Claude Stolze
email: claude.stolze@irif.fr

Luigi Liquori
email: luigi.liquori@inria.fr

A Type Checker for a Logical Framework with Union and Intersection Types

Keywords: 2012 ACM Subject Classification Theory of computation → Lambda calculus, Theory of computation → Proof theory Intersection types, Union types, Dependent types, Subtyping, Type checker, Refiner, ∆-Framework Digital Object Identifier 10.4230/LIPIcs.FSCD.2020 ∆, σ ::= s , c , v , _ , ?x[∆, ..., ∆] Sorts, Const, Vars, Placeholders and Metavars Πx:σ.∆ , λx:σ.∆ , ∆ S Π

We present the syntax, semantics, typing, subtyping, unification, refinement, and REPL of Bull, a prototype theorem prover based on the ∆-Framework, i.e. a fully-typed Logical Framework à la Edinburgh LF decorated with union and intersection types, as described in previous papers by the authors. Bull also implements a subtyping algorithm for the Type Theory Ξ of Barbanera-Dezani-de'Liguoro. Bull has a command-line interface where the user can declare axioms, terms, and perform computations and some basic terminal-style features like error pretty-printing, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof or normalize it. These terms can be incomplete, therefore the typechecking algorithm uses unification to try to construct the missing subterms. Bull uses the syntax of Berardi's Pure Type Systems to improve the compactness and the modularity of the kernel. Abstract and concrete syntax are mostly aligned and similar to the concrete syntax of Coq. Bull uses a higher-order unification algorithm for terms, while typechecking and partial type inference are done by a bidirectional refinement algorithm, similar to the one found in Matita and Beluga. The refinement can be split into two parts: the essence refinement and the typing refinement. Binders are implemented using commonly-used de Bruijn indices. We have defined a concrete language syntax that will allow user to write ∆-terms. We have defined the reduction rules and an evaluator. We have implemented from scratch a refiner which does partial typechecking and type reconstruction. We have experimented Bull with classical examples of the intersection and union literature, such as the ones formalized by Pfenning with his Refinement Types in LF and by Pierce. We hope that this research vein could be useful to experiment, in a proof theoretical setting, forms of polymorphism alternatives to Girard's parametric one.

Introduction

This paper provides a unifying framework for two hitherto unreconciled understandings of types: i.e. types-as-predicates à la Curry and types-as-propositions à la Church. The key to our unification consists in introducing, implementing and experimenting strong prooffunctional connectives [START_REF] Pottinger | A type assignment for the strongly normalizable λ-terms[END_REF][START_REF] Franco Barbanera | Intersection and union types: syntax and semantics[END_REF][START_REF] Barbanera | Proof-functional connectives and realizability[END_REF] in a dependent type theory such as the Edinburgh Logical Framework (LF) [START_REF] Harper | A framework for defining logics[END_REF]. Both Logical Frameworks and Proof-Functional Logic consider proofs as first-class citizens, albeit differently. Strong proof-functional connectives take seriously into account the shape of logical proofs, thus allowing for polymorphic features of proofs to be made explicit in formulae. Hence they provide a finer semantics than classical/intuitionistic connectives, where the meaning of a compound formula depends only on the truth value or the provability of its subformulae. However, existing approaches to strong proof-functional connectives are all quite idiosyncratic in mentioning proofs. Existing Logical Frameworks, on the other hand, provide a uniform approach to proof terms in object logics, but they do not fully capitalize on subtyping.

This situation calls for a natural combination of the two understandings of types, which should benefit both worlds. On the side of Logical Frameworks, the expressive power of the metalanguage would be enhanced thus allowing for shallower encodings of logics, a more principled use of subtypes [START_REF] Pfenning | Refinement types for logical frameworks[END_REF], and new possibilities for formal reasoning in existing interactive theorem provers. On the side of type disciplines for programming languages, a principled framework for proofs would be provided, thus supporting a uniform approach to "proof reuse" practices based on type theory [START_REF] Di | Isomorphisms of types: from λ-calculus to information retrieval and language design[END_REF][START_REF] Pierce | Programming with intersection types, union types, and bounded polymorphism[END_REF][START_REF] Caplan | A logical framework for software proof reuse[END_REF][START_REF] Felty | Generalization and reuse of tactic proofs[END_REF][START_REF] Boite | Proof reuse with extended inductive types[END_REF].

Therefore, in [START_REF] Honsell | The Delta-framework[END_REF] we extended LF with the connectives of strong intersection (corresponding to intersection types [START_REF] Barendregt | A filter lambda model and the completeness of type assignment[END_REF][START_REF] Barendregt | Lambda calculus with types[END_REF]) and strong union (corresponding to union types [START_REF] Macqueen | An ideal model for recursive polymorphic types[END_REF][START_REF] Franco Barbanera | Intersection and union types: syntax and semantics[END_REF]) of Proof-Functional Logic [START_REF] Pottinger | A type assignment for the strongly normalizable λ-terms[END_REF]. We called this extension the ∆-Framework (LF ∆), since it builds on the ∆-calculus [START_REF] Liquori | The Delta-calculus: Syntax and types[END_REF]. As such, LF ∆ subsumes many expressive type disciplines in the literature [START_REF] Pfenning | Refinement types for logical frameworks[END_REF][START_REF] Franco Barbanera | Intersection and union types: syntax and semantics[END_REF][START_REF] Barbanera | Proof-functional connectives and realizability[END_REF][START_REF] Pierce | Programming with intersection types, union types, and bounded polymorphism[END_REF][START_REF] Caplan | A logical framework for software proof reuse[END_REF].

It is not immediate to extend the Curry-Howard isomorphism to logics supporting strong proof-functional connectives, since these connectives need to compare the shapes of derivations and do not just take into account the provability of propositions, i.e. the inhabitation of the corresponding type. In order to capture successfully strong logical connectives such as ∩ or ∪, we need to be able to express the rules:

D 1 : A D 2 : B D 1 ≡ R D 2 A ∩ B (∩I) D 1 : A ⊃ C D 2 : B ⊃ C A ∪ B D 1 ≡ R D 2 C (∪E)
where ≡ R is a suitable equivalence between logical proofs. Notice that the above rules suggest immediately intriguing applications in polymorphic constructions, i.e. the same evidence can be used as a proof for different statements.

Pottinger [START_REF] Pottinger | A type assignment for the strongly normalizable λ-terms[END_REF] was the first to study the strong connective ∩. He contrasted it to the intuitionistic connective ∧ as follows: "The intuitive meaning of ∩ can be explained by saying that to assert A ∩ B is to assert that one has a reason for asserting A which is also a reason for asserting B [while] to assert A ∧ B is to assert that one has a pair of reasons, the first of which is a reason for asserting A and the second of which is a reason for asserting B".

A logical theorem involving intuitionistic conjunction which does not hold for strong conjunction is (A ⊃ A) ∧ (A ⊃ B ⊃ A), otherwise there should exist a closed λ-term having simultaneously both one and two abstractions. López-Escobar [START_REF] Edgar | Proof functional connectives[END_REF] and Mints [START_REF] Mints | The completeness of provable realizability[END_REF] investigated extensively logics featuring both strong and intuitionistic connectives especially in the context of realizability interpretations.

Dually, it is in the ∪-elimination rule that proof equality needs to be checked. Following Pottinger, we could say that asserting (A ∪ B) ⊃ C is to assert that one has a reason for (A ∪ B) ⊃ C, which is also a reason to assert A ⊃ C and B ⊃ C. The two connectives differ since the intuitionistic theorem ((A ⊃ B) ∨ B) ⊃ A ⊃ B is not derivable for ∪, otherwise there would exist a term which behaves both as I and as K.

