
HAL Id: hal-02573605
https://hal.science/hal-02573605v1

Submitted on 14 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Type Checker for a Logical Framework with Union
and Intersection Types

Claude Stolze, Luigi Liquori

To cite this version:
Claude Stolze, Luigi Liquori. A Type Checker for a Logical Framework with Union and Intersec-
tion Types. FSCD 2020 - 5th International Conference on Formal Structures for Computation and
Deduction, Jun 2020, Paris, France. �10.4230/LIPIcs.FSCD.2020�. �hal-02573605�

https://hal.science/hal-02573605v1
https://hal.archives-ouvertes.fr

A Type Checker for a Logical Framework with
Union and Intersection Types
Claude Stolze
IRIF, Université de Paris, France
Claude.Stolze@irif.fr

Luigi Liquori
Université Côte d’Azur, Inria, France
Luigi.Liquori@inria.fr

Abstract
We present the syntax, semantics, typing, subtyping, unification, refinement, and REPL of Bull,
a prototype theorem prover based on the ∆-Framework, i.e. a fully-typed Logical Framework à
la Edinburgh LF decorated with union and intersection types, as described in previous papers by
the authors. Bull also implements a subtyping algorithm for the Type Theory Ξ of Barbanera-
Dezani-de’Liguoro. Bull has a command-line interface where the user can declare axioms, terms, and
perform computations and some basic terminal-style features like error pretty-printing, subexpressions
highlighting, and file loading. Moreover, it can typecheck a proof or normalize it. These terms can
be incomplete, therefore the typechecking algorithm uses unification to try to construct the missing
subterms. Bull uses the syntax of Berardi’s Pure Type Systems to improve the compactness and
the modularity of the kernel. Abstract and concrete syntax are mostly aligned and similar to the
concrete syntax of Coq. Bull uses a higher-order unification algorithm for terms, while typechecking
and partial type inference are done by a bidirectional refinement algorithm, similar to the one found
in Matita and Beluga. The refinement can be split into two parts: the essence refinement and
the typing refinement. Binders are implemented using commonly-used de Bruijn indices. We have
defined a concrete language syntax that will allow user to write ∆-terms. We have defined the
reduction rules and an evaluator. We have implemented from scratch a refiner which does partial
typechecking and type reconstruction. We have experimented Bull with classical examples of the
intersection and union literature, such as the ones formalized by Pfenning with his Refinement Types
in LF and by Pierce. We hope that this research vein could be useful to experiment, in a proof
theoretical setting, forms of polymorphism alternatives to Girard’s parametric one.

2012 ACM Subject Classification Theory of computation→ Lambda calculus; Theory of computation
→ Proof theory

Keywords and phrases Intersection types, Union types, Dependent types, Subtyping, Type checker,
Refiner, ∆-Framework

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.

Category System Description

Funding Work supported by the COST Action CA15123 EUTYPES “The European research network
on types for programming and verification”

Acknowledgements This work could not be have be done without the many useful discussions with
Furio Honsell, Ivan Scagnetto, Ugo de’Liguoro, Daniel Dougherty, and the Anonymous Reviewers.

1 Introduction

This paper provides a unifying framework for two hitherto unreconciled understandings of
types: i.e. types-as-predicates à la Curry and types-as-propositions à la Church. The key
to our unification consists in introducing, implementing and experimenting strong proof-
functional connectives [40, 2, 3] in a dependent type theory such as the Edinburgh Logical

© Claude Stolze and Luigi Liquori;
licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Zena Ariola; Article No. ; pp. :1–:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Claude.Stolze@irif.fr
mailto:Luigi.Liquori@inria.fr
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://doi.org/10.4230/LIPIcs.FSCD.2020.
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 A Type Checker for a Logical Framework with Union and Intersection Types

Framework (LF) [21]. Both Logical Frameworks and Proof-Functional Logic consider proofs
as first-class citizens, albeit differently.

Strong proof-functional connectives take seriously into account the shape of logical proofs,
thus allowing for polymorphic features of proofs to be made explicit in formulæ. Hence
they provide a finer semantics than classical/intuitionistic connectives, where the meaning of
a compound formula depends only on the truth value or the provability of its subformulæ.
However, existing approaches to strong proof-functional connectives are all quite idiosyncratic
in mentioning proofs. Existing Logical Frameworks, on the other hand, provide a uniform
approach to proof terms in object logics, but they do not fully capitalize on subtyping.

This situation calls for a natural combination of the two understandings of types, which
should benefit both worlds. On the side of Logical Frameworks, the expressive power of
the metalanguage would be enhanced thus allowing for shallower encodings of logics, a
more principled use of subtypes [36], and new possibilities for formal reasoning in existing
interactive theorem provers. On the side of type disciplines for programming languages, a
principled framework for proofs would be provided, thus supporting a uniform approach to
“proof reuse” practices based on type theory [14, 38, 11, 20, 8].

Therefore, in [25] we extended LF with the connectives of strong intersection (corresponding
to intersection types [4, 5]) and strong union (corresponding to union types [31, 2]) of Proof-
Functional Logic [40]. We called this extension the ∆-Framework (LF∆), since it builds
on the ∆-calculus [28]. As such, LF∆ subsumes many expressive type disciplines in the
literature [36, 2, 3, 38, 11].

It is not immediate to extend the Curry-Howard isomorphism to logics supporting strong
proof-functional connectives, since these connectives need to compare the shapes of derivations
and do not just take into account the provability of propositions, i.e. the inhabitation of the
corresponding type. In order to capture successfully strong logical connectives such as ∩ or
∪, we need to be able to express the rules:
D1 : A D2 : B D1 ≡R D2

A ∩B (∩I) D1 : A ⊃ C D2 : B ⊃ C A ∪B D1 ≡R D2
C

(∪E)

where ≡R is a suitable equivalence between logical proofs. Notice that the above rules suggest
immediately intriguing applications in polymorphic constructions, i.e. the same evidence can
be used as a proof for different statements.

Pottinger [40] was the first to study the strong connective ∩. He contrasted it to the
intuitionistic connective ∧ as follows: “The intuitive meaning of ∩ can be explained by saying
that to assert A ∩B is to assert that one has a reason for asserting A which is also a reason
for asserting B [while] to assert A∧B is to assert that one has a pair of reasons, the first of
which is a reason for asserting A and the second of which is a reason for asserting B”.

A logical theorem involving intuitionistic conjunction which does not hold for strong
conjunction is (A ⊃ A) ∧ (A ⊃ B ⊃ A), otherwise there should exist a closed λ-term having
simultaneously both one and two abstractions. López-Escobar [29] and Mints [33] investigated
extensively logics featuring both strong and intuitionistic connectives especially in the context
of realizability interpretations.

Dually, it is in the ∪-elimination rule that proof equality needs to be checked. Following
Pottinger, we could say that asserting (A ∪ B) ⊃ C is to assert that one has a reason for
(A ∪B) ⊃ C, which is also a reason to assert A ⊃ C and B ⊃ C. The two connectives differ
since the intuitionistic theorem ((A ⊃ B) ∨ B) ⊃ A ⊃ B is not derivable for ∪, otherwise
there would exist a term which behaves both as I and as K.

Strong connectives arise naturally in investigating the propositions-as-types analogy for
intersection and union type assignment systems. From a logical point of view, there are

Claude Stolze and Luigi Liquori XX:3

many proposals [33, 36, 47, 42, 34, 10, 9, 39, 19, 18] to find a suitable logic to fit intersection
and union: we also refer to [15, 25, 43] for a detailed discussion.

The LF∆ Logical Framework introduced in [25] extends [28] with union types and
dependent types. The novelty of LF∆ in the context of Logical Frameworks, lies in the
full-fledged use of strong proof-functional connectives, which to our knowledge has never
been explored before. Clearly, all ∆-terms have a computational counterpart.

Useful applications rely on using Proof-Functional Logics (that care about the proof-
derivation), instead of Truth-Functional Logics (that care about the validity of the conclusion).
In a nutshell: i) Intersection-types better catch the class of strongly normalizing terms than
Fω (see, among others, [46]). ii) Union and intersection types allow for a little form of
abstract interpretation (see Pierce IsZero example [38, 2]) that cannot easily be encoded in
LFω. iii) Proof-Functional Logics introduces a notion of “proof-synchronization”, as showed
in the operational semantics of the ∆-calculus, see Definition 4.3 and 5 of [28]: two proofs
are “in-sync” iff their “untyped essences” are equals. This could be possibly exploited in a
synchronized tactic in Bull. iv) Union types can capture a natural form of parallelism that
could be conveniently put to use in formalizing reasoning on concurrent execution, as in
proving correctness of concurrency control protocols or in branch-prediction techniques.

This paper presents the implementation of Bull [44, 43], an Interactive Theorem Prover
(ITP) based on the ∆-Framework [45, 25]. The first author wrote this theorem prover from
scratch for three years. Bull have a command-line interface program where the user can
declare axioms, terms, and perform computations. These terms can be incomplete, therefore
the typechecking algorithm uses unification to try to construct the missing subterms.

We have designed and implemented a novel subtyping algorithm [27] which extends the
well-known algorithm for intersection types, designed by Hindley [23], with union types. Our
subtyping algorithm has been mechanically proved correct in Coq and extracted in OCaml,
extending the proof of a subtyping algorithm for intersection types of Bessai et al. [7].

We have implemented several features. A Read-Eval-Print-Loop (REPL) allows to define
axioms and definitions, and performs some basic terminal-style features like error pretty-
printing, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof
or normalize it. We use the Berardi’s syntax of Pure Type Systems [6] to improve the
compactness and the modularity of the kernel. Abstract and concrete syntax are mostly
aligned: the concrete syntax is similar to the concrete syntax of Coq.

We have designed a higher-order unification algorithm for terms, while typechecking and
partial type inference are done by our bidirectional refinement algorithm, similar to the one
found in Matita [1]. The refinement can be split into two parts: the essence refinement and
the typing refinement. The bidirectional refinement algorithm aims to have partial type
inference, and to give as much information as possible to the unifier. For instance, if we
want to find a ?y such that `Σ 〈λx:σ.x, λx:τ.?y〉 : (σ → σ) ∩ (τ → τ), then we can infer that
x:τ `?y : τ and that o ?y o =β x.

This paper is organized as follows: in Section 2, we introduce the language we have
implemented. In Section 3, we define the reduction rules and explain the evaluation process.
In Section 4, we present the subtyping algorithm. In Section 5, we present the unifier. In
Section 6, we present the refiner which does partial typechecking and type reconstruction. In
Section 7, we present the REPL. In Section 8, we present possible enhancements of the type
theory and of the ITP. Appendix contains interesting encodings that could be typechecked in
Bull and could help the reader to understand the usefulness of adding ad hoc polymorphism
and proof-functional operators to LF.

