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In concrete structures, opened cracks contribute significantly to the transfer of shear and normal stresses through the contact forces occurring between fractured surfaces. Such contact forces are due to protruding asperities, engaged by interlocking and friction. In this paper, the role played by roughness on shear resistance is investigated numerically. First, micro-CT and digital microscope measures of concrete surfaces are used to validate a novel numerical generator of faithful cracked concrete surfaces. Secondly, a contact solver based on the boundary integral approach allows an extremely fine description of typical cracked surface topologies. Roughness changes drastically the predictions, so that the shear resistence computed numerically matches the prior experimental results of Jacobsen. The presented model does not need any fitting procedure, making it a reliable and physically-based model for shear transfer phenomena in concrete.

Introduction

The topography of solid surfaces and its characteristics are of great importance for interfacial phenomena such as contact, friction and wear. One such situation where contacting interfaces are of great importance is for the study of concrete structures presenting cracks, which appear way before the structural failure. Such cracks are assumed to initiate under pure Mode I loading and once initiated, they can undergo both normal opening as well as tangent sliding i.e. mixed mode. The local sliding of a fully developed crack leads to contact between its surface lips and to interfacial transfer of stress. This effect mitigates the stress concentrations at crack tips, and can therefore reduce evolution of cracks, resulting in an increase of the shear-carrying capacity of concrete structures. The understanding of the contact occurring between cracks in concrete is thus crucial to determine the strength of a concrete structure. Over the years, numerous studies have been conducted to either experimentally investigate the behavior of a single crack in concrete specimens [START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF][START_REF] Østergaard | Biaxial Testing Machine for Mixed Mode Cracking of Concrete (Mode I)[END_REF][START_REF] Carpinteri | Fracture behaviour of plain and fiber-reinforced concrete with different water content under mixed mode loading[END_REF][START_REF] Tirassa | Modern experimental research techniques for a consistent understanding of aggregate interlocking[END_REF] or to develop analytical approaches capable of predicting experimental observations [START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF][START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF][START_REF] Gambarova | A new approach to the analysis of the confinement role in regularly cracking concrete elements[END_REF][START_REF] Dei Poli | Aggregate Interlock Role in R.C. ThinWebbed Beams in Shear[END_REF][START_REF] Vecchio | The modified compression-field theory for reinforced concrete elements subjected to shear[END_REF][START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF][START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF][START_REF] Calvi | Pure Mechanics Crack Model for Shear Stress Transfer in Cracked Reinforced Concrete[END_REF]. These approaches allowed to calculate the interface forces from the mechanical parameters of concrete. In these, the topography of cracks were simplified to a 1D profile in order to derive a simple analytical expression. Walraven [START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF] simplified the crack profile as a flat profile with protruding circular aggregates whereas Li et al. [START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF] simplified it by expressing the distribution of profile slopes ρ(θ) as a cosine function 1 2 cos θ. Later, Bujadham et al. [START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF] provided a distribution for high strength concrete as the normal distribution 5 6 exp(-21 • θ 2 /π 2 ). Irrespective of the profile considered both approaches predict eventually the shear resisting force F R with a model acknowledging the force per contact patch [START_REF] Pundir | Review of fundamental assumptions of the Two-Phase model for aggregate interlocking in cracked concrete using numerical methods and experimental evidence[END_REF] complemented by a stochastic description of surface profiles.

The topography of a crack in concrete is undoubtedly affected by the presence of aggregates: cracks propagate mainly where the strength is lower, i.e. within the interfacial transition zone (ITZ) [START_REF] Scrivener | The Interfacial Transition Zone ( ITZ ) Between Cement Paste and Aggregate[END_REF]. Therefore, fracture occurs majorly through the matrix and in the periphery of aggregates: the shape, the size and the distribution of the aggregates strongly influence cracked surfaces.

However, numerous studies have shown that cracked surfaces are inherently rough and possess selfaffinity characteristics [START_REF] Thomas | Rough Surfaces[END_REF][START_REF] Persson | On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion[END_REF], usually characterized by a power law behavior of the height-height correlation function. Cracks in concrete also possess such characteristics, as confirmed by digital microscope measurements (see Section 2). Therefore, both self-affinity of rough surfaces and distribution of aggregates need to be taken into consideration to obtain an accurate representation of crack profiles in concrete. The aim of this paper is to study the role played by roughness, and to allow accurate predictions of the shear resistance by including representative surface profiles in numerical and semi-analytical models.