Strong connectives arise naturally in investigating the propositions-as-types analogy for intersection and union type assignment systems. From a logical point of view, there are many proposals [START_REF] Mints | The completeness of provable realizability[END_REF][START_REF] Pfenning | Refinement types for logical frameworks[END_REF][START_REF] Venneri | Intersection types as logical formulae[END_REF][START_REF] Ronchi | Intersection logic[END_REF][START_REF] Miquel | The implicit calculus of constructions[END_REF][START_REF] Capitani | Hyperformulae, Parallel Deductions and Intersection Types[END_REF][START_REF] Bono | A typed lambda calculus with intersection types[END_REF][START_REF] Pimentel | Intersection types from a proof-theoretic perspective[END_REF][START_REF] Ehrhard | Non-idempotent intersection types in logical form[END_REF][START_REF] Dudenhefner | Kripke semantics for intersection formulas[END_REF] to find a suitable logic to fit intersection and union: we also refer to [START_REF] Daniel | A realizability interpretation for intersection and union types[END_REF][START_REF] Honsell | The Delta-framework[END_REF][START_REF] Stolze | Combining union, intersection and dependent types in an explicitly typed lambda-calculus[END_REF] for a detailed discussion.

The LF ∆ Logical Framework introduced in [START_REF] Honsell | The Delta-framework[END_REF] extends [START_REF] Liquori | The Delta-calculus: Syntax and types[END_REF] with union types and dependent types. The novelty of LF ∆ in the context of Logical Frameworks, lies in the full-fledged use of strong proof-functional connectives, which to our knowledge has never been explored before. Clearly, all ∆-terms have a computational counterpart.

Useful applications rely on using Proof-Functional Logics (that care about the proofderivation), instead of Truth-Functional Logics (that care about the validity of the conclusion). In a nutshell: i) Intersection-types better catch the class of strongly normalizing terms than F ω (see, among others, [START_REF] Pawel Urzyczyn | Type reconstruction in fomega[END_REF]). ii) Union and intersection types allow for a little form of abstract interpretation (see Pierce IsZero example [START_REF] Pierce | Programming with intersection types, union types, and bounded polymorphism[END_REF][START_REF] Franco Barbanera | Intersection and union types: syntax and semantics[END_REF]) that cannot easily be encoded in LF ω. iii) Proof-Functional Logics introduces a notion of "proof-synchronization", as showed in the operational semantics of the ∆-calculus, see Definition 4.3 and 5 of [START_REF] Liquori | The Delta-calculus: Syntax and types[END_REF]: two proofs are "in-sync" iff their "untyped essences" are equals. This could be possibly exploited in a synchronized tactic in Bull. iv) Union types can capture a natural form of parallelism that could be conveniently put to use in formalizing reasoning on concurrent execution, as in proving correctness of concurrency control protocols or in branch-prediction techniques. This paper presents the implementation of Bull [START_REF] Stolze | [END_REF][START_REF] Stolze | Combining union, intersection and dependent types in an explicitly typed lambda-calculus[END_REF], an Interactive Theorem Prover (ITP) based on the ∆-Framework [START_REF] Stolze | Towards a logical framework with intersection and union types[END_REF][START_REF] Honsell | The Delta-framework[END_REF]. The first author wrote this theorem prover from scratch for three years. Bull have a command-line interface program where the user can declare axioms, terms, and perform computations. These terms can be incomplete, therefore the typechecking algorithm uses unification to try to construct the missing subterms.

We have designed and implemented a novel subtyping algorithm [START_REF] Liquori | A decidable subtyping logic for intersection and union types[END_REF] which extends the well-known algorithm for intersection types, designed by Hindley [START_REF] Hindley | The simple semantics for Coppo-Dezani-Sallé types[END_REF], with union types. Our subtyping algorithm has been mechanically proved correct in Coq and extracted in OCaml, extending the proof of a subtyping algorithm for intersection types of Bessai et al. [START_REF] Bessai | Models, Mindsets, Meta: The What, the How, and the Why Not? -Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday[END_REF].

We have implemented several features. A Read-Eval-Print-Loop (REPL) allows to define axioms and definitions, and performs some basic terminal-style features like error prettyprinting, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof or normalize it. We use the Berardi's syntax of Pure Type Systems [START_REF] Berardi | Type dependence and Constructive Mathematics[END_REF] to improve the compactness and the modularity of the kernel. Abstract and concrete syntax are mostly aligned: the concrete syntax is similar to the concrete syntax of Coq.

We have designed a higher-order unification algorithm for terms, while typechecking and partial type inference are done by our bidirectional refinement algorithm, similar to the one found in Matita [START_REF] Asperti | A bi-directional refinement algorithm for the calculus of (co)inductive constructions[END_REF]. The refinement can be split into two parts: the essence refinement and the typing refinement. The bidirectional refinement algorithm aims to have partial type inference, and to give as much information as possible to the unifier. For instance, if we want to find a ?y such that Σ λx:σ.x, λx:τ.?y : (σ → σ) ∩ (τ → τ), then we can infer that x:τ ?y : τ and that ?y = β x.

By using a Pure Type System approach [START_REF] Berardi | Type dependence and Constructive Mathematics[END_REF], all the terms are read through the same parser. The main differences with the ∆-Framework [START_REF] Honsell | The Delta-framework[END_REF] are the additions of a placeholder and meta-variables, used by the refiner. We also added a let operator and changed the syntax of the strong sum smatch so it looks more like the concrete syntax used in the implementation. A meta-variable ?x[∆ 1 ; ...; ∆ n] has the, so called, suspended substitutions ∆ 1 ; ...; ∆ n , which will be explained clearly in Subsection 2.4. Finally, following the Cervesato-Pfenning jargon [START_REF] Cervesato | A linear spine calculus[END_REF], applications are in spine form, i.e. the arguments of a function are stored together in a list, exposing the head of the term separately. We also implemented a corresponding syntax for the untyped counterpart of the framework, called essence [START_REF] Liquori | The Delta-calculus: Syntax and types[END_REF], where all pure λ-terms M and spines are defined as follows: Note that essences of types (ς) belongs to the same syntactical set as essences of terms.

Concrete syntax

The concrete syntax of the terms has been implemented with OCamllex and OCamlyacc. Its simplified syntax is as follows: Identifiers ID refers to any alphanumeric string (possibly with underscores and apostrophes).

The non-terminal symbol args correspond to a non-empty sequence of arguments, where an argument is an identifier, and can be given with its type. In the latter case, you should parenthesize it, for instance (x : A), and if you want to assign the same type to several consecutive arguments, you can e.g. write (x y z : A). Strong sums have a complicated syntax. For instance, consider this term:

smatch foo as x return T with y : T1 ⇒ bar, z : T2 ⇒ baz end

The above term in the concrete syntax corresponds to smatch foo return λx:_.T with [y:T1 ⇒ bar | z:T2 ⇒ baz] in the abstract syntax. The concrete syntax thus guarantees that the returned type is a λ-abstraction, and it allows a simplified behaviour of the type reconstruction algorithm. The behaviour of the concrete syntax is intended to mimic Coq.

Implementation of the syntax

In the OCaml implementation, ∆-terms and their types along with essences and type essences are represented with a single type called term. It allows some functions (such as the normalization function) to be applied both on ∆-terms and on essences.

The constructors of term contain the location information retrieved by the parser that allows the typechecker to give the precise location of a subterm to the user, in case of error. The App constructor takes as parameters the applied function and the list of all the arguments. The list of parameters is used as a stack, hence the rightmost argument is the head of the list, and can easily be removed in the OCaml recursive functions. The variables are referred to as strings in the Const constructor, and as de Bruijn indices in Var constructors.

The parser does not compute de Bruijn indices, it gives the variables as strings. The function fix_index replaces bound variables by de Bruijn indices. We still keep track of the string names of the variables, in case we have to print them back. Its converse function, fix_id, replaces the de Bruijn indices with the previous strings, possibly updating the string names in case of name clashes. For instance, the string printed to the user, showing the F S C D 2 0 2 0 XX:6 A Type Checker for a Logical Framework with Union and Intersection Types normalized form of (fun (x y : nat) ⇒ x) y, is fun y0 : nat ⇒ y : the bound variable y has been renamed y0. The meta-variables are generated by the typecheckers, and their identifier is an integer. We have defined several helper functions to ease the process of terms.