FSCD 2020

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull

XX:4 A Type Checker for a Logical Framework with Union and Intersection Types

2 Syntax of terms

The syntax for the logical framework we have designed and implemented is as follows:

∆, σ ::= s , c , v , _ , ?x[∆; ...; ∆] Sorts, Const, Vars, Placeholders and Metavars
| let x:σ := ∆ in ∆ Local definition
| Πx:σ.∆ , λx:σ.∆ , ∆S Π- and λ-abstraction and application
| σ ∩ σ , σ ∪ σ Intersection and Union types
| 〈∆,∆〉 , pr1 ∆ , pr2 ∆ Strong pair and Left/Right projections
| smatch ∆ return σ with [x:σ ⇒ ∆ | x:σ ⇒ ∆] Strong sum
| in1 σ∆ , in2 σ∆ , coeσ∆ Left/Right injections and Coercions

S ::= () | (S;∆) Typed Spines

By using a Pure Type System approach [6], all the terms are read through the same parser.
The main differences with the ∆-Framework [25] are the additions of a placeholder and
meta-variables, used by the refiner. We also added a let operator and changed the syntax of
the strong sum smatch so it looks more like the concrete syntax used in the implementation.
A meta-variable ?x[∆1; ...; ∆n] has the, so called, suspended substitutions ∆1; ...; ∆n, which
will be explained clearly in Subsection 2.4. Finally, following the Cervesato-Pfenning jargon
[12], applications are in spine form, i.e. the arguments of a function are stored together in a
list, exposing the head of the term separately. We also implemented a corresponding syntax
for the untyped counterpart of the framework, called essence [28], where all pure λ-terms M
and spines are defined as follows:

M, ς ::= s , c , x , _ , ?x[M ; ...;M] Sorts, Const, Vars, Placeholders and Metavars
| let x := M in M Local definition
| Πx:ς.ς , λx.M , M R Π- and λ-abstraction and application
| ς ∩ ς , ς ∪ ς Intersection and Union types

R ::= () | (R;M) Untyped Spines

Note that essences of types (ς) belongs to the same syntactical set as essences of terms.

2.1 Concrete syntax
The concrete syntax of the terms has been implemented with OCamllex and OCamlyacc. Its
simplified syntax is as follows:

term ::= Type # type
| let ID [args] [: term] := term in term # let
| ID # variables and constants
| forall args, term # dependent product
| term -> term # non-dependent product
| fun args => term # lambda-abstraction
| term term # application
| term & term # intersection of types
| term | term # union of types
| <term,term> # strong pair
| proj_l term # left projection of a strong pair
| proj_r term # right projection of a strong pair
| smatch term [as ID] [return term] with ID [: term] => term, ID [: term] => term end
| inj_l term term # left injection of a strong sum # strong sum
| inj_r term term # right injection of a strong sum
| coe term term # coercion
| _ # wildcard

Claude Stolze and Luigi Liquori XX:5

Identifiers ID refers to any alphanumeric string (possibly with underscores and apostrophes).
The non-terminal symbol args correspond to a non-empty sequence of arguments, where
an argument is an identifier, and can be given with its type. In the latter case, you should
parenthesize it, for instance (x : A), and if you want to assign the same type to several
consecutive arguments, you can e.g. write (x y z : A). Strong sums have a complicated
syntax. For instance, consider this term:
smatch foo as x return T with y : T1 ⇒ bar, z : T2 ⇒ baz end

The above term in the concrete syntax corresponds to
smatch foo return λx:_.T with [y:T1⇒ bar | z:T2⇒ baz]
in the abstract syntax. The concrete syntax thus guarantees that the returned type is a
λ-abstraction, and it allows a simplified behaviour of the type reconstruction algorithm. The
behaviour of the concrete syntax is intended to mimic Coq.

2.2 Implementation of the syntax
In the OCaml implementation, ∆-terms and their types along with essences and type
essences are represented with a single type called term. It allows some functions (such as the
normalization function) to be applied both on ∆-terms and on essences.
type term =
| Sort of location ∗ sort
| Let of location ∗ string ∗ term ∗ term ∗ term (* let s : t1 := t2 in t3 *)
| Prod of location ∗ string ∗ term ∗ term (* forall s : t1, t2 *)
| Abs of location ∗ string ∗ term ∗ term (* fun s : t1 => t2 *)
| App of location ∗ term ∗ term list (* t t1 t2 ... tn *)
| Inter of location ∗ term ∗ term (* t1 & t2 *)
| Union of location ∗ term ∗ term (* t1 | t2 *)
| SPair of location ∗ term ∗ term (* < t1, t2 > *)
| SPrLeft of location ∗ term (* proj_l t1 *)
| SPrRight of location ∗ term (* proj_r t1 *)
| SMatch of location ∗ term ∗ term ∗ string ∗ term ∗ term ∗ string ∗ term ∗ term

(* match t1 return t2 with s1 : t3 => t4 , s2 : t5 => t6 end *)
| SInLeft of location ∗ term ∗ term (* inj_l t1 t2 *)
| SInRight of location ∗ term ∗ term (* inj_r t1 t2 *)
| Coercion of location ∗ term ∗ term (* coe t1 t2 *)
| Var of location ∗ int (* de Bruijn index *)
| Const of location ∗ string (* variable name *)
| Underscore of location (* meta-variables before analysis *)
| Meta of location ∗ int ∗ (term list) (* index and substitution *)

The constructors of term contain the location information retrieved by the parser that allows
the typechecker to give the precise location of a subterm to the user, in case of error.

The App constructor takes as parameters the applied function and the list of all the
arguments. The list of parameters is used as a stack, hence the rightmost argument is
the head of the list, and can easily be removed in the OCaml recursive functions. The
variables are referred to as strings in the Const constructor, and as de Bruijn indices in Var
constructors.

The parser does not compute de Bruijn indices, it gives the variables as strings. The
function fix_index replaces bound variables by de Bruijn indices. We still keep track of the
string names of the variables, in case we have to print them back. Its converse function,
fix_id, replaces the de Bruijn indices with the previous strings, possibly updating the string
names in case of name clashes. For instance, the string printed to the user, showing the

FSCD 2020

XX:6 A Type Checker for a Logical Framework with Union and Intersection Types

normalized form of (fun (x y : nat) ⇒ x) y, is fun y0 : nat ⇒ y : the bound variable y has
been renamed y0. The meta-variables are generated by the typecheckers, and their identifier
is an integer. We have defined several helper functions to ease the process of terms.

The generic function visit_term f g h t looks at the children of the term t, and: i) every
child t1 outside of a binder is replaced with f t1; ii) every child t1 inside the binding of a
variable whose name (a string) is s is replaced with g s t1, while s is replaced with h s t1.

The functions g and h take a string as an argument, for helping the implementation of
the fix_index and fix_id functions.

The function map_term is a kind of mapping function: map_term k f t finds every variable
Var(l, n) inside the term t, and replaces it by f (k+offset) l n, where offset is the number
of extra bindings.

The lift and map_term functions allow us to define a substitution in a clean way:

(* update all indices greater than k by adding n to them *)
let lift k n = map_term k (fun k l m→ if m < k then Var (l, m) else Var (l, m+n))

(* Transform (lambda x. t1) t2 into t1[t2/x] *)
let beta_redex t1 t2 =

let subst k l m =
if m < k then Var (l, m) (* bound variable *)
else if m = k then (* x *)

lift 0 k t2
else (* the enclosing lambda goes away *)

Var (l, m−1)
in map_term 0 subst t1

2.3 Environments
There are four kinds of environments, namely:
1. the global environment (noted Σ). The global environment holds constants which are fully

typechecked: Σ ::= · | Σ, c:ς@σ | Σ, c := M@∆ : ς@σ. Intuitively, c:ς@σ is a declaration
of a constant (or axiom), and c := M@∆ : ς@σ corresponds to a global definition.

2. the local environment (noted Γ). It is used for the first step of typechecking, and looks
like a standard environment: Γ ::= · | Γ, x:σ | Γ, x := ∆ : σ. Intuitively, x:σ is a variable
introduced by a λ-abstraction, and x := ∆ : σ is a local definition introduced by a let.

3. the essence environment (noted Ψ). It is used for the second step of typechecking, and
holds the essence of the local variables: Ψ ::= · | Ψ, x | Ψ, x := M . Intuitively, x is a
variable introduced by a λ-abstraction, and x := M is a local definition introduced by a
let. Notice that the variable x in the BNF expression Ψ, x carries almost no information.
However, since local variables are referred to by their de Bruijn indices, and these indices
are actually their position in the environment, it follows that they have to appear in the
environment, even when there is no additional information.

4. the meta-environment (noted Φ). It is used for unification, and records meta-variables
and their instantiation whenever the unification algorithm has found a solution: Φ ::= · |
Φ, sort(?x) | Φ, ?x := s | Φ, (Γ `?x : σ) | Φ, (Γ `?x := ∆ : σ) | Φ,Ψ `?x | Φ,Ψ `?x := M .
Intuitively, since there are some meta-variables for which we know they have to be
sorts, it follows that sort(?x) declares a meta-variable ?x which correspond either to
Type or Kind, and ?x := s is the instantiation of a sort ?x. Also, Γ `?x : σ is the
declaration of a meta-variable ?x of type σ which appeared in a local environment Γ, and
Γ `?x := ∆ : σ is the instantiation of the meta-variable ?x. Concerning meta-variables

Claude Stolze and Luigi Liquori XX:7

inside essences, Ψ `?x is the declaration of a meta-variable ?x in an essence environment
Ψ, and Ψ `?x := M is the instantiation of ?x.

2.4 Suspended substitution
We shortly introduce suspended substitution, as presented in [1]. Let’s consider the following
example: if we want to unify (λx:σ.?y) c1 with c1, we could unify ?y with c1 or with x, the
latter being the preferred solution. However, if we normalize (λx:σ.?y) c1, we should record
the fact that c1 can be substituted by any occurrence of x appearing in ?y, even though
the term which will replace ?y is currently unknown. That is the purpose of suspended
substitution: the term is actually noted (λx:σ.?y[x]) c1 and reduces to ?y[c1], noting that c1
has replaced x.

