.org/openstack/neutron-specs/specs/rocky/neutron-inter.html
https://specs.openstack.org/openstack/neutron-specs/specs/rocky/neutron-inter.html
https://wiki.openstack.org/wiki/Kingbird
https://wiki.openstack.org/wiki/Kingbird
https://tools.ietf.org/html/rfc4364
https://tools.ietf.org/html/rfc7432
https://osrg.github.io/gobgp/