The generic function visit_term f g h t looks at the children of the term t, and: i) every child t1 outside of a binder is replaced with f t1; ii) every child t1 inside the binding of a variable whose name (a string) is s is replaced with g s t1, while s is replaced with h s t1.

The functions g and h take a string as an argument, for helping the implementation of the fix_index and fix_id functions.

The function map_term is a kind of mapping function: map_term k f t finds every variable Var(l, n) inside the term t, and replaces it by f (k+offset) l n, where offset is the number of extra bindings.

The lift and map_term functions allow us to define a substitution in a clean way:

(* update all indices greater than k by adding n to them *)

let lift k n = map_term k (fun k l m → if m < k then Var (l, m) else Var (l, m+n)) (* Transform (lambda x. t1) t2 into t1[t2/x] *) let beta_redex t1 t2 = let subst k l m = if m < k then Var (l, m) (* bound variable *) else if m = k then (* x *) lift 0 k t2 else (* the enclosing lambda goes away *)
Var (l, m-1) in map_term 0 subst t1

Environments

There are four kinds of environments, namely: 1. the global environment (noted Σ). The global environment holds constants which are fully typechecked: Σ ::= • | Σ, c:ς@σ | Σ, c := M @∆ : ς@σ. Intuitively, c:ς@σ is a declaration of a constant (or axiom), and c := M @∆ : ς@σ corresponds to a global definition. Intuitively, since there are some meta-variables for which we know they have to be sorts, it follows that sort(?x) declares a meta-variable ?x which correspond either to Type or Kind, and ?x := s is the instantiation of a sort ?x. Also, Γ ?x : σ is the declaration of a meta-variable ?x of type σ which appeared in a local environment Γ, and Γ ?x := ∆ : σ is the instantiation of the meta-variable ?x. Concerning meta-variables inside essences, Ψ ?x is the declaration of a meta-variable ?x in an essence environment Ψ, and Ψ ?x := M is the instantiation of ?x.

Suspended substitution

We shortly introduce suspended substitution, as presented in [START_REF] Asperti | A bi-directional refinement algorithm for the calculus of (co)inductive constructions[END_REF]. Let's consider the following example: if we want to unify (λx:σ.?y) c 1 with c 1 , we could unify ?y with c 1 or with x, the latter being the preferred solution. However, if we normalize (λx:σ.?y) c 1 , we should record the fact that c 1 can be substituted by any occurrence of x appearing in ?y, even though the term which will replace ?y is currently unknown. That is the purpose of suspended substitution: the term is actually noted (λx:σ.?y[x]) c 1 and reduces to ?y[c 1], noting that c 1 has replaced x.

Definition 1 (Erase function and suspended substitution). 1. The vector x 1 ; . . . ; x n is created using the erase function •, defined as is the suspended substitution of ?y. Substitutions for meta-variables and their suspended substitution are propagated as follows:

x 1 :
?y[∆ 1 ; . . . ; ∆ n][∆/x] def = ?y[∆ 1 [∆/x]; . . . ; ∆ n [∆/x]] ?y[M 1 ; . . . ; M n][N/x] def = ?y[M 1 [N/x]; . . . ; M n [N/x]] 3
The evaluator of Bull

The evaluator follows the applicative order strategy, which recursively normalizes all subterms from left to right (with the help of the visit_term function, see full code in [START_REF] Stolze | [END_REF]), then: if the resulting term is a redex, reduces it, then uses the same strategy again; or else, the resulting term is in normal form.

Reduction rules

The notions of reduction, from which we can define one-step reduction, multistep reduction, and equivalence relation, are defined below.

Definition 2 (Reductions). 1. for ∆-terms:

(λx:σ.∆1) ∆2 → β ∆1[∆2/x] λx:σ.∆ x →η ∆ if x ∈ Fv(∆) pr i ∆1, ∆2 →pr i ∆i smatch ini ∆3 return ρ with [x:σ ⇒ ∆1 | x:τ ⇒ ∆2] →in i ∆i[∆3/x] let x:σ := ∆1 in ∆2 → ζ ∆2[∆1/x] c → δΣ ∆ if (c := M @∆ : ς@σ) ∈ Σ x → δΓ ∆ if (x := ∆ : σ) ∈ Γ ?x[∆1; . . . ; ∆n] → δΦ ∆ ----→ [∆i/Γ] if (Γ ?x := ∆ : σ) ∈ Φ ?x
(λx.M) N → β M [N/x] λx.M x →η M if x ∈ Fv(M) let x := M in N → ζ N [M/x] c → δΣ M if (c := M @∆ : ς@σ) ∈ Σ x → δΨ M if (x := M) ∈ Ψ ?x[M1; . . . ; Mn] → δΦ N ----→ [Mi/Ψ] if (Ψ ?x := M) ∈ Φ ?x[M1; . . . ; Mn] → δΦ s if ?x := s ∈ Φ

Implementation

When the user inputs a term, the refiner creates meta-variables and tries to instantiate them, but this should remain as much as possible invisible to the user. Therefore the term returned by the refiner should be meta-variable free, even though not in normal form. Thus, terms in the global signature Σ are meta-variable free, and the δΦ reductions are only used by the unifier and the refiner. The function strongly_normalize works on both ∆-terms and pure λ-terms, and supposes that the given term is meta-variable free. Note that reductions can create odd spines, for instance if you consider the term (λx:σ.x S 1) (∆ S 2), a simple β-redex would give ∆ S 2 S 1 , therefore we merge S 2 and S 1 in a single spine. let rec strongly_normalize is_essence env ctx t = let sn_children = visit_term (strongly_normalize is_essence env ctx) (fun _ → strongly_normalize is_essence env (Env.add_var ctx (DefAxiom ("",nothing)))) (fun id _ → id) in let sn = strongly_normalize is_essence env ctx in (* Normalize the children *) let t = sn_children t in match t with (* Spine fix *) | App(l, App(l', t1,t2), t3) → sn (App(l, t1, List.append t2 t3)) (* Beta-redex *) | App (l, Abs (l', _, _, t1), t2 :: []) → sn (beta_redex t1 t2) | App (l, Abs (l', x, y, t1), t2 :: t3) → sn @@ app l (sn (App(l,Abs (l', x, y, t1), t3))) t2

| Let (l, _, t1, t2, t3) → sn (beta_redex t2 t1) (* Delta-redex *) | Var (l, n) → let (t1, _) = Env.find_var ctx n in (match t1 with | Var _ → t1 | _ → sn t1) | Const (l, id) → let o = Env.find_const is_essence env id in (match o with | None → Const(l, id) | Some (Const (_,id') as t1,_) when id = id' → t1 | Some (t1,_) → sn t1) (* Eta-redex *) | Abs (l, _, _, App (l', t1, Var (_,0) :: l2)) → if is_eta (App (l', t1, l2)) then let t1 = lift 0 (-1) t1 in match l2 with | [] → t1 | _ → App (l', t1, List.map (lift 0 (-1)) l2) else t (* Pair-redex *) | SPrLeft (l, SPair (l', x, _)) → x | SPrRight (l, SPair (l', _, x)) → x (* inj-reduction *) | SMatch (l, SInLeft(l',_,t1), _, id1, _, t2, id2, _, _) → sn (beta_redex t2 t1) | SMatch (l, SInRight(l',_,t1), _, id1, _, _, id2, _, t2) → sn (beta_redex t2 t1) | _ → t 4
The subtyping algorithm of Bull

The subtyping algorithm implemented in Bull is basically the algorithm A as described and Coq certified/extracted in [START_REF] Liquori | A decidable subtyping logic for intersection and union types[END_REF] by the authors. The main judgment is Σ; Γ σ τ . The only difference is that the types are normalized before applying the algorithm. The auxiliary rewriting functions R 1 , R 2 , R 3 , R 4 , described in [START_REF] Liquori | A decidable subtyping logic for intersection and union types[END_REF], rewrite terms in normal forms as follows: The unification algorithm of Bull

Higher-order unification of two terms ∆ 1 and ∆ 2 aims at finding a most general substitution for meta-variables such that ∆ 1 and ∆ 2 becomes convertible. The structural rules are given in Figure 1. Classical references are the work of Huet [START_REF] Huet | A unification algorithm for typed lambda-calculus[END_REF], and Dowek et al. [START_REF] Dowek | Higher order unification via explicit substitutions[END_REF]. Our higher-order unification algorithm is inspired by the Reed [START_REF] Reed | Higher-order constraint simplification in dependent type theory[END_REF] and Ziliani-Sozeau [START_REF] Ziliani | A unification algorithm for Coq featuring universe polymorphism and overloading[END_REF] papers. In [START_REF] Ziliani | A unification algorithm for Coq featuring universe polymorphism and overloading[END_REF], conversion of terms is quite involved because of the complexity of Coq. For simplicity, our algorithm supposes the terms to be in normal form.