I Definition 1 (Erase function and suspended substitution).
1. The vector x1; . . . ;xn is created using the erase function ·, defined as

x1:σ1; . . . ;xn:σn
def= x1; . . . ;xn and x1; . . . ;xn

def= x1; . . . ;xn.
2. When we want to create a new meta-variable in a local context Γ = x1:σ1; . . . ;xn:σn, we

create a meta-variable ?y[Γ] ≡ ?y[x1; . . . ;xn]. The vector ∆1; . . . ; ∆n inside ?y[∆1; . . . ; ∆n]
is the suspended substitution of ?y. Substitutions for meta-variables and their suspended
substitution are propagated as follows:

?y[∆1; . . . ; ∆n][∆/x] def= ?y[∆1[∆/x]; . . . ; ∆n[∆/x]]

?y[M1; . . . ;Mn][N/x] def= ?y[M1[N/x]; . . . ;Mn[N/x]]

3 The evaluator of Bull

The evaluator follows the applicative order strategy, which recursively normalizes all subterms
from left to right (with the help of the visit_term function, see full code in [44]), then: if the
resulting term is a redex, reduces it, then uses the same strategy again; or else, the resulting
term is in normal form.

3.1 Reduction rules
The notions of reduction, from which we can define one-step reduction, multistep reduction,
and equivalence relation, are defined below.

I Definition 2 (Reductions).
1. for ∆-terms:

(λx:σ.∆1) ∆2 7→β ∆1[∆2/x]
λx:σ.∆x 7→η ∆ if x 6∈ Fv(∆)

pri 〈∆1,∆2〉 7→pri
∆i

smatch ini ∆3 return ρ with [x:σ ⇒ ∆1 | x:τ ⇒ ∆2]
7→ini ∆i[∆3/x]

let x:σ := ∆1 in ∆2 7→ζ ∆2[∆1/x]
c 7→δΣ ∆ if (c := M@∆ : ς@σ) ∈ Σ
x 7→δΓ ∆ if (x := ∆ : σ) ∈ Γ

?x[∆1; . . . ; ∆n] 7→δΦ ∆
−−−−→
[∆i/Γ] if (Γ `?x := ∆ : σ) ∈ Φ

?x[∆1; . . . ; ∆n] 7→δΦ s if ?x := s ∈ Φ

FSCD 2020

https://github.com/cstolze/Bull

XX:8 A Type Checker for a Logical Framework with Union and Intersection Types

2. for pure λ-terms:

(λx.M)N 7→β M [N/x]
λx.M x 7→η M if x 6∈ Fv(M)

let x := M in N 7→ζ N [M/x]
c 7→δΣ M if (c := M@∆ : ς@σ) ∈ Σ
x 7→δΨ M if (x := M) ∈ Ψ

?x[M1; . . . ;Mn] 7→δΦ N
−−−−→
[Mi/Ψ] if (Ψ `?x := M) ∈ Φ

?x[M1; . . . ;Mn] 7→δΦ s if ?x := s ∈ Φ

3.2 Implementation
When the user inputs a term, the refiner creates meta-variables and tries to instantiate them,
but this should remain as much as possible invisible to the user. Therefore the term returned
by the refiner should be meta-variable free, even though not in normal form. Thus, terms in
the global signature Σ are meta-variable free, and the δΦ reductions are only used by the
unifier and the refiner.

The function strongly_normalize works on both ∆-terms and pure λ-terms, and supposes
that the given term is meta-variable free. Note that reductions can create odd spines, for
instance if you consider the term (λx:σ.x S1) (∆S2), a simple β-redex would give ∆S2 S1,
therefore we merge S2 and S1 in a single spine.

let rec strongly_normalize is_essence env ctx t =
let sn_children = visit_term (strongly_normalize is_essence env ctx)

(fun _→ strongly_normalize is_essence
env (Env.add_var ctx (DefAxiom ("",nothing))))

(fun id _→ id)
in let sn = strongly_normalize is_essence env ctx in
(* Normalize the children *)
let t = sn_children t in
match t with
(* Spine fix *)
| App(l, App(l’, t1,t2), t3)→

sn (App(l, t1, List.append t2 t3))
(* Beta-redex *)
| App (l, Abs (l’, _,_, t1), t2 :: []) →

sn (beta_redex t1 t2)
| App (l, Abs (l’, x,y, t1), t2 :: t3)
→ sn @@ app l (sn (App(l,Abs (l’,x,y, t1), t3))) t2

| Let (l, _, t1, t2, t3)→ sn (beta_redex t2 t1)
(* Delta-redex *)
| Var (l, n)→ let (t1, _) = Env.find_var ctx n in

(match t1 with
| Var _→ t1
| _→ sn t1)

| Const (l, id)→ let o = Env.find_const is_essence env id in
(match o with
| None→ Const(l, id)
| Some (Const (_,id’) as t1,_) when id = id’→ t1
| Some (t1,_)→ sn t1)

(* Eta-redex *)
| Abs (l,_, _, App (l’, t1, Var (_,0) :: l2))
→ if is_eta (App (l’, t1, l2)) then

Claude Stolze and Luigi Liquori XX:9

let t1 = lift 0 (−1) t1 in
match l2 with
| []→ t1
| _→ App (l’, t1, List.map (lift 0 (−1)) l2)

else t
(* Pair-redex *)
| SPrLeft (l, SPair (l’, x,_)) → x
| SPrRight (l, SPair (l’, _, x)) → x
(* inj-reduction *)
| SMatch (l, SInLeft(l’,_,t1), _, id1, _, t2, id2, _, _)→

sn (beta_redex t2 t1)
| SMatch (l, SInRight(l’,_,t1), _, id1, _, _, id2, _, t2)→

sn (beta_redex t2 t1)
| _→ t

4 The subtyping algorithm of Bull

The subtyping algorithm implemented in Bull is basically the algorithm A as described
and Coq certified/extracted in [27] by the authors. The main judgment is Σ; Γ ` σ 6 τ .
The only difference is that the types are normalized before applying the algorithm. The
auxiliary rewriting functions R1,R2,R3,R4, described in [27], rewrite terms in normal forms
as follows:

let rec anf a =
let rec distr f a b =

match (a,b) with
| (Union(l,a1,a2),_)→ Inter(l, distr f a1 b, distr f a2 b)
| (_, Inter(l,b1,b2))→ Inter(l, distr f a b1, distr f a b2)
| _→ f a b

in
match a with
| Prod(l,id,a,b)→ distr (fun a b→ Prod(l,id,a,b)) (danf a) (canf b)
| _→ a

and canf a =
let rec distr a b =

match (a,b) with
| (Inter(l,a1,a2),_)→ Inter(l, distr a1 b, distr a2 b)
| (_,Inter(l,b1,b2))→ Inter(l, distr a b1, distr a b2)
| _→ Union(dummy_loc,a,b)

in
match a with
| Inter(l,a,b)→ Inter(l, canf a, canf b)
| Union(l,a,b)→ distr (canf a) (canf b)
| _→ anf a

and danf a =
let rec distr a b =

match (a,b) with
| (Union(l,a1,a2),_)→ Union(l, distr a1 b, distr a2 b)
| (_,Union(l,b1,b2))→ Union(l, distr a b1, distr a b2)
| _→ Inter(dummy_loc, a,b)

in
match a with
| Inter(l,a,b)→ distr (danf a) (danf b)
| Union(l,a,b)→ Union(l, danf a, danf b)

FSCD 2020

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull

XX:10 A Type Checker for a Logical Framework with Union and Intersection Types

| _→ anf a

It follows that, our subtyping function is quite simple:

let is_subtype env ctx a b =
let a = danf @@ strongly_normalize false env ctx a in
let b = canf @@ strongly_normalize false env ctx b in
let rec foo env ctx a b =
match (a, b) with
| (Union(_,a1,a2),_)→ foo env ctx a1 b && foo env ctx a2 b
| (_,Inter(_,b1,b2))→ foo env ctx a b1 && foo env ctx a b2
| (Inter(_,a1,a2),_)→ foo env ctx a1 b || foo env ctx a2 b
| (_,Union(_,b1,b2))→ foo env ctx a b1 || foo env ctx a b2
| (Prod(_,_,a1,a2),Prod(_,_,b1,b2))
→ foo env ctx b1 a1 && foo env (Env.add_var ctx (DefAxiom("",nothing))) a2 b2

| _→ same_term a b
in foo env ctx a b

5 The unification algorithm of Bull

Higher-order unification of two terms ∆1 and ∆2 aims at finding a most general substitution
for meta-variables such that ∆1 and ∆2 becomes convertible. The structural rules are given
in Figure 1. Classical references are the work of Huet [26], and Dowek et al. [16].

Our higher-order unification algorithm is inspired by the Reed [41] and Ziliani-Sozeau
[48] papers. In [48], conversion of terms is quite involved because of the complexity of Coq.
For simplicity, our algorithm supposes the terms to be in normal form.

The unification algorithm takes as input a meta-environment Φ, a global environment Σ,
a local environment Γ, the two terms to unify ∆1 and ∆2, and either fails or returns the
updated meta-environment Φ. The rest of the unification algorithm implements Higher-Order
Pattern Unification (HOPU) [41]. In a nutshell, HOPU takes as an argument a unification
problem ?f S ?= N , where all the terms in S are free variables and each variable occurs
once. For instance, for the unification problem ?f y x z ?= x c y, it creates the solution
?f := λy:σ2.λx:σ1.λz:σ3.x c y. The expected type of x, y, and z can be found in the local
environment, but capturing correctly the free variables x, y, and z is quite tricky because we
have to permute their de Bruijn indices. If HOPU fails, we recursively unify every subterm.

6 The refinement algorithm of Bull

The Bull refinement algorithm is inspired by the work on the Matita ITP [1]. It is defined
using bi-directionality, in the style of Harper-Licata [22]. The bi-directional technique is a
mix of typechecking and type reconstruction, in order to trigger the unification algorithm
as soon as possible. Moreover, it gives more precise error messages than standard type
reconstruction. For instance, if f : (bool −> nat −> bool) −> bool, then f (fun x y ⇒ y) is
ill-typed. With a simple type inference algorithm, we would type f, then fun x y ⇒ y which
would be given some type ?x −> ?y −> ?y, and finally we would try to unify bool −> nat −> bool
with ?x −> ?y −> ?y, which fails. However, the failure is localized on the application, whereas
it would better be localized inside the argument. More precisely, we would have the following
error message:

f (fun x y ⇒ y)
^

Error: the term "y" has type "nat" while it is expected to have type "bool".