This paper starts in Section 2 by characterizing the topography of cracks in concrete. This is done by analyzing the so-called Hurst exponent [START_REF] Persson | On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion[END_REF][START_REF] Yastrebov | From infinitesimal to full contact between rough surfaces: Evolution of the contact area[END_REF] of cracked surfaces as well as the distribution of aggregates along a section of an actual concrete sample. Experimental results obtained by micro-CT and digital microscope are first compared with analytical predictions from the literature [START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF][START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF][START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF]. In Section 3 we propose a methodology to numerically generate rough surfaces in concrete while prescribing several important characteristics of real concrete surfaces, leading to representative concrete surfaces. In Section 4 we describe the mathematical formulation necessary for determining the shear resistance, by starting from first principles. In Section 5, the effect of roughness on shear resistance is investigated numerically by using an elasto-plastic contact solver based on the boundary integral approach. The artificial rough surfaces synthesized from the methodology proposed in Section 3 are sheared by imposing a relative displacement. The effect of roughness on the true contact area as well as on the contact forces is demonstrated thanks to a fine discretization of the surface. The statistical expectation of shear resistance for mixed-mode loading is computed and analyzed for various loading kinematics. A simple analytical formula is shown to reproduce the numerical results, opening the path to use a traction separation law in larger scale finite element simulations. Finally, Section 6 confirms the importance played by surface topography: the experimental results of Jacobsen et. al [START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF] show that the shear stress, as a function of the sliding distance, always presents a peak value followed by a decay, which was shown to be the consequence of small scale roughness. The origins and possible solutions for the small bias between our numerical predictions and experiments are discussed.

All the data and the codes used in this paper are available on Zenodo [START_REF] Pundir | Supplementary data to 'Numerical generation and contact analysis of rough surfaces in concrete[END_REF]. 

Symbol

Characterization of cracks in concrete

The topology of cracks in concrete needs to be characterized in order to devise accurate numerical models. Since concrete is a heterogeneous material, made of aggregates and mortar, the position of the aggregates visible from the surface/profile needs to be identified. The visible part of an aggregate can be smaller than its total volume, which makes surface properties different from bulk ones. The diameter of visible aggregates can be described with a cumulative density function C(d) of surface-projected diameters d. Such a function can be theoretically extracted from a granulometric probability distribution together with the aggregate volume density, for instance by using the developments of Walraven [START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF]. The arrangement of the aggregates at the surface can also be described with the radial distribution function g(r) [START_REF] Chandler | [END_REF][START_REF] Jerier | Packing spherical discrete elements for large scale simulations[END_REF], which represents the deviation from a homogeneous and continuous density of aggregates. This function usually presents peaks at the most occurring distances between aggregates, thus giving a global view on the distances separating aggregates. In this work, C(d) and g(r) are used as signatures of the placement of visible aggregates.

On the other hand, the height profile of a concrete crack surface is rough, which is known to have remarkable fractal properties. Self-affinity is a property that can be quantified with indicators such as the so-called Hurst exponent, by assuming that the surface height-height correlation follows a power law:

R(δx) = h(x + δx)h(x)dx ∼ Λ(δx) 2H
where h is the height profile, Λ is a scalar (depends on magnitude of heights) and H is the Hurst exponent, with 0 < H < 1 for usual self-affine surfaces. The WienerKhinchin proves that the power spectral density follows a power law. In real surfaces this decay only holds within a spectral range:

Φ(q) ∼ Λ|q| -2H-D ∀q ∈ [q min , q max ]
with D = 1 for a profile [START_REF] Milanese | Emergence of self-affine surfaces during adhesive wear[END_REF] and D = 2 for a surface [START_REF] Persson | On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion[END_REF]21]. The use of Discrete Fourier Transforms is therefore a notorious method to extract Hurst exponents from experimental and numerical surfaces [START_REF] Jacobs | Quantitative characterization of surface topography using spectral analysis[END_REF]. The Hurst exponent, the spectral range [q min , q max ] and the constant Λ describe together the magnitude of waves in a surface. From Λ, H and q max , one can deduce the root-mean-square of slopes, defined as (∇h 2 ) 1/2 , where • is the surface average operator. It is widely used when considering flat-on-rough systems in linear elasticity conditions to predict that the applied pressure P and the contact area A are linked by:

A A 0 ∼ P E(∇h 2 ) 1/2 ,
where A 0 is the nominal contact area and E is the effective Young's modulus [START_REF] Persson | On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion[END_REF][START_REF] Johnson | Contact Mechanics[END_REF][START_REF] Hyun | Finite-element analysis of contact between elastic self-affine surfaces[END_REF][START_REF] Campañá | Contact mechanics of real vs. randomly rough surfaces: A Green's function molecular dynamics study[END_REF].