The unification algorithm takes as input a meta-environment Φ, a global environment Σ, a local environment Γ, the two terms to unify ∆ 1 and ∆ 2 , and either fails or returns the updated meta-environment Φ. The rest of the unification algorithm implements Higher-Order Pattern Unification (HOPU) [START_REF] Reed | Higher-order constraint simplification in dependent type theory[END_REF]. In a nutshell, HOPU takes as an argument a unification problem ?f S ? = N , where all the terms in S are free variables and each variable occurs once. For instance, for the unification problem ?f y x z ? = x c y, it creates the solution ?f := λy:σ 2 .λx:σ 1 .λz:σ 3 .x c y. The expected type of x, y, and z can be found in the local environment, but capturing correctly the free variables x, y, and z is quite tricky because we have to permute their de Bruijn indices. If HOPU fails, we recursively unify every subterm.

6

The refinement algorithm of Bull

The Bull refinement algorithm is inspired by the work on the Matita ITP [START_REF] Asperti | A bi-directional refinement algorithm for the calculus of (co)inductive constructions[END_REF]. It is defined using bi-directionality, in the style of Harper-Licata [START_REF] Harper | Mechanizing metatheory in a logical framework[END_REF]. The bi-directional technique is a mix of typechecking and type reconstruction, in order to trigger the unification algorithm as soon as possible. Moreover, it gives more precise error messages than standard type reconstruction. For instance, if f : (bool -> nat -> bool) -> bool, then f (fun x y ⇒ y) is ill-typed. With a simple type inference algorithm, we would type f, then fun x y ⇒ y which would be given some type ?x -> ?y -> ?y, and finally we would try to unify bool -> nat -> bool with ?x -> ?y -> ?y, which fails. However, the failure is localized on the application, whereas it would better be localized inside the argument. More precisely, we would have the following error message:

f (fun x y ⇒ y) Êrror: the term "y" has type "nat" while it is expected to have type "bool".

Claude Stolze and Luigi Liquori

XX:11

s1 ≡ s2 Φ; Σ; Γ s1 ? = s2 U Φ (Sort) c1 ≡ c2 Φ; Σ; Γ c1 ? = c2 U Φ (Const) x1 ≡ x2 Φ; Σ; Γ x1 ? = x2 U Φ (
? = ∆ U Φ2 (App1) Φ1 ∆1 ? = ∆2 U Φ2 Φ1; Σ; Γ ∆1 () ? = ∆2 U Φ2 (App2) Φ1 ∆1 S1 ? = ∆3 S2 U Φ2 Φ2 ∆2 ? = ∆4 U Φ3 Φ1; Σ; Γ ∆1 (S1; ∆2) ? = ∆3 (S2; ∆4) U Φ3 (App3) Φ1; Σ; Γ σ1 ? = σ2 U Φ2 Φ2; Σ; Γ τ1 ? = τ2 U Φ3 Φ1; Σ; Γ σ1 ∩ τ1 ? = σ2 ∩ τ2 U Φ3 (∩) Φ1; Σ; Γ σ1 ? = σ2 U Φ2 Φ2; Σ; Γ τ1 ? = τ2 U Φ3 Φ1; Σ; Γ σ1 ∪ τ1 ? = σ2 ∪ τ2 U Φ3 (∪) Φ1; Σ; Γ ∆1 ? = ∆2 U Φ2 Φ2; Σ; Γ ∆3 ? = ∆4 U Φ3 Φ1; Σ; Γ ∆1, ∆3 ? = ∆2, ∆4 U Φ3 (Spair) Φ1; Σ; Γ ∆1 ? = ∆2 U Φ2 Φ1; Σ; Γ pr i ∆1 ? = pr i ∆2 U Φ2 (Proj) Φ1; Σ; Γ σ1 ? = σ2 U Φ2 Φ2; Σ; Γ ∆1 ? = ∆2 U Φ3 Φ1; Σ; Γ ini σ1∆1 ? = ini σ2∆2 U Φ3 (Inj) Φ1; Σ; Γ σ1 ? = σ2 U Φ2 Φ2; Σ; Γ ∆1 ? = ∆2 U Φ3 Φ1; Σ; Γ coe σ1 ∆1 ? = coe σ2 ∆2 U Φ3 (Coe) Φ1; Σ; Γ ∆ ? = ∆ U Φ2 Φ2; Σ; Γ τ ? = τ U Φ3 Φ3; Σ; Γ σ1 ? = σ 1 U Φ4 Φ4; Σ; Γ, x:σ1 ∆1 ? = ∆ 1 U Φ5 Φ5; Σ; Γ σ2 ? = σ 2 U Φ6 Φ6; Σ; Γ, x:σ2 ∆2 ? = ∆ 2 U Φ7 Φ1; Σ; Γ smatch ∆ return τ with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2] ? = smatch ∆ return τ with [x:σ 1 ⇒ ∆1 | x:σ 2 ⇒ ∆ 2] U Φ7 (Ssum) Φ1; Σ; Γ, x:σ ∆1 ? = ∆2 x U Φ2 Φ1; Σ; Γ λx:σ.∆1 ? = ∆2 U Φ2 (η l) Φ1; Σ; Γ, x:σ ∆1 x ? = ∆2 U Φ2 Φ1; Σ; Γ ∆1 ? = λx:σ.∆2 U Φ2 (ηr)

Figure 1 Structural rules of the unification algorithm

Our typechecker is also a refiner: intuitively, a refiner takes as input an incomplete term, and possibly an incomplete type, and tries to infer as much information as possible in order to reconstruct a well-typed term. For example, let's assume we have in the global environment the following constants:

(eq : nat -> nat -> Type), (eq_refl : forall x : nat, eq x x)

Then refining the term eq_refl _ : eq _ 0 would create the following term:

eq_refl 0 : eq 0 0

Refinement also enables untyped abstractions: the refiner may recover the type of bound variables, because untyped abstractions are incomplete terms. The typechecking is done in two steps: firstly the term is typechecked without caring about the essence, then we check the essence. The five typing judgments are defined as follows: Definition 3 (Typing judgments). We have five typing judgments, corresponding to five F S C D 2 0 2 0 XX:12 A Type Checker for a Logical Framework with Union and Intersection Types

(x:σ) ∈ Γ or (x := ∆ : σ) ∈ Γ Φ; Σ; Γ x ⇑ x : σ; Φ (Var) (c:σ) ∈ Σ or (c := ∆ : σ) ∈ Σ Φ; Σ; Γ c ⇑ c : σ; Φ (Const) Φ1; Σ; Γ σ F σ : s; Φ2 Φ2; Σ; Γ ∆1 : σ ⇓ ∆ 1 ; Φ3 Φ3; Σ; Γ, x := ∆ 1 :σ ∆2 ⇑ ∆ 2 : τ ; Φ4 Φ1; Σ; Γ let x:σ := ∆1 in ∆2 ⇑ let x:σ := ∆ 1 in ∆ 2 : τ [σ /x]; Φ4 (Let) Φ1; Σ; Γ σ1 F σ 1 : s1; Φ2 Φ2; Σ; Γ σ2 F σ 2 : s2; Φ3 Φ3 (s1,

7

The Read-Eval-Print-Loop of Bull

The Read-Eval-Print-Loop (REPL) reads a command which is given by the parser as a list of atomic commands. For instance, if the user writes:

Axiom (a b : Type) (f : a -> b).