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull

Claude Stolze and Luigi Liquori XX:11

s1 ≡ s2

Φ; Σ; Γ ` s1
?= s2

U
 Φ

(Sort) c1 ≡ c2
Φ; Σ; Γ ` c1

?= c2
U
 Φ

(Const) x1 ≡ x2

Φ; Σ; Γ ` x1
?= x2

U
 Φ

(Var)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2 Φ2; Σ; Γ, x:σ1 ` ∆1

?= ∆2
U
 Φ3

Φ1; Σ; Γ ` λx:σ1.∆1
?= λx:σ2.∆2

U
 Φ3

(Abs)

x1:σ1, . . . , xn:σn `?x : Πz1:τ1 . . .Πzm:τm.τ ∈ Φ1 y1 . . . yn, z1 . . . zm distinct
Φ2 ≡ Φ1, (x1:σ1, . . . , xn:σn `?x := λz1:τ1. . . . λzm:τm.∆

−−−−→
[xi/yi] : Πz1:τ1 . . .Πzm:τm.τ)

Φ1; Σ; Γ `?x[y1; . . . ; yn] (z1; . . . ; zm) ?= ∆ U
 Φ2

(App1)

Φ1 ` ∆1
?= ∆2

U
 Φ2

Φ1; Σ; Γ ` ∆1 () ?= ∆2
U
 Φ2

(App2) Φ1 ` ∆1 S1
?= ∆3 S2

U
 Φ2 Φ2 ` ∆2

?= ∆4
U
 Φ3

Φ1; Σ; Γ ` ∆1 (S1; ∆2) ?= ∆3 (S2; ∆4) U Φ3

(App3)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2

Φ2; Σ; Γ ` τ1
?= τ2

U
 Φ3

Φ1; Σ; Γ ` σ1 ∩ τ1
?= σ2 ∩ τ2

U
 Φ3

(∩)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2

Φ2; Σ; Γ ` τ1
?= τ2

U
 Φ3

Φ1; Σ; Γ ` σ1 ∪ τ1
?= σ2 ∪ τ2

U
 Φ3

(∪)

Φ1; Σ; Γ ` ∆1
?= ∆2

U
 Φ2

Φ2; Σ; Γ ` ∆3
?= ∆4

U
 Φ3

Φ1; Σ; Γ ` 〈∆1,∆3〉
?= 〈∆2,∆4〉

U
 Φ3

(Spair)
Φ1; Σ; Γ ` ∆1

?= ∆2
U
 Φ2

Φ1; Σ; Γ ` pri ∆1
?= pri ∆2

U
 Φ2

(Proj)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2

Φ2; Σ; Γ ` ∆1
?= ∆2

U
 Φ3

Φ1; Σ; Γ ` ini σ1∆1
?= ini σ2∆2

U
 Φ3

(Inj)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2

Φ2; Σ; Γ ` ∆1
?= ∆2

U
 Φ3

Φ1; Σ; Γ ` coeσ1 ∆1
?= coeσ2 ∆2

U
 Φ3

(Coe)

Φ1; Σ; Γ ` ∆ ?= ∆′ U Φ2 Φ2; Σ; Γ ` τ ?= τ ′
U
 Φ3 Φ3; Σ; Γ ` σ1

?= σ′1
U
 Φ4

Φ4; Σ; Γ, x:σ1 ` ∆1
?= ∆′1

U
 Φ5 Φ5; Σ; Γ ` σ2

?= σ′2
U
 Φ6 Φ6; Σ; Γ, x:σ2 ` ∆2

?= ∆′2
U
 Φ7

Φ1; Σ; Γ ` smatch ∆ return τ with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2]
?= smatch ∆′ return τ ′ with [x:σ′1 ⇒ ∆1 | x:σ′2 ⇒ ∆′2] U Φ7

(Ssum)

Φ1; Σ; Γ, x:σ ` ∆1
?= ∆2 x

U
 Φ2

Φ1; Σ; Γ ` λx:σ.∆1
?= ∆2

U
 Φ2

(ηl)
Φ1; Σ; Γ, x:σ ` ∆1 x

?= ∆2
U
 Φ2

Φ1; Σ; Γ ` ∆1
?= λx:σ.∆2

U
 Φ2

(ηr)

Figure 1 Structural rules of the unification algorithm

Our typechecker is also a refiner : intuitively, a refiner takes as input an incomplete term, and
possibly an incomplete type, and tries to infer as much information as possible in order to
reconstruct a well-typed term. For example, let’s assume we have in the global environment
the following constants:

(eq : nat −> nat −> Type), (eq_refl : forall x : nat, eq x x)

Then refining the term eq_refl _ : eq _ 0 would create the following term:

eq_refl 0 : eq 0 0

Refinement also enables untyped abstractions: the refiner may recover the type of bound
variables, because untyped abstractions are incomplete terms. The typechecking is done in
two steps: firstly the term is typechecked without caring about the essence, then we check
the essence. The five typing judgments are defined as follows:

I Definition 3 (Typing judgments). We have five typing judgments, corresponding to five

FSCD 2020

XX:12 A Type Checker for a Logical Framework with Union and Intersection Types

(x:σ) ∈ Γ or (x := ∆ : σ) ∈ Γ

Φ; Σ; Γ ` x ⇑ x : σ; Φ
(Var)

(c:σ) ∈ Σ or (c := ∆ : σ) ∈ Σ

Φ; Σ; Γ ` c ⇑ c : σ; Φ
(Const)

Φ1; Σ; Γ ` σ F σ′ : s; Φ2 Φ2; Σ; Γ ` ∆1 : σ′ ⇓ ∆′1; Φ3 Φ3; Σ; Γ, x := ∆′1:σ′ ` ∆2
⇑
 ∆′2 : τ ; Φ4

Φ1; Σ; Γ ` let x:σ := ∆1 in ∆2
⇑
 let x:σ′ := ∆′1 in ∆′2 : τ [σ′/x]; Φ4

(Let)

Φ1; Σ; Γ ` σ1
F
 σ′1 : s1; Φ2 Φ2; Σ; Γ ` σ2

F
 σ′2 : s2; Φ3 Φ3 ` (s1, s2) ∈ LF; Φ4

Φ1; Σ; Γ ` Πx:σ1.σ2
⇑
 Πx:σ′1.σ′2 : s2; Φ4

(Prod)

Φ1; Σ; Γ ` σ F σ′ : s; Φ2 Φ2; Σ; Γ, x:σ′ ` ∆ ⇑
 ∆′ : τ ; Φ3 Φ3; Σ; Γ ` Πx:σ′.τ F ρ : s; Φ4

Φ1; Σ; Γ ` λx:σ.∆ ⇑
 λx:σ′.∆′ : Πx:σ′.τ ; Φ4

(Abs)

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ; Φ2

Φ1; Σ; Γ ` ∆ () ⇑ ∆′ : σ; Φ2

(App1)
Φ; Σ; Γ ` Type ⇑ Type : Kind; Φ

(T)

Φ1; Σ; Γ ` ∆1 S
⇑
 ∆′1 : σ; Φ2 Φ2; Σ; Γ ` σ =β Πx:σ1.σ2 Φ2; Σ; Γ ` ∆2 : σ1

⇓
 ∆′2; Φ3

Φ1; Σ; Γ ` ∆1 (S; ∆2) ⇑ ∆′1 ∆′2 : σ2[∆′2/x]; Φ3

(App2)

Φ1; Σ; Γ ` ∆1 S
⇑
 ∆′1 : σ; Φ2 Φ2; Σ; Γ ` ∆2

⇑
 ∆′2 : σ1; Φ3

Φ3, sort(?y), (Γ, x:σ1 `?x :?y[]); Σ; Γ ` σ ?= Πx:σ1.?x[Γ;x] U Φ4

Φ1; Σ; Γ ` ∆1 (S; ∆2) ⇑ ∆′1 ∆′2 : ?x[Γ;x][∆′2/x]; Φ4

(App3)

Φ1; Σ; Γ ` σ1 : Type ⇓ σ′1; Φ2

Φ2; Σ; Γ ` σ2 : Type ⇓ σ′2; Φ3

Φ1; Σ; Γ ` σ1 ∩ σ2
⇑
 σ′1 ∩ σ′2 : Type; Φ3

(∩)

Φ1; Σ; Γ ` σ1 : Type ⇓ σ′1; Φ2

Φ2; Σ; Γ ` σ2 : Type ⇓ σ′2; Φ3

Φ1; Σ; Γ ` σ1 ∪ σ2
⇑
 σ′1 ∪ σ′2 : Type; Φ3

(∪)

Figure 2 Rules for ⇑ (1st part)

OCaml functions:
1. The function reconstruct takes as inputs a meta-environment Φ1, a global environment

Σ, a local environment Γ, and a term ∆1. It either fails or fills the holes in ∆1, which
becomes ∆2, and returns ∆2 along with its type σ and the updated meta-environment Φ2.
The corresponding judgment is the following Φ1; Σ; Γ ` ∆1

⇑
 ∆2 : σ; Φ2, and the most

relevant rules are described in Figures 2 and 3;
2. The function force_type takes as inputs a meta-environment Φ1, a global environment

Σ, a local environment Γ, and a term σ1. It either fails or fills the holes in σ1, which
becomes σ2 while ensuring it is a type, i.e. its type is a sort s, and returns σ2 along with
s, and the updated meta-environment Φ2. The corresponding judgment is the following
Φ1; Σ; Γ ` σ1

F
 σ2 : τ ; Φ2, and the rules are described in Figure 4. Intuitively, the

function reconstructs the type τ of σ1, then tries to unify τ with Type and Kind. If it can
only do one unification, it keeps the successful one, if both unifications work, we choose
unification with a sort meta-variable, so τ is convertible to a sort;

3. The function reconstruct_with_type takes as inputs a meta-environment Φ1, a global
environment Σ, a local environment Γ, a term ∆1, and its expected type σ. It either fails
or fills the holes in ∆1, which becomes ∆2 while ensuring its type is σ, and returns ∆2
along the updated meta-environment Φ2. The corresponding judgment is the following
Φ1; Σ; Γ ` ∆1 : σ ⇓

 ∆2; Φ2, and the rules are described in Figure 5. There is a rule
(Default) which applies only if none of the other rules work. The acute reader could
remark two subtle things:

Claude Stolze and Luigi Liquori XX:13

Φ1; Σ; Γ ` ∆1
⇑
 ∆′1 : σ1; Φ2

Φ2; Σ; Γ ` ∆2
⇑
 ∆′2 : σ2; Φ3 Φ3; Σ; Γ ` σ1 ∩ σ2 : Type ⇓ Φ4

Φ1; Σ; Γ ` 〈∆1,∆2〉
⇑
 〈∆′1,∆′2〉 : σ1 ∩ σ2; Φ4

(Spair)

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ; Φ2 Φ2; Σ; Γ ` σ =β σ1 ∩ σ2

Φ1; Σ; Γ ` pri ∆ ⇑
 pri ∆′ : σi; Φ2

(Proj1)