The parser creates the following list of three atomic commands: 1. the command asking a to be an axiom of type Type;

M

 , ς ::= s , c , x , _ , ?x[M ; ...; M] Sorts, Const, Vars, Placeholders and Metavars | let x := M in M Local definition | Πx:ς.ς , λx.M , M R Π-and λ-abstraction and application | ς ∩ ς , ς ∪ ς Intersection and Union types R ::= () | (R;M) Untyped Spines

2 .

 2 the local environment (noted Γ). It is used for the first step of typechecking, and looks like a standard environment: Γ ::= • | Γ, x:σ | Γ, x := ∆ : σ. Intuitively, x:σ is a variable introduced by a λ-abstraction, and x := ∆ : σ is a local definition introduced by a let. 3. the essence environment (noted Ψ). It is used for the second step of typechecking, and holds the essence of the local variables: Ψ ::= • | Ψ, x | Ψ, x := M . Intuitively, x is a variable introduced by a λ-abstraction, and x := M is a local definition introduced by a let. Notice that the variable x in the BNF expression Ψ, x carries almost no information. However, since local variables are referred to by their de Bruijn indices, and these indices are actually their position in the environment, it follows that they have to appear in the environment, even when there is no additional information. 4. the meta-environment (noted Φ). It is used for unification, and records meta-variables and their instantiation whenever the unification algorithm has found a solution: Φ ::= • | Φ, sort(?x) | Φ, ?x := s | Φ, (Γ ?x : σ) | Φ, (Γ ?x := ∆ : σ) | Φ, Ψ ?x | Φ, Ψ ?x := M .

F S C D 2 0 2 0 XX: 10 A

 010 let rec anf a = let rec distr f a b = match (a,b) with | (Union(l,a1,a2),_) → Inter(l, distr f a1 b, distr f a2 b) | (_, Inter(l,b1,b2)) → Inter(l, distr f a b1, distr f a b2) | _ → f a b in match a with | Prod(l,id,a,b) → distr (fun a b → Prod(l,id,a,b)) (danf a) (canf b) | _ → a and canf a = let rec distr a b = match (a,b) with | (Inter(l,a1,a2),_) → Inter(l, distr a1 b, distr a2 b) | (_, Inter(l,b1,b2)) → Inter(l, distr a b1, distr a b2) | _ → Union(dummy_loc,a,b) in match a with | Inter(l,a,b) → Inter(l, canf a, canf b) | Union(l,a,b) → distr (canf a) (canf b) | _ → anf a and danf a = let rec distr a b = match (a,b) with | (Union(l,a1,a2),_) → Union(l, distr a1 b, distr a2 b) | (_, Union(l,b1,b2)) → Union(l, distr a b1, distr a b2) | _ → Inter(dummy_loc, a,b) in match a with | Inter(l,a,b) → distr (danf a) (danf b) | Union(l,a,b) → Union(l, danf a, danf b) Type Checker for a Logical Framework with Union and Intersection Types | _ → anf a It follows that, our subtyping function is quite simple: let is_subtype env ctx a b = let a = danf @@ strongly_normalize false env ctx a in let b = canf @@ strongly_normalize false env ctx b in let rec foo env ctx a b = match (a, b) with | (Union(_,a1,a2),_) → foo env ctx a1 b && foo env ctx a2 b | (_, Inter(_,b1,b2)) → foo env ctx a b1 && foo env ctx a b2 | (Inter(_,a1,a2),_) → foo env ctx a1 b || foo env ctx a2 b | (_, Union(_,b1,b2)) → foo env ctx a b1 || foo env ctx a b2 | (Prod(_,_,a1,a2), Prod(_,_,b1,b2)) → foo env ctx b1 a1 && foo env (Env.add_var ctx (DefAxiom("",nothing))) a2 b2 | _ → same_term a b in foo env ctx a b 5

Figure 6 Figure 7 2 .

 672 Figure 6 Rules for E ⇑

 σ 1 ; . . . ; x n :σ n When we want to create a new meta-variable in a local context Γ = x 1 :σ 1 ; . . . ; x

def = x 1 ; . . . ; x n and x 1 ; . . . ; x n def = x 1 ; . . . ; x n . 2. n :σ n , we create a meta-variable ?y[Γ] ≡ ?y[x 1 ; . . . ; x n]. The vector ∆ 1 ; . . . ; ∆ n inside ?y[∆ 1 ; . . . ; ∆ n]

0 2 0 XX:8 A Type Checker for a Logical Framework with Union and Intersection Types

[∆1; . . . ; ∆n] → δΦ s if ?x := s ∈ Φ F S C D 2 2. for pure λ-terms:

 The function reconstruct takes as inputs a meta-environment Φ 1 , a global environment Σ, a local environment Γ, and a term ∆ 1 . It either fails or fills the holes in ∆ 1 , which becomes ∆ 2 , and returns ∆ 2 along with its type σ and the updated meta-environment Φ 2 . The function force_type takes as inputs a meta-environment Φ 1 , a global environment Σ, a local environment Γ, and a term σ 1 . It either fails or fills the holes in σ 1 , which becomes σ 2 while ensuring it is a type, i.e. its type is a sort s, and returns σ 2 along with s, and the updated meta-environment Φ 2 . The corresponding judgment is the followingΦ 1 ; Σ; Γ σ 1 F σ 2 : τ ; Φ 2 ,and the rules are described in Figure 4. Intuitively, the function reconstructs the type τ of σ 1 , then tries to unify τ with Type and Kind. If it can only do one unification, it keeps the successful one, if both unifications work, we choose unification with a sort meta-variable, so τ is convertible to a sort; 3. The function reconstruct_with_type takes as inputs a meta-environment Φ 1 , a global environment Σ, a local environment Γ, a term ∆ 1 , and its expected type σ. It either fails or fills the holes in ∆ 1 , which becomes ∆ 2 while ensuring its type is σ, and returns ∆ 2 along the updated meta-environment Φ 2 . The corresponding judgment is the following the management of de Bruijn indices for the (Let) is tricky: if we want to check that let x:σ := ∆ 1 in ∆ 2 has type τ in some local context Γ, we recursively check that ∆ 2 has type τ in the local context Γ, x := ∆ 1 : σ for some ∆ 1 , but the de Bruijn indices for τ correspond to the position of the local variables in the local context, which has been updated. We therefore have to increment all the de Bruijn indices in τ , in order to report the fact that there is one extra element in the local context; 4. The function essence takes as inputs a meta-environment Φ 1 , a global environment Σ, an essence environment Ψ, and a term ∆. It either fails or construct its essence M , and returns M along with the updated meta-environment Φ 2 . The corresponding judgment is The function essence_with_hint takes as inputs a meta-environment Φ 1 , a global environment ⇓ Φ 2 , and the rules are described in Figure 7. There is a rule (Default) which applies only if none of the other rules work.

					XX:13
	Φ1; Σ; Γ ∆1 Φ1; Σ; Γ σ ⇑ ∆ 1 : σ1; Φ2 ⇑ σ : τ ; Φ2	Φ2; Σ; Γ τ	? = Type	U Φ3
	Φ2; Σ; Γ ∆2 Φ1; Σ; Γ ⇑ ∆ 2 : σ2; Φ3 Φ3; Σ; Γ σ1 ∩ σ2 : Type ∆1, ∆2 ⇑ ∆ 1 , ∆ 2 : σ1 ∩ σ2; Φ4 Φ2; Σ; Γ τ ? =?x[] ⇓ Φ4 U Φ4 (Spair) Φ1; Σ; Γ σ F σ : τ ; Φ4 (Force1)
	s2) ∈ LF; Φ4 U Φ3 Φ2; Σ; Γ τ (P roj1) ? = Kind U Φ 3 F σ : τ ; Φ3 ⇑ ∆ : σ; Φ2 Φ2; Σ; Γ σ = β σ1 ∩ σ2 Φ1; Σ; Γ Πx:σ1.σ2 Φ1; Σ; Γ pr i ∆ Φ1; Σ; Γ ∆ ⇑ pr i ∆ : σi; Φ2 Φ1; Σ; Γ σ ⇑ σ : τ ; Φ2 Φ2; Σ; Γ τ ? = Type Φ1; Σ; Γ σ (Prod) (Force2) ⇑ Πx:σ 1 .σ 2 : s2; Φ4 Φ1; Σ; Γ σ F σ : s; Φ2 Φ2; Σ; Γ, x:σ ∆ ⇑ ∆ : τ ; Φ3 Φ3; Σ; Γ Πx:σ .τ F ρ : s; Φ4 Φ1; Σ; Γ λx:σ.∆ ⇑ λx:σ .∆ : Πx:σ .τ ; Φ4 (Abs) Φ1; Σ; Γ ∆ Φ1; Σ; Γ ∆ ⇑ ∆ : σ; Φ2 Φ2, (Γ ?x1 : Type), (Γ ?x2 : Type); Σ; Γ σ ? =?x1[Γ]∩?x2[Γ] U Φ3 Φ1; Σ; Γ pr i ∆ Φ1; Σ; Γ σ ⇑ σ : τ ; Φ2 Φ2; Σ; Γ τ ? = Type U Φ3 Φ2; Σ; Γ τ ? = Kind U Φ 3 Φ1; Σ; Γ σ (Force3) F σ : τ ; Φ 3 (P roj2) ⇑ pr i ∆ :?xi[Γ]; Φ3 F Figure 4 Rules for ⇑ ∆ : σ; Φ2 Φ1; Σ; Γ ∆ () ⇑ ∆ : σ; Φ2 (App1) Φ; Σ; Γ Type ⇑ Type : Kind; Φ (T) Φ1; Σ; Γ ∆1 S ⇑ ∆ 1 : σ; Φ2 Φ2; Σ; Γ σ = β Πx:σ1.σ2 Φ2; Σ; Γ ∆2 : σ1 ⇓ ∆ 2 ; Φ3 Φ1; Σ; Γ ∆1 (S; ∆2) ⇑ ∆ 1 ∆ 2 : σ2[∆ 2 /x]; Φ3 Φ1; Σ; Γ ∆ ⇑ ∆ : σ ; Φ2 Φ2; Σ; Γ λx:τ1.τ2 : Πx:σ.Type ⇓ λx:τ 1 .τ 2 ; Φ3 Φ3; Σ; Γ σ1 : Type ⇓ σ 1 ; Φ4 Φ4; Σ; Γ σ2 : Type ⇓ σ 2 ; Φ5 Φ5; Σ; Γ σ ? = σ 1 ∪ σ 2 U Φ6 Φ6; Σ; Γ, x:σ 1 ∆1 : τ 2 [in1 σ 2 x/x] ⇓ ∆ 1 ; Φ7 Φ1; Σ; Γ ∆ ⇑ ∆ : σ; Φ2 Φ2; Σ; Γ σ ? = τ U Φ3 Φ1; Σ; Γ ∆ : τ (Default) ⇓ ∆ ; Φ3 (App2) Φ1; Σ; Γ ∆1 S ⇑ ∆ 1 : σ; Φ2 Φ2; Σ; Γ ∆2 Φ1; Σ; Γ smatch ∆ return λx:τ1.τ2 with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2] 2 ; Φ4 ⇑ ∆ 2 : σ1; Φ3 Φ7; Σ; Γ, x:σ 2 ∆2 : τ 2 [in2 σ 1 x/x] ⇓ ∆ 2 ; Φ8 (Ssum) Φ1; Σ; Γ σ (Let)
	Φ3, sort(?y), (Γ, x:σ1 ?x :?y[]); Σ; Γ σ Φ1; Σ; Γ ∆1 (S; ∆2) ⇑ ∆ 1 ∆ 2 : ?x[Γ; x][∆ 2 /x]; Φ4 ? = Πx:σ1.?x[Γ; x] Φ1; Σ; Γ τ = β Πx:τ1.τ2 Φ1; Σ; Γ σ F σ ; Φ2 Φ1; Σ; Γ σ Φ2; Σ; Γ σ	U Φ4	(App3)
	Φ1; Σ; Γ σ1 : Type	⇓ σ 1 ; Φ2	Φ1; Σ; Γ σ1 : Type	⇓ σ 1 ; Φ2
	Φ2; Σ; Γ σ2 : Type Φ1; Σ; Γ σ1 ∩ σ2 ⇑ σ 1 ∩ σ 2 : Type; Φ3 ⇓ σ 2 ; Φ3	(∩)	Φ2; Σ; Γ σ2 : Type Φ1; Σ; Γ σ1 ∪ σ2 ⇑ σ 1 ∪ σ 2 : Type; Φ3 ⇓ σ 2 ; Φ3	(∪)
	Figure 2 Rules for OCaml functions:	⇑ (1st part)	[∆ i /Γ]; Φn+1 ----→	(Meta-Var)
	1. The corresponding judgment is the following Φ 1 ; Σ; Γ ∆ 1 Figure 3 Rules for ⇑ (2nd part)	⇑ ∆ 2 : σ; Φ 2 , and the most
	relevant rules are described in Figures 2 and 3;
	the following Φ 1 ; Σ; Ψ ∆ 2. Φ 1 ; Σ; Γ ∆ 1 : σ ⇓ ∆ 2 ; Φ 2 , and the rules are described in Figure 5. There is a rule E ⇑ M ; Φ 2 , and the rules are described in Figure 6; (Default) which applies only if none of the other rules work. The acute reader could remark two subtle things: 5. F S C D 2 0 2 0

⇑ smatch ∆ return λx:τ 1 .τ 2 with [x:σ 1 ⇒ ∆ 1 | x:σ 2 ⇒ ∆ 2] : τ 2 [∆ /x]; Φ8 F σ : s; Φ2 Φ2; Σ; Γ ∆ ⇑ ∆ : τ ; Φ3 Σ; Γ τ σ Φ1; Σ; Γ coe σ ∆ ⇑ coe σ ∆ : σ ; Φ3 (Coe) Φ; Σ; Γ _ ⇑ ?x[Γ] :?y[Γ]; Φ, sort(?z), (Γ ?y :?z[]), (Γ ?x :?y[Γ]) (Wildcard) (Γ ?x : σ) ∈ Φ or (Γ ?x := ∆ : σ) ∈ Φ Γ = x1:σ1, .

. . , xn:σn Φi; Σ; Γ ∆i : σi ⇓ ∆ i ; Φi+1 (i = 1 . . . n) Φ1; Σ; Γ ?x[∆1; . . . ; ∆n] ⇑ ?x[∆ 1 ; . . . ; ∆ n] : σ

a. we chose not to add any inference rule for coercions, because we believe it would make error messages clearer: more precisely, if we want to check that coe σ ∆ has type τ , there could be two errors happening concurrently: it is possible that the type of ∆ is not a subtype of σ, and at the same time σ is not unifiable with τ . We think that the error to be reported should be the first one, and in this case the (Default) rule is sufficient; b. Σ, an essence environment Ψ, a term ∆, and its expected essence M . It either fails or succeeds by returning the updated meta-environment Φ 2 . The corresponding judgment is