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ; Φ2

Φ2, (Γ `?x1 : Type), (Γ `?x2 : Type); Σ; Γ ` σ ?=?x1[Γ]∩?x2[Γ] U Φ3

Φ1; Σ; Γ ` pri ∆ ⇑
 pri ∆′ :?xi[Γ]; Φ3

(Proj2)

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ′; Φ2 Φ2; Σ; Γ ` λx:τ1.τ2 : Πx:σ.Type ⇓ λx:τ ′1.τ ′2; Φ3

Φ3; Σ; Γ ` σ1 : Type ⇓ σ′1; Φ4 Φ4; Σ; Γ ` σ2 : Type ⇓ σ′2; Φ5

Φ5; Σ; Γ ` σ′ ?= σ′1 ∪ σ′2
U
 Φ6 Φ6; Σ; Γ, x:σ′1 ` ∆1 : τ ′2[in1 σ

′
2 x/x] ⇓ ∆′1; Φ7

Φ7; Σ; Γ, x:σ′2 ` ∆2 : τ ′2[in2 σ
′
1 x/x] ⇓ ∆′2; Φ8

Φ1; Σ; Γ ` smatch ∆ return λx:τ1.τ2 with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2] ⇑
smatch ∆′ return λx:τ ′1.τ ′2 with [x:σ′1 ⇒ ∆′1 | x:σ′2 ⇒ ∆′2] : τ ′2[∆′/x]; Φ8

(Ssum)

Φ1; Σ; Γ ` σ F σ′ : s; Φ2 Φ2; Σ; Γ ` ∆ ⇑
 ∆′ : τ ; Φ3 Σ; Γ ` τ 6 σ′

Φ1; Σ; Γ ` coeσ∆ ⇑
 coeσ′∆′ : σ′; Φ3

(Coe)

Φ; Σ; Γ ` _ ⇑
 ?x[Γ] :?y[Γ]; Φ, sort(?z), (Γ `?y :?z[]), (Γ `?x :?y[Γ])

(Wildcard)

(Γ′ `?x : σ) ∈ Φ or (Γ′ `?x := ∆ : σ) ∈ Φ
Γ′ = x1:σ1, . . . , xn:σn Φi; Σ; Γ ` ∆i : σi

⇓
 ∆′i; Φi+1 (i = 1 . . . n)

Φ1; Σ; Γ `?x[∆1; . . . ; ∆n] ⇑ ?x[∆′1; . . . ; ∆′n] : σ
−−−−→
[∆′i/Γ′]; Φn+1

(Meta−Var)

Figure 3 Rules for ⇑ (2nd part)

a. we chose not to add any inference rule for coercions, because we believe it would make
error messages clearer: more precisely, if we want to check that coeσ∆ has type τ ,
there could be two errors happening concurrently: it is possible that the type of ∆ is not
a subtype of σ, and at the same time σ is not unifiable with τ . We think that the error
to be reported should be the first one, and in this case the (Default) rule is sufficient;

b. the management of de Bruijn indices for the (Let) is tricky: if we want to check that
let x:σ := ∆1 in ∆2 has type τ in some local context Γ, we recursively check that ∆2
has type τ in the local context Γ, x := ∆′

1 : σ′ for some ∆′
1, but the de Bruijn indices

for τ correspond to the position of the local variables in the local context, which has
been updated. We therefore have to increment all the de Bruijn indices in τ , in order
to report the fact that there is one extra element in the local context;

4. The function essence takes as inputs a meta-environment Φ1, a global environment Σ,
an essence environment Ψ, and a term ∆. It either fails or construct its essence M , and
returns M along with the updated meta-environment Φ2. The corresponding judgment is
the following Φ1; Σ; Ψ ` ∆ E⇑

 M ; Φ2, and the rules are described in Figure 6;
5. The function essence_with_hint takes as inputs a meta-environment Φ1, a global environment

Σ, an essence environment Ψ, a term ∆, and its expected essence M . It either fails or
succeeds by returning the updated meta-environment Φ2. The corresponding judgment is

FSCD 2020

XX:14 A Type Checker for a Logical Framework with Union and Intersection Types

Φ1; Σ; Γ ` σ ⇑ σ′ : τ ; Φ2 Φ2; Σ; Γ ` τ ?= Type U Φ3

Φ2; Σ; Γ ` τ ?= Kind U Φ′3 Φ2, sort(?x); Σ ` τ ?=?x[] U Φ4

Φ1; Σ; Γ ` σ F σ′ : τ ; Φ4

(Force1)

Φ1; Σ; Γ ` σ ⇑ σ′ : τ ; Φ2 Φ2; Σ; Γ ` τ ?= Type U Φ3 Φ2; Σ; Γ 6 ` τ ?= Kind U Φ′3
Φ1; Σ; Γ ` σ F σ′ : τ ; Φ3

(Force2)

Φ1; Σ; Γ ` σ ⇑ σ′ : τ ; Φ2 Φ2; Σ; Γ 6 ` τ ?= Type U Φ3 Φ2; Σ; Γ ` τ ?= Kind U Φ′3
Φ1; Σ; Γ ` σ F σ′ : τ ; Φ′3

(Force3)

Figure 4 Rules for F

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ; Φ2 Φ2; Σ; Γ ` σ ?= τ

U
 Φ3

Φ1; Σ; Γ ` ∆ : τ ⇓ ∆′; Φ3

(Default)

Φ1; Σ; Γ ` σ F σ′ : s; Φ2 Φ2; Σ; Γ ` ∆1 : σ′ ⇓ ∆′1; Φ3 Φ3; Σ; Γ, x := ∆′1 : σ′ ` ∆2 : τ ⇓ ∆′2; Φ4

Φ1; Σ; Γ ` let x:σ := ∆1 in ∆2 : τ ⇓ let x:σ := ∆′1 in ∆′2; Φ4

(Let)

Φ1; Σ; Γ ` τ =β Πx:τ1.τ2 Φ1; Σ; Γ ` σ F σ′; Φ2

Φ2; Σ; Γ ` σ′ ?= τ1
U
 Φ3 Φ3; Σ; Γ, x:σ′ ` ∆ : τ2

⇓
 ∆′; Φ4

Φ1; Σ; Γ ` λx:σ.∆ : τ ⇓ λx:σ′.∆′; Φ4

(Abs)

Φ1; Σ; Γ ` σ =β σ1 ∩ σ2 Φ1; Σ; Γ ` ∆1 : σ1
⇓
 ∆′1; Φ2 Φ2; Σ; Γ ` ∆2 : σ2

⇓
 ∆′2; Φ3

Φ1; Σ; Γ ` 〈∆1,∆2〉 : σ ⇓ 〈∆′1,∆′2〉; Φ3

(Spair)

Φ1, (Γ `?x : Type); Σ; Γ ` σ∩?x : Type ⇓ τ ; Φ2 Φ2; Σ; Γ ` ∆ : σ∩?x ⇓ ∆′; Φ3

Φ1; Σ; Γ ` pr1 ∆ : σ ⇓ pr1 ∆′; Φ3

(Proj1)

Φ1, (Γ `?x : Type); Σ; Γ `?x ∩ σ : Type ⇓ τ ; Φ2 Φ2; Σ; Γ ` ∆ :?x ∩ σ ⇓ ∆′; Φ3

Φ1; Σ; Γ ` pr2 ∆ : σ ⇓ pr2 ∆′; Φ3

(Proj2)

Φ1; Σ; Γ ` τ =β τ1 ∪ τ2 Φ1; Σ; Γ ` σ : Type ⇓ σ′; Φ2 Φ2; Σ; Γ ` σ′ ?= τi
U
 Φ3

Φ1; Σ; Γ ` ini σ∆ : τ ⇓ ini σ′∆′; Φ3

(Inj)

Φ; Σ; Γ ` _ : σ ⇓ ?x[Γ]; Φ, (Γ `?x : σ)
(Wildcard)

Figure 5 Rules for ⇓

the following Φ1; Σ; Ψ `M@∆ E⇓

 Φ2, and the rules are described in Figure 7. There is a
rule (Default) which applies only if none of the other rules work.

7 The Read-Eval-Print-Loop of Bull

The Read-Eval-Print-Loop (REPL) reads a command which is given by the parser as a list of
atomic commands. For instance, if the user writes:

Axiom (a b : Type) (f : a −> b).

The parser creates the following list of three atomic commands:
1. the command asking a to be an axiom of type Type;

https://github.com/cstolze/Bull

Claude Stolze and Luigi Liquori XX:15

Φ1; Σ; Ψ ` ∆1
E⇑
 M ; Φ2 Φ2; Σ; Ψ `M@∆2

E⇓
 Φ3

Φ1; Σ; Ψ ` 〈∆1,∆2〉
E⇑
 M ; Φ3

(Spair)
Φ1; Σ; Ψ ` ∆ E⇑

 M ; Φ2

Φ1; Σ; Ψ ` pri ∆ E⇑
 M ; Φ2

(Proj)

Φ1; Σ; Ψ ` ∆ E⇑
 N ; Φ2 Φ2; Σ; Ψ ` σ E

⇑
 ς; Φ3 Φ3; Σ; Ψ ` σ1

E⇑
 ς1; Φ4

Φ4; Σ; Ψ, x ` ∆1
E⇑
 M ; Φ5 Φ5; Σ; Ψ ` σ2

E⇑
 ς2; Φ6 Φ6; Σ; Ψ, x `M@∆2

E⇓
 Φ7

Φ1; Σ; Ψ ` smatch ∆ return σ with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2] E
⇑
 (λx.M)N ; Φ7

(Ssum)

Φ1; Σ; Ψ ` ∆ E⇑
 M ; Φ2

Φ1; Σ; Ψ ` ini σ ∆ E⇑
 M ; Φ2

(Inj)
Φ1; Σ; Ψ ` σ E

⇑
 ς; Φ2 Φ2; Σ; Ψ, x ` ∆ E⇑

 M ; Φ3

Φ1; Σ; Ψ ` λx:σ.∆ E⇑
 λx.M ; Φ3

(Abs)

Φ1; Σ; Ψ ` σ1
E⇑
 ς1; Φ2 Φ2; Σ; Ψ, x ` σ2

E⇑
 ς2; Φ3

Φ1; Σ; Ψ ` Πx:σ1.σ2
E⇑
 Πx:ς1.ς2; Φ3

(Prod)
Φ1; Σ; Ψ ` ∆ E⇑

 M ; Φ2

Φ1; Σ; Ψ ` coeσ∆ E⇑
 M ; Φ2

(Coe)

Φ1; Σ; Ψ ` ∆ E⇑
 M ; Φ2

Φ1; Σ; Ψ ` ∆ () E
⇑
 M ; Φ2

(App1)
Φ1; Σ; Ψ ` ∆1 S

E⇑
 M ; Φ2 Φ2; Σ; Ψ ` ∆2

E⇑
 N ; Φ3

Φ1; Σ; Ψ ` ∆1 (S; ∆2) E
⇑
 M N ; Φ3

(App2)

Φ1; Σ; Ψ ` σ1
E⇑
 ς1; Φ2 Φ2; Σ; Ψ ` σ2

E⇑
 ς2; Φ3

Φ1; Σ; Ψ ` σ1 ∩ σ2
E⇑
 ς1 ∩ ς2; Φ3

(∩)
Φ1; Σ; Ψ ` σ1

E⇑
 ς1; Φ2 Φ2; Σ; Ψ ` σ2

E⇑
 ς2; Φ3

Φ1; Σ; Ψ ` σ1 ∪ σ2
E⇑
 ς1 ∪ ς2; Φ3

(∪)

Figure 6 Rules for E
⇑

Φ1; Σ; Ψ ` ∆ E⇑
 M2; Φ2

Φ2; Σ; Ψ `M1
?= M2

U
 Φ3

Φ1; Σ; Ψ `M1@∆ E⇓
 Φ3

(Default)

Φ1; Σ; Ψ `M@∆1
E⇓
 Φ2

Φ2; Σ; Ψ `M@∆2
E⇓
 Φ3

Φ1; Σ; Ψ `M@〈∆1,∆2〉
E⇓
 Φ3

(Spair)

Φ1; Σ; Ψ `M@∆ E⇓
 Φ2

Φ1; Σ; Ψ `M@pri ∆ E⇓
 Φ2

(Proj)
Φ1; Σ; Ψ ` σ E

⇑
 ς; Φ2 Φ2; Σ; Ψ `M@∆ E⇓

 ; Φ3

Φ1; Σ; Ψ `M@ini σ∆ E⇓
 Φ3

(Inj)

Φ1; Σ; Ψ ` σ E
⇑
 ς; Φ2 Φ2; Σ; Ψ ` ∆1

E⇑
 M1; Φ3 Φ3; Σ; Ψ, x := M1 `M@∆2

E⇓
 Φ4

Φ1; Σ; Ψ `M@let x:σ := ∆1 in ∆2
E⇓
 Φ4

(Let)

Φ1; Σ; Ψ ` ς =β Πx:ς1.ς2 Φ1; Σ; Ψ ` ς1@σ1
E⇓
 Φ2 Φ2; Σ; Ψ, x ` ς2@σ2

E⇓
 Φ3

Φ1; Σ; Ψ ` ς@Πx:σ1.σ2
E⇓
 Φ3

(Prod)

Φ1; Σ; Ψ `M1 =β λx.M2 Φ1; Σ; Ψ, x `M2@∆ E⇓
 Φ2

Φ1; Σ; Ψ `M1@λx:σ.∆ E⇓
 Φ2

(Abs)

Φ1; Σ; Ψ ` ς =β ς1 ∩ ς2 Φ1; Σ; Ψ ` ς1@σ1
E⇓
 Φ2 Φ2; Σ; Ψ ` ς2@σ2

E⇓
 Φ3

Φ1; Σ; Ψ ` ς@σ1 ∩ σ2
E⇓
 Φ3

(∩)

Φ1; Σ; Ψ ` ς =β ς1 ∪ ς2 Φ1; Σ; Ψ ` ς1@σ1
E⇓
 Φ2 Φ2; Σ; Ψ ` ς2@σ2

E⇓
 Φ3

Φ1; Σ; Ψ ` ς@σ1 ∪ σ2
E⇓
 Φ3

(∪)

Figure 7 Rules for E
⇓

2. the command asking b to be an axiom of type Type;
3. the command asking f to be an axiom of type a -> b.

FSCD 2020

XX:16 A Type Checker for a Logical Framework with Union and Intersection Types

The REPL tries to process the whole list. If there is a single failure while processing the
list of atomic commands, it backtracks so the whole commands fails without changing the
environment. These commands are similar to the vernacular Coq commands and are quite
intuitive. Here is the list of the REPL commands, along with their description:

Help. show this list of commands
Load "file". for loading a script file
Axiom term : type. define a constant or an axiom
Definition name [: type] := term. define a term
Print name. print the definition of name
Printall. print all the signature

(axioms and definitions)
Compute name. normalize name and print the result
Quit. quit

8 Future work

The current version of Bull [44] lacks of the following features that we plan to implement in
the next future.
1. Inductive types are the most important feature to add, in order to have a usable theorem

prover. We plan to take inspiration from the works of Paulin-Mohring [35]. This should
be reasonably feasible;

2. Mixing subtyping and unification is a difficult problem, especially with intersection and
union types. The most extensive research which has been done in this domain is the work
of Dudenhefner, Martens, and Rehof [17], where the authors study unification modulo
subtyping with intersection types (but no union). It would be challenging to find a
unification algorithm modulo subtyping for intersection and union types, but ideally it
would allow us to do some implicit coercions. Take for example the famous Pierce code
exploiting union and intersection types (full details in the Bull [44] distribution and in
Appendix A): it would be interesting for the user to use implicit coercions in this way:

Axiom (Neg Zero Pos T F : Type) (Test : Pos | Neg).
Axiom Is_0 : (Neg −> F) & (Zero −> T) & (Pos −> F).
Definition Is_0_Test : F := smatch Test with

x ⇒ coe _ Is_0 x
, x ⇒ coe _ Is_0 x
end.

The unification algorithm would then guess that the first wildcard should be replaced
with Pos -> F and the second one should be replaced with Neg -> F, which does not
seem feasible if the unification algorithm does not take subtyping into account;

3. Relevant arrow, as defined in [25], it could be useful to add more expressivity to our
system. Relevant implication allows for a natural introduction of subtyping, in that
A ⊃r B morally means A 6 B. Relevant implication amounts to a notion of “proof-reuse”.
Combining the remarks in [3, 2], minimal relevant implication, strong intersection and
strong union correspond respectively to the implication, conjunction and disjunction
operators of Meyer and Routley’s Minimal Relevant Logic B+ [32]. This could lead
to some implementation problem, because deciding β-equality for the essences in this
extended system would be undecidable;

4. A Tactic language, such as the one of Coq, should be useful. Currently Bull has no tactics:
conceiving such a language should be feasible in the medium term.

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull

Claude Stolze and Luigi Liquori XX:17

A Examples

This Appendix presents some examples in LF∆ along with their code in Bull, showing
a uniform approach to the encoding of a plethora of type disciplines and systems which
ultimately stem or can capitalize from strong proof-functional connectives and subtyping.
The framework LF∆ presented in [25], and its software incarnation Bull introduced in this
paper, are the first to accommodate all the examples and counterexamples that have appeared
in the literature. In what follows, we denote by λBDdL [2] the union and intersection type
assignment system à la Curry. Type inference of λBDdL is, of course, undecidable. We start
by showing the expressive power of LF∆ in encoding classical features of typing disciplines
with strong intersection and union. For these examples, we set Σ def= σ:Type, τ :Type.

Auto application. The judgment `λBDdL λx.x x : σ ∩ (σ → τ)→ τ in λBDdL, is rendered in
LF∆ by the LF∆ judgment `Σ λx:σ ∩ (σ → τ).(pr2 x) (pr1 x) : σ ∩ (σ → τ)→ τ .

Polymorphic identity. The judgment `λBDdL λx.x : (σ → σ) ∩ (τ → τ) in λBDdL, is
rendered in LF∆ by the judgment `Σ 〈λx:σ.x, λx:τ.x〉 : (σ → σ) ∩ (τ → τ).

Commutativity of union. The judgment `Σ λx.x : (σ∪ τ)→ (τ ∪σ) in λBDdL, is rendered
in LF∆ by the judgment `Σ λx:σ∪τ.[λy:σ.inτ2 y, λy:τ.inσ1 y]x : (σ ∪ τ)→ (τ ∪ σ).

The Bull code corresponding to these examples is the following:

Axiom (s t : Type).
Definition auto_application (x : s & (s −> t)) := (proj_r x) (proj_l x).
Definition poly_id : (s −> s) & (t −> t) := let id1 x := x in

let id2 x := x in < id1, id2 >.
Definition commut_union (x : s | t) := smatch x with

x : s ⇒ inj_r t x
, x : t ⇒ inj_l s x
end.

Pierce’s code [38]. It shows the great expressivity of union and intersection types:

Test def= if b then 1 else−1 : Pos ∪Neg
Is_0 : (Neg → F) ∩ (Zero→ T) ∩ (Pos→ F)

(Is_0 Test) : F

The expressive power of union types highlighted by Pierce is rendered in LF∆ by:

Neg : Type Zero : Type Pos : Type T : Type F : Type Test : Pos ∪Neg
Is_0 : (Neg → F) ∩ ((Zero→ T) ∩ (Pos→ F))

Is_0_Test def= [λx:Pos.(pr2 pr2 Is_0)x, λx:Neg.(pr1 Is_0)x]Test

The Bull code corresponding to this example is the following:

Axiom (Neg Zero Pos T F : Type) (Test : Pos | Neg).
Axiom Is_0 : (Neg −> F) & (Zero −> T) & (Pos −> F).
Definition Is_0_Test := smatch Test with

x ⇒ coe (Pos −> F) Is_0 x
, x ⇒ coe (Neg −> F) Is_0 x
end.

Hereditary Harrop formulæ. The encoding of Hereditary Harrop’s Formulæ is one of
the motivating examples given by Pfenning for introducing Refinement Types in LF [36, 30].