? = Kind U Φ 3 Φ2, sort(?x); Σ τ F σ : s; Φ2 Φ2; Σ; Γ ∆1 : σ ⇓ ∆ 1 ; Φ3 Φ3; Σ; Γ, x := ∆ 1 : σ ∆2 : τ ⇓ ∆ 2 ; Φ4 Φ1; Σ; Γ let x:σ := ∆1 in ∆2 : τ ⇓ let x:σ := ∆ 1 in ∆ ? = τ1 U Φ3 Φ3; Σ; Γ, x:σ ∆ : τ2 ⇓ ∆ ; Φ4 Φ1; Σ; Γ λx:σ.∆ : τ ⇓ λx:σ .∆ ; Φ4 (Abs) Φ1; Σ; Γ σ = β σ1 ∩ σ2 Φ1; Σ; Γ ∆1 : σ1 ⇓ ∆ 1 ; Φ2 Φ2; Σ; Γ ∆2 : σ2 ⇓ ∆ 2 ; Φ3 Φ1; Σ; Γ ∆1, ∆2 : σ ⇓ ∆ 1 , ∆ 2 ; Φ3

(Spair)

Φ1, (Γ ?x : Type); Σ; Γ σ∩?x : Type ⇓ τ ; Φ2 Φ2; Σ; Γ ∆ : σ∩?x ⇓ ∆ ; Φ3 Φ1; Σ; Γ pr 1 ∆ : σ ⇓ pr 1 ∆ ; Φ3 (P roj1) Φ1, (Γ ?x : Type); Σ; Γ ?x ∩ σ : Type ⇓ τ ; Φ2 Φ2; Σ; Γ ∆ :?x ∩ σ ⇓ ∆ ; Φ3 Φ1; Σ; Γ pr 2 ∆ : σ ⇓ pr 2 ∆ ; Φ3 (P roj2) Φ1; Σ; Γ τ = β τ1 ∪ τ2 Φ1; Σ; Γ σ : Type ⇓ σ ; Φ2 Φ2; Σ; Γ σ ? = τi U Φ3 Φ1; Σ; Γ ini σ∆ : τ ⇓ ini σ ∆ ; Φ3 (Inj) Φ; Σ; Γ _ : σ ⇓ ?x[Γ]; Φ, (Γ ?x : σ) (Wildcard) Figure 5 Rules for ⇓ the following Φ 1 ; Σ; Ψ M @∆ E

Claude Stolze and Luigi Liquori XX:15

	Φ1; Σ; Ψ ∆1 Φ1; Σ; Ψ E ⇑ M ; Φ2 Φ2; Σ; Ψ M @∆2 ∆1, ∆2 E ⇑ M ; Φ3		E ⇓	Φ3	(Spair)	Φ1; Σ; Ψ ∆ Φ1; Σ; Ψ pr i ∆ E ⇑ E ⇑ M ; Φ2 M ; Φ2	(Proj)
	Φ1; Σ; Ψ ∆	E ⇑	N ; Φ2		Φ2; Σ; Ψ σ	E ⇑	ς; Φ3	Φ3; Σ; Ψ σ1	E ⇑	ς1; Φ4
	Φ4; Σ; Ψ, x ∆1 Φ1; Σ; Ψ smatch ∆ return σ with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2] E ⇑ M ; Φ5 Φ5; Σ; Ψ σ2 E ⇑ ς2; Φ6 Φ6; Σ; Ψ, x M @∆2 (λx.M) N ; Φ7 E ⇓ Φ7 E ⇑	(Ssum)
	Φ1; Σ; Ψ ∆ Φ1; Σ; Ψ ini σ ∆ E ⇑	M ; Φ2 E ⇑ M ; Φ2	(Inj)	Φ1; Σ; Ψ σ Φ1; Σ; Ψ λx:σ.∆ E ⇑ ς; Φ2 Φ2; Σ; Ψ, x ∆ λx.M ; Φ3 E ⇑ E ⇑	M ; Φ3	(Abs)
	Φ1; Σ; Ψ σ1 Φ1; Σ; Ψ Πx:σ1.σ2 E ⇑ ς1; Φ2 Φ2; Σ; Ψ, x σ2 E ⇑ Πx:ς1.ς2; Φ3 E ⇑	ς2; Φ3	(Prod)	Φ1; Σ; Ψ ∆ Φ1; Σ; Ψ coe σ ∆ E ⇑	M ; Φ2 M ; Φ2 E ⇑	(Coe)
	Φ1; Σ; Ψ ∆ Φ1; Σ; Ψ ∆ () E ⇑ E ⇑ M ; Φ2 M ; Φ2	(App1)	Φ1; Σ; Ψ ∆1 S Φ1; Σ; Ψ ∆1 (S; ∆2) E ⇑ M ; Φ2 Φ2; Σ; Ψ ∆2 M N ; Φ3 E ⇑	E ⇑	N ; Φ3	(App2)
	Φ1; Σ; Ψ σ1 Φ1; Σ; Ψ σ1 ∩ σ2 E ⇑ ς1; Φ2 Φ2; Σ; Ψ σ2 E ⇑ ς1 ∩ ς2; Φ3 E ⇑	ς2; Φ3	(∩)	Φ1; Σ; Ψ σ1 Φ1; Σ; Ψ σ1 ∪ σ2 E ⇑ ς1; Φ2 Φ2; Σ; Ψ σ2 ς1 ∪ ς2; Φ3 E ⇑ E ⇑	ς2; Φ3	(∪)

Work supported by the COST Action CA15123 EUTYPES "The European research network on types for programming and verification"

The REPL tries to process the whole list. If there is a single failure while processing the list of atomic commands, it backtracks so the whole commands fails without changing the environment. These commands are similar to the vernacular Coq commands and are quite intuitive. Here is the list of the REPL commands, along with their description:

show this list of commands Load "file".

for loading a script file Axiom term : type. define a constant or an axiom Definition name [: type] := term. define a term Print name.

print the definition of name Printall.

print all the signature (axioms and definitions) Compute name.

normalize name and print the result Quit. quit

Future work

The current version of Bull [START_REF] Stolze | [END_REF] lacks of the following features that we plan to implement in the next future.

1. Inductive types are the most important feature to add, in order to have a usable theorem prover. We plan to take inspiration from the works of Paulin-Mohring [START_REF] Paulin-Mohring | Inductive definitions in the system coq rules and properties[END_REF]. This should be reasonably feasible; 2. Mixing subtyping and unification is a difficult problem, especially with intersection and union types. The most extensive research which has been done in this domain is the work of Dudenhefner, Martens, and Rehof [START_REF] Dudenhefner | The intersection type unification problem[END_REF], where the authors study unification modulo subtyping with intersection types (but no union). It would be challenging to find a unification algorithm modulo subtyping for intersection and union types, but ideally it would allow us to do some implicit coercions. Take for example the famous Pierce code exploiting union and intersection types (full details in the Bull [START_REF] Stolze | [END_REF] distribution and in Appendix A): it would be interesting for the user to use implicit coercions in this way:

The unification algorithm would then guess that the first wildcard should be replaced with Pos -> F and the second one should be replaced with Neg -> F, which does not seem feasible if the unification algorithm does not take subtyping into account; 3. Relevant arrow, as defined in [START_REF] Honsell | The Delta-framework[END_REF], it could be useful to add more expressivity to our system. Relevant implication allows for a natural introduction of subtyping, in that A ⊃ r B morally means A B. Relevant implication amounts to a notion of "proof-reuse".

Combining the remarks in [START_REF] Barbanera | Proof-functional connectives and realizability[END_REF][START_REF] Franco Barbanera | Intersection and union types: syntax and semantics[END_REF], minimal relevant implication, strong intersection and strong union correspond respectively to the implication, conjunction and disjunction operators of Meyer and Routley's Minimal Relevant Logic B + [START_REF] Meyer | Algebraic analysis of entailment I[END_REF]. This could lead to some implementation problem, because deciding β-equality for the essences in this extended system would be undecidable; 4. A Tactic language, such as the one of Coq, should be useful. Currently Bull has no tactics: conceiving such a language should be feasible in the medium term.

A Examples

This Appendix presents some examples in LF ∆ along with their code in Bull, showing a uniform approach to the encoding of a plethora of type disciplines and systems which ultimately stem or can capitalize from strong proof-functional connectives and subtyping.