FSCD 2020

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull

XX:18 A Type Checker for a Logical Framework with Union and Intersection Types

Atomic propositions, non-atomic goals and non-atomic programs: α, γ0, π0 : Type
Goals and programs: γ = α ∪ γ0 π = α ∪ π0

Constructors (implication, conjunction, disjunction).
impl : (π → γ → γ0) ∩ (γ → π → π0)
impl1 = λx:π.λy:γ.inα2 (pr1 implx y) impl2 = λx:γ.λy:π.inα2 (pr2 implx y)
and : (γ → γ → γ0) ∩ (π → π → π0)
and1 = λx:γ.λy:γ.inα2 (pr1 andx y) and2 = λx:π.λy:π.inα2 (pr2 andx y)
or : (γ → γ → γ0) or1 = λx:γ.λy:γ.inα2 (or x y)
solve p g indicates that the judgment p ` g is valid.
bchain p a g indicates that, if p ` g is valid, then p ` a is valid.
solve : π → γ → Type bchain : π → α→ γ → Type
Rules for solve:
− : Π(p:π)(g1, g2:γ).solve p g1 → solve p g2 → solve p (and1 g1 g2)
− : Π(p:π)(g1, g2:γ).solve p g1 → solve p (or1 g1 g2)
− : Π(p:π)(g1, g2:γ).solve p g2 → solve p (or1 g1 g2)
− : Π(p1, p2:π)(g:γ).solve (and2 p1 p2) g → solve p1 (impl1 p2 g)
− : Π(p:π)(a:α)(g:γ).bchain p a g → solve p g → solve p (inγ0

1 a)
Rules for bchain:
− : Π(a:α)(g:γ).bchain (impl2 g (inπ0

1 a)) a g
− : Π(p1, p2:π)(a:α)(g:γ).bchain p1 a g → bchain (and2 p1 p2) a g
− : Π(p1, p2:π)(a:α)(g:γ).bchain p2 a g → bchain (and2 p1 p2) a g
− : Π(p:π)(a:α)(g, g1, g2:γ).bchain

(impl2 (and1 g1 g2) p) a g → bchain (impl2 g1 (impl2 g2 p)) a g
− : Π(p1, p2:π)(a:α)(g, g1:γ).bchain (impl2 g1 p1) a g → bchain

(impl2 g1 (and2 p1 p2)) a g
− : Π(p1, p2:π)(a:α)(g, g1:γ).bchain

(impl2 g1 p2) a g → bchain (impl2 g1 (and2 p1 p2)) a g

Figure 8 The LF∆ encoding of Hereditary Harrop Formulæ

In LF∆ it can be expressed as in Figure 8 and type checked in Bull, without any reference
to intersection types, by a subtle use of union types. We add also rules for solving and
backchaining. Hereditary Harrop formulæ can be recursively defined using two mutually
recursive syntactical objects called programs (π) and goals (γ):

γ := α | γ ∧ γ | π ⇒ γ | γ ∨ γ π := α | π ∧ π | γ ⇒ π

The Bull code is the following:

(* three base types: atomic propositions, non-atomic goals and non-atomic programs*)
Axiom atom : Type.
Axiom non_atomic_goal : Type.
Axiom non_atomic_prog : Type.

(* goals and programs are defined from the base types *)
Definition goal := atom | non_atomic_goal.
Definition prog := atom | non_atomic_prog.

(* constructors (implication, conjunction, disjunction) *)
Axiom impl : (prog −> goal −> non_atomic_goal) & (goal −> prog −> non_atomic_prog).
Definition impl_1 p g := inj_r atom (proj_l impl p g).
Definition impl_2 g p := inj_r atom (proj_r impl g p).
Axiom and : (goal −> goal −> non_atomic_goal) & (prog −> prog −> non_atomic_prog).
Definition and_1 g1 g2 := inj_r atom (proj_l and g1 g2).
Definition and_2 p1 p2 := inj_r atom (proj_r and p1 p2).
Axiom or : (goal −> goal −> non_atomic_goal).

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull

Claude Stolze and Luigi Liquori XX:19

Definition or_1 g1 g2 := inj_r atom (or g1 g2).

(* solve p g means: the judgment p |- g is valid *)
Axiom solve : prog −> goal −> Type.

(* backchain p a g means: if p |- g is valid, then p |- a is valid *)
Axiom backchain : prog −> atom −> goal −> Type.

(* rules for solve *)
Axiom solve_and : forall p g1 g2, solve p g1 −> solve p g2 −> solve p (and_1 g1 g2).
Axiom solve_or1 : forall p g1 g2, solve p g1 −> solve p (or_1 g1 g2).
Axiom solve_or2 : forall p g1 g2, solve p g2 −> solve p (or_1 g1 g2).
Axiom solve_impl : forall p1 p2 g, solve (and_2 p1 p2) g −> solve p1 (impl_1 p2 g).
Axiom solve_atom : forall p a g, backchain p a g −> solve p g −>

solve p (inj_l non_atomic_goal a).

(* rules for backchain *)
Axiom backchain_and1 :
forall p1 p2 a g, backchain p1 a g −> backchain (and_2 p1 p2) a g.

Axiom backchain_and2 :
forall p1 p2 a g, backchain p1 a g −> backchain (and_2 p1 p2) a g.

Axiom backchain_impl_atom :
forall a g, backchain (impl_2 g (inj_l non_atomic_prog a)) a g.

Axiom backchain_impl_impl :
forall p a g g1 g2, backchain (impl_2 (and_1 g1 g2) p) a g −>

backchain (impl_2 g1 (impl_2 g2 p)) a g.
Axiom backchain_impl_and1 :
forall p1 p2 a g g1, backchain (impl_2 g1 p1) a g −>

backchain (impl_2 g1 (and_2 p1 p2)) a g.
Axiom backchain_impl_and2 :
forall p1 p2 a g g1, backchain (impl_2 g1 p2) a g −>

backchain (impl_2 g1 (and_2 p1 p2)) a g.

Natural deductions in normal form. The second motivating example for intersection
types given in [36, 30] is natural deductions in normal form. A natural deduction is in normal
form if there are no applications of elimination rules of a logical connective immediately
following their corresponding introduction, in the main branch of a subderivation.

⊃I : ΠA,B:o.(Elim(A)→ Nf(B))→ Nf0(A ⊃ B) o : Type Elim,Nf0 : o→ Type ⊃: o→ o→ o

⊃E : ΠA,B:o.Elim(A ⊃ B)→ Nf0(A)→ Elim(B) Nf ≡ λA:o.Nf0(A) ∪ Elim(A)

The corresponding Bull code is the following:

Axiom (o : Type) (impl : o −> o −> o) (Elim Nf0 : o −> Type).
Definition Nf A := Nf0 A | Elim A.
Axiom impl_I : forall A B, (Elim A −> Nf B) −> (Nf0 (impl A B)).
Axiom impl_E : forall A B, Elim (impl A B) −> Nf0 A −> Elim B.

The encoding we give in LF∆ is a slightly improved version of the one in [36, 30]: as Pfenning,
we restrict to the purely implicational fragment. As in the previous example, we use union
types to define normal forms Nf(A) either as pure elimination-deductions from hypotheses
Elim(A) or normal form-deductions Nf0(A). This example is interesting in itself, being the
prototype of the encoding of type systems using canonical and atomic syntactic categories
[22] and also of Fitch Set Theory [24].

FSCD 2020

https://github.com/cstolze/Bull

XX:20 A Type Checker for a Logical Framework with Union and Intersection Types

Encoding of Edinburgh LF. A shallow encoding of LF [21] in LF∆ making essential use
of intersection types can be also type checked. Here we consider LF as defined with several
syntactical categories :

M ::= c | x | λx:σ.M |MM Objects K ::= ? | Πx:σ.K Kinds
σ ::= a | Πx:σ.σ | λx:σ.σ | σM Families S ::= � Superkind

We encode LF using Higher-Order Abstract Syntax (HOAS) [37, 13]. Moreover, using
intersection types, we can use the same axiom in order to encode both λ-abstractions on
objects and λ-abstractions on families, as well as a single axiom to encode both application
on objects and application on families, and a single axiom to encode both dependent products
on families and dependent products on kinds.

The typing rules, defined as axioms, have similar essence, it could be interesting to
investigate how to profit from these similarities for better encodings. We have decided to
explore two different approaches:

for the typing rules, we chose to define distinct axioms of_1, of_2, and of_3 of different
precise types. We have not found a way for these axioms to share the same essence, so we
have to write different (but very similar) rules for each of these different typing judgment;
for equality, we chose to define a single axiom eq : (obj | fam) −> (obj | fam) −> Type. The
type of this axiom is not very precise (it implies we could compare objects and families),
but we can factorize equality rules with the same shape, e.g. the rule beta_eq define
equalities between a β-redex and its contractum, both on objects and on families.

The corresponding Bull code is the following:

Axiom obj’ : Type.
Axiom fam’ : Type.
Axiom knd’ : Type.
Axiom sup’ : Type.
Axiom same : (obj’ & fam’ & knd’ & sup’).
Axiom term : (obj’ | fam’ | knd’ | sup’) −> Type.

(* obj, fam, knd, and sup are different terms *)
(* but their essence is always (term same) *)
Definition obj := term (coe (obj’ | fam’ | knd’ | sup’) (coe obj’ same)).
Definition fam := term (coe (obj’ | fam’ | knd’ | sup’) (coe fam’ same)).
Definition knd := term (coe (obj’ | fam’ | knd’ | sup’) (coe knd’ same)).
Definition sup := term (coe (obj’ | fam’ | knd’ | sup’) (coe sup’ same)).

(* Syntax *)
Axiom star : knd.
Axiom sqre : sup.
Axiom lam : (fam −> (obj −> obj) −> obj) & (fam −> (obj −> fam) −> fam).
Definition lam_obj := coe (fam −> (obj −> obj) −> obj) lam.
Definition lam_fam := coe (fam −> (obj −> fam) −> fam) lam.
Axiom pi : (fam −> (obj −> fam) −> fam) & (fam −> (obj −> knd) −> knd).
Definition pi_fam := coe (fam −> (obj −> fam) −> fam) pi.
Definition pi_knd := coe (fam −> (obj −> knd) −> knd) pi.
Axiom app : (obj −> obj −> obj) & (fam −> obj −> fam).
Definition app_obj := coe (obj −> obj −> obj) app.
Definition app_fam := coe (fam −> obj −> fam) app.

(* Typing rules *)
Axiom of_1 : obj −> fam −> Type.

https://github.com/cstolze/Bull

Claude Stolze and Luigi Liquori XX:21

Axiom of_2 : fam −> knd −> Type.
Axiom of_3 : knd −> sup −> Type.
Axiom of_ax : of_3 star sqre.

(* Rules for lambda-abstraction are "essentially" the same *)
Definition of_lam_obj := forall t1 t2 t3, of_2 t1 star −>

(forall x, of_1 x t1 −> of_1 (t2 x) (t3 x)) −> of_1 (lam_obj t1 t2) (pi_fam t1 t3).
Definition of_lam_fam := forall t1 t2 t3, of_2 t1 star −>

(forall x, of_1 x t1 −> of_2 (t2 x) (t3 x)) −> of_2 (lam_fam t1 t2) (pi_knd t1 t3).
(* Rules for product are ’’essentially’’ the same *)
Definition of_pi_fam := forall t1 t2, of_2 t1 star −>
(forall x, of_1 x t1 −> of_2 (t2 x) star) −> of_2 (pi_fam t1 t2) star.

Definition of_pi_knd := forall t1 t2, of_2 t1 star −>
(forall x, of_1 x t1 −> of_3 (t2 x) sqre) −> of_3 (pi_knd t1 t2) sqre.

(* Rules for application are ’’essentially’’ the same *)
Definition of_app_obj := forall t1 t2 t3 t4, of_1 t1 (pi_fam t3 t4) −>
of_1 t2 t3 −> of_1 (app_obj t1 t2) (t4 t2).

Definition of_app_fam := forall t1 t2 t3 t4, of_2 t1 (pi_knd t3 t4) −>
of_1 t2 t3 −> of_2 (app_fam t1 t2) (t4 t2).

(* equality *)
Axiom eq : (obj | fam) −> (obj | fam) −> Type.
Definition c_obj (x : obj) := coe (obj | fam) x.
Definition c_fam (x : fam) := coe (obj | fam) x.
Axiom beta_eq : forall t1 f g,

smatch f with
(* object *)

f ⇒ eq (c_obj (app_obj (lam_obj t1 f) g)) (c_obj (f g))
(* family *)
, f ⇒ eq (c_fam (app_fam (lam_fam t1 f) g)) (c_fam (f g))
end.

Axiom lam_eq : forall t1 t2 f,
eq (c_fam t1) (c_fam t2) −>
smatch f with
(* object *)

f ⇒ forall g, (forall x, eq (c_obj (f x)) (c_obj (g x))) −>
eq (c_obj (lam_obj t1 f)) (c_obj (lam_obj t2 f))

(* family *)
, f ⇒ forall g, (forall x, eq (c_fam (f x)) (c_fam (g x))) −>

eq (c_fam (lam_fam t1 f)) (c_fam (lam_fam t2 f))
end.

Axiom app_eq : forall n1 n2 m1,
eq (c_obj n1) (c_obj n2) −>
smatch m1 with
(* object *)

m1 ⇒ forall m2, eq (c_obj m1) (c_obj m2) −>
eq (c_obj (app_obj m1 n1)) (c_obj (app_obj m2 n2))

(* family *)
, m1 ⇒ forall m2, eq (c_fam m1) (c_fam m2) −>

eq (c_fam (app_fam m1 n1)) (c_fam (app_fam m2 n2))
end.

Axiom pi_eq : forall m1 m2 n1 n2,
eq (c_fam m1) (c_fam m2) −>
(forall x, eq (c_fam (n1 x)) (c_fam (n2 x))) −>
eq (c_fam (pi_fam m1 n1)) (c_fam (pi_fam m2 n2)).

FSCD 2020

XX:22 A Type Checker for a Logical Framework with Union and Intersection Types

References
1 Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. A bi-directional

refinement algorithm for the calculus of (co)inductive constructions. Logical Methods in
Computer Science, 8(1), 2012.

2 Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Intersection and
union types: syntax and semantics. Information and Computation, 119(2):202–230, 1995.

3 Franco Barbanera and Simone Martini. Proof-functional connectives and realizability. Archive
for Mathematical Logic, 33:189–211, 1994.

4 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

5 Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types. Cambridge
University Press, 2013.

6 Stefano Berardi. Type dependence and Constructive Mathematics. PhD thesis, University of
Turin, 1990.

7 Jan Bessai, Jakob Rehof, and Boris Düdder. Fast verified BCD subtyping. In Models, Mindsets,
Meta: The What, the How, and the Why Not? - Essays Dedicated to Bernhard Steffen on the
Occasion of His 60th Birthday, volume 11200 of Lecture Notes in Computer Science, pages
356–371. Springer, 2018.

8 Olivier Boite. Proof reuse with extended inductive types. In Theorem Proving in Higher Order
Logics (TPHOLs), pages 50–65, 2004.

9 Viviana Bono, Betti Venneri, and Lorenzo Bettini. A typed lambda calculus with intersection
types. Theoretical Computer Science, 398(1-3):95–113, 2008.

10 Beatrice Capitani, Michele Loreti, and Betti Venneri. Hyperformulae, Parallel Deductions and
Intersection Types. Electronic Notes in Theoretical Computer Science, 50(2):180–198, 2001.

11 Joshua E. Caplan and Mehdi T. Harandi. A logical framework for software proof reuse. In
Symposium on Software Reusability (SSR), pages 106–113, 1995.

12 Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of Logic and Computation,
13(5):639–688, 2003.

13 Joëlle Despeyroux, Amy P. Felty, and André Hirschowitz. Higher-order abstract syntax in
coq. In Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin, editors, Typed Lambda Calculi
and Applications, TLCA, volume 902 of Lecture Notes in Computer Science, pages 124–138.
Springer, 1995.

14 Roberto Di Cosmo. Isomorphisms of types: from λ-calculus to information retrieval and
language design. Birkhauser, 1995.

15 Daniel J. Dougherty, Ugo de’Liguoro, Luigi Liquori, and Claude Stolze. A realizability
interpretation for intersection and union types. In Asian Symposium on Programming Languages
and Systems (APLAS), volume 10017 of Lecture Notes in Computer Science, pages 187–205.
Springer-Verlag, 2016.

16 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher order unification via explicit
substitutions. Information and Computation, 157(1-2):183–235, 2000.

17 Andrej Dudenhefner, Moritz Martens, and Jakob Rehof. The intersection type unification
problem. In Formal Structures for Computation and Deduction (FSCD), pages 19:1–19:16.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

18 Andrej Dudenhefner and Paweł Urzyczyn. Kripke semantics for intersection formulas. Tenth
Workshop on Intersection Types and Related Systems, 2020.

19 Thomas Ehrhard. Non-idempotent intersection types in logical form. In Foundations of
Software Science and Computation Structures (FOSSACS/ETAPS), volume 12077 of Lecture
Notes in Computer Science, pages 198–216. Springer, 2020.

Claude Stolze and Luigi Liquori XX:23

20 Amy Felty and Douglas J. Howe. Generalization and reuse of tactic proofs. In Logic
Programming and Automated Reasoning (LPAR), pages 1–15, 1994.

21 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, 1993.

22 Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. Journal
of Functional Programming, 17(4–5):613–673, July 2007.

23 J. Roger Hindley. The simple semantics for Coppo-Dezani-Sallé types. In International
Symposium on Programming, pages 212–226, 1982.

24 Furio Honsell, Marina Lenisa, Luigi Liquori, and Ivan Scagnetto. Implementing Cantor’s
paradise. In Asian Symposium on Programming Languages and Systems (APLAS), pages
229–250, 2016.

25 Furio Honsell, Luigi Liquori, Claude Stolze, and Ivan Scagnetto. The Delta-framework. In
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
37:1–37:21, 2018.

26 Gérard Huet. A unification algorithm for typed lambda-calculus. Theoretical Computer
Science, 1(1):27–57, 1975.

27 Luigi Liquori and Claude Stolze. A decidable subtyping logic for intersection and union
types. In Topics In Theoretical Computer Science (TTCS), volume 10608 of Lecture Notes in
Computer Science, pages 74–90. Springer-Verlag, 2017.

28 Luigi Liquori and Claude Stolze. The Delta-calculus: Syntax and types. In Formal Structures
for Computation and Deduction (FSCD), pages 28:1–28:20. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

29 Edgar G. K. López-Escobar. Proof functional connectives. In Methods in Mathematical Logic,
volume 1130 of Lecture Notes in Mathematics, pages 208–221. Springer-Verlag, 1985.

30 William Lovas and Frank Pfenning. Refinement types for logical frameworks and their
interpretation as proof irrelevance. Logical Methods in Computer Science, 6(4), 2010.

31 David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive polymorphic
types. Information and Control, 71(1/2):95–130, 1986.

32 Robert K. Meyer and Richard Routley. Algebraic analysis of entailment I. Logique et Analyse,
15:407–428, 1972.

33 Grigori Mints. The completeness of provable realizability. Notre Dame Journal of Formal
Logic, 30(3):420–441, 1989.

34 Alexandre Miquel. The implicit calculus of constructions. In Typed Lambda Calculi and
Applications (TLCA), pages 344–359. Springer-Verlag, 2001.

35 Christine Paulin-Mohring. Inductive definitions in the system coq rules and properties. In
Typed Lambda Calculi and Applications (TLCA), pages 328–345. Springer, 1993.

36 Frank Pfenning. Refinement types for logical frameworks. In TYPES, pages 285–299, 1993.
37 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In ACM SIGPLAN Notices,

volume 23(7), pages 199–208. ACM, 1988.
38 Benjamin C. Pierce. Programming with intersection types, union types, and bounded

polymorphism. PhD thesis, Technical Report CMU-CS-91-205. Carnegie Mellon University,
1991.

39 Elaine Pimentel, Simona Ronchi Della Rocca, and Luca Roversi. Intersection types from a
proof-theoretic perspective. Fundamenta Informaticae, 121(1-4):253–274, 2012.

40 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. In To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 561–577. Academic
Press, 1980.

41 Jason Reed. Higher-order constraint simplification in dependent type theory. In Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP), pages 49–56. ACM, 2009.

42 Simona Ronchi Della Rocca and Luca Roversi. Intersection logic. In Computer Science Logic
(CSL), volume 2142 of Lecture Notes in Computer Science, pages 421–428. Springer-Verlag,
2001.

FSCD 2020

XX:24 A Type Checker for a Logical Framework with Union and Intersection Types

43 Claude Stolze. Combining union, intersection and dependent types in an explicitly typed
lambda-calculus. PhD thesis, Université Côte d’Azur, Inria, 2019.

44 Claude Stolze. Bull. https://github.com/cstolze/Bull, 2020.
45 Claude Stolze, Luigi Liquori, Furio Honsell, and Ivan Scagnetto. Towards a logical framework

with intersection and union types. In Logical Frameworks and Meta-languages: Theory and
Practice (LFMTP), pages 1–9, 2017.

46 Pawel Urzyczyn. Type reconstruction in fomega. Mathematical Structures in Computer
Science, 7(4):329–358, 1997.

47 Betti Venneri. Intersection types as logical formulae. Journal of Logic and Computation,
4(2):109–124, 1994.

48 Beta Ziliani and Matthieu Sozeau. A unification algorithm for Coq featuring universe
polymorphism and overloading. In ACM SIGPLAN Notices, volume 50(9), pages 179–191.
ACM, 2015.

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull

	Introduction
	Syntax of terms
	Concrete syntax
	Implementation of the syntax
	Environments
	Suspended substitution

	The evaluator of blue Bull
	Reduction rules
	Implementation

	The subtyping algorithm of blue Bull
	The unification algorithm of blue Bull
	The refinement algorithm of blue Bull
	The Read-Eval-Print-Loop of blue Bull
	Future work
	Examples