The framework LF ∆ presented in [START_REF] Honsell | The Delta-framework[END_REF]

Commutativity of union. The judgment

The Bull code corresponding to these examples is the following:

Pierce's code [START_REF] Pierce | Programming with intersection types, union types, and bounded polymorphism[END_REF]. It shows the great expressivity of union and intersection types:

The expressive power of union types highlighted by Pierce is rendered in LF ∆ by: N eg : Type Zero : Type P os : Type T : Type F : Type Test : P os ∪ N eg

The Bull code corresponding to this example is the following:

Hereditary Harrop formulae. The encoding of Hereditary Harrop's Formulae is one of the motivating examples given by Pfenning for introducing Refinement Types in LF [START_REF] Pfenning | Refinement types for logical frameworks[END_REF][START_REF] Lovas | Refinement types for logical frameworks and their interpretation as proof irrelevance[END_REF]. In LF ∆ it can be expressed as in Figure 8 and type checked in Bull, without any reference to intersection types, by a subtle use of union types. We add also rules for solving and backchaining. Hereditary Harrop formulae can be recursively defined using two mutually recursive syntactical objects called programs (π) and goals (γ): (* rules for solve *) Axiom solve_and : forall p g1 g2, solve p g1 -> solve p g2 -> solve p (and_1 g1 g2). Axiom solve_or1 : forall p g1 g2, solve p g1 -> solve p (or_1 g1 g2). Axiom solve_or2 : forall p g1 g2, solve p g2 -> solve p (or_1 g1 g2). Axiom solve_impl : forall p1 p2 g, solve (and_2 p1 p2) g -> solve p1 (impl_1 p2 g). Axiom solve_atom : forall p a g, backchain p a g -> solve p g -> solve p (inj_l non_atomic_goal a).

(* rules for backchain *) Axiom backchain_and1 : forall p1 p2 a g, backchain p1 a g -> backchain (and_2 p1 p2) a g. Axiom backchain_and2 : forall p1 p2 a g, backchain p1 a g -> backchain (and_2 p1 p2) a g. Axiom backchain_impl_atom : forall a g, backchain (impl_2 g (inj_l non_atomic_prog a)) a g. Axiom backchain_impl_impl : forall p a g g1 g2, backchain (impl_2 (and_1 g1 g2) p) a g -> backchain (impl_2 g1 (impl_2 g2 p)) a g. Axiom backchain_impl_and1 : forall p1 p2 a g g1, backchain (impl_2 g1 p1) a g -> backchain (impl_2 g1 (and_2 p1 p2)) a g. Axiom backchain_impl_and2 : forall p1 p2 a g g1, backchain (impl_2 g1 p2) a g -> backchain (impl_2 g1 (and_2 p1 p2)) a g.

Natural deductions in normal form. The second motivating example for intersection types given in [START_REF] Pfenning | Refinement types for logical frameworks[END_REF][START_REF] Lovas | Refinement types for logical frameworks and their interpretation as proof irrelevance[END_REF] is natural deductions in normal form. A natural deduction is in normal form if there are no applications of elimination rules of a logical connective immediately following their corresponding introduction, in the main branch of a subderivation.

The corresponding Bull code is the following:

The encoding we give in LF ∆ is a slightly improved version of the one in [START_REF] Pfenning | Refinement types for logical frameworks[END_REF][START_REF] Lovas | Refinement types for logical frameworks and their interpretation as proof irrelevance[END_REF]: as Pfenning, we restrict to the purely implicational fragment. As in the previous example, we use union types to define normal forms Nf(A) either as pure elimination-deductions from hypotheses Elim(A) or normal form-deductions Nf 0 (A). This example is interesting in itself, being the prototype of the encoding of type systems using canonical and atomic syntactic categories [START_REF] Harper | Mechanizing metatheory in a logical framework[END_REF] and also of Fitch Set Theory [START_REF] Honsell | Implementing Cantor's paradise[END_REF].

F S C D 2 0 2 0 XX:20 A Type Checker for a Logical Framework with Union and Intersection Types

Encoding of Edinburgh LF. A shallow encoding of LF [START_REF] Harper | A framework for defining logics[END_REF] in LF ∆ making essential use of intersection types can be also type checked. Here we consider LF as defined with several syntactical categories :

We encode LF using Higher-Order Abstract Syntax (HOAS) [START_REF] Pfenning | Higher-order abstract syntax[END_REF][START_REF] Despeyroux | Higher-order abstract syntax in coq[END_REF]. Moreover, using intersection types, we can use the same axiom in order to encode both λ-abstractions on objects and λ-abstractions on families, as well as a single axiom to encode both application on objects and application on families, and a single axiom to encode both dependent products on families and dependent products on kinds.

The typing rules, defined as axioms, have similar essence, it could be interesting to investigate how to profit from these similarities for better encodings. We have decided to explore two different approaches:

for the typing rules, we chose to define distinct axioms of_1, of_2, and of_3 of different precise types. We have not found a way for these axioms to share the same essence, so we have to write different (but very similar) rules for each of these different typing judgment; for equality, we chose to define a single axiom eq : (obj | fam) -> (obj | fam) -> Type. The type of this axiom is not very precise (it implies we could compare objects and families), but we can factorize equality rules with the same shape, e.g. the rule beta_eq define equalities between a β-redex and its contractum, both on objects and on families. The corresponding Bull code is the following: (* Rules for lambda-abstraction are "essentially" the same *) Definition of_lam_obj := forall t1 t2 t3, of_2 t1 star -> (forall x, of_1 x t1 -> of_1 (t2 x) (t3 x)) -> of_1 (lam_obj t1 t2) (pi_fam t1 t3). Definition of_lam_fam := forall t1 t2 t3, of_2 t1 star -> (forall x, of_1 x t1 -> of_2 (t2 x) (t3 x)) -> of_2 (lam_fam t1 t2) (pi_knd t1 t3). (* Rules for product are ''essentially'' the same *) Definition of_pi_fam := forall t1 t2, of_2 t1 star -> (forall x, of_1 x t1 -> of_2 (t2 x) star) -> of_2 (pi_fam t1 t2) star. Definition of_pi_knd := forall t1 t2, of_2 t1 star -> (forall x, of_1 x t1 -> of_3 (t2 x) sqre) -> of_3 (pi_knd t1 t2) sqre. (* Rules for application are ''essentially'' the same *) Definition of_app_obj := forall t1 t2 t3 t4, of_1 t1 (pi_fam t3 t4) -> of_1 t2 t3 -> of_1 (app_obj t1 t2) (t4 t2). Definition of_app_fam := forall t1 t2 t3 t4, of_2 t1 (pi_knd t3 t4) -> of_1 t2 t3 -> of_2 (app_fam t1 t2) (t4 t2). , f ⇒ eq (c_fam (app_fam (lam_fam t1 f) g)) (c_fam (f g)) end. Axiom lam_eq : forall t1 t2 f, eq (c_fam t1) (c_fam t2) -> smatch f with (* object *) f ⇒ forall g, (forall x, eq (c_obj (f x)) (c_obj (g x))) -> eq (c_obj (lam_obj t1 f)) (c_obj (lam_obj t2 f)) (* family *)

, f ⇒ forall g, (forall x, eq (c_fam (f x)) (c_fam (g x))) -> eq (c_fam (lam_fam t1 f)) (c_fam (lam_fam t2 f)) end. Axiom app_eq : forall n1 n2 m1, eq (c_obj n1) (c_obj n2) -> smatch m1 with (* object *) m1 ⇒ forall m2, eq (c_obj m1) (c_obj m2) -> eq (c_obj (app_obj m1 n1)) (c_obj (app_obj m2 n2)) (* family *) , m1 ⇒ forall m2, eq (c_fam m1) (c_fam m2) -> eq (c_fam (app_fam m1 n1)) (c_fam (app_fam m2 n2)) end. Axiom pi_eq : forall m1 m2 n1 n2, eq (c_fam m1) (c_fam m2) -> (forall x, eq (c_fam (n1 x)) (c_fam (n2 x))) -> eq (c_fam (pi_fam m1 n1)) (c_fam (pi_fam m2 n2)).

F S C D 2 0 2 0