The root-mean-square of slopes is therefore a characterizing scalar with a particular importance to contact mechanics. In this work, H and (∇h 2 ) 1/2 are used as signatures for the roughness of surfaces.

In the following, several cracked surfaces will be analyzed. Surfaces extracted from real concrete samples as well the theoretical profiles proposed by Walraven [START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF], Li et. al. [START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF] and Bujadham et. al. [START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF] will be considered. Deviations of current analytical models will be demonstrated. Then profiles generated with a novel algorithm will be shown to match the surface signatures of real specimens.

Experimental samples

The real concrete sample presented in Figure 1 is one of the four post-mortem specimens that have been studied. All were casted with aggregates having diameters in the range d ∈ [0.063-8] mm and with the mix properties reported in Table 2. Several sieves were used to select the aggregates so that the granulometric probability curve, P (d), follows as much as possible the theoretical Fuller's distribution [START_REF] Fuller | The Laws of Proportioning Concrete[END_REF] (the desired distribution is shown in Figure 2), which is a typical requirement for concrete casting. The concrete samples have been loaded under mixed-mode kinematics: initially in Mode-I and then with an imposed mixed displacement (normal and tangential) at a constant loading angle. Each specimen was loaded with a different loading angle. Under these conditions, a primary crack developed and propagated, leading to the creation of a rough surface (for further details refer to [START_REF] Tirassa | Modern experimental research techniques for a consistent understanding of aggregate interlocking[END_REF]). The surfaces thus created have been scanned using a digital microscope to measure the surface elevation, i.e. h(x, y). Figure 3 shows the scan of one of such surface.

Figure 10 shows the power spectral density of h(x, y), which decays as a power-law matching a Hurst exponent of H = 0.8 ± 0.05. This is consistent with [START_REF] Balankin | Intrinsically anomalous roughness of admissible crack traces in concrete[END_REF] where a measure performed on rough concrete profiles reported 0.7 < H < 0.8. This suggests that Hurst exponents are depending only on local fracturing processes, and are therefore rather independent of loading kinematics (i.e. loading angle). The root-mean-square of slopes for the rough surfaces presented in Figure 3 are all within the range (∇h 2 ) 2) under mixed-mode loading. The surface is scanned using a digital microscope.

In order to characterize the placement of aggregates on surfaces, one of the samples presented earlier has been scanned using micro-computed Tomography [START_REF]PIXE Platform for X-ray micro-tomography[END_REF]. By assuming a straight crack cutting through the sample (and aggregates), one can use micro-CT slices to extract C(d) and g(r). Figure 4 shows, for a given height, the sliced image extracted from the micro-CT scan. Several slices have been analyzed to compute the cumulative density of aggregate surface-diameters and the radial distribution function. To this end, each pixel belonging to an aggregate is segregated from the pixels in matrix or voids, with the Training Weka Segmentation plugin [START_REF] Arganda-Carreras | Trainable Weka Segmentation : a machine learning tool for microscopy pixel classification[END_REF] of the Fiji software [START_REF] Schindelin | Fiji : an open-source platform for biological-image analysis[END_REF]. Figure 5 shows the result of a segmentation. As a consequence of the segregation process, tiny aggregates with visible areas smaller than 0.02 mm 2 have been excluded (the equivalent cutoff diameter is 2 0.02/π = 0.16 mm). Since the aggregates have irregular shapes far from being circles (see Figure 6) the diameter of an aggregate is approximated as the largest side-length of its bounding box.

Figure 7 shows the obtained cumulative density of aggregate surface-diameters averaged over 100 micro-CT images (sliced at different heights) issued from the same concrete sample. The Figure 8 shows the obtained radial distribution function averaged over 100 micro-CT images (sliced at different heights). The peak value in g(r) corresponds to the most probable distance between aggregates which is 0.83 mm for these micro-CT scanned surfaces. As expected it is comparable with the average surface-diameter (0.86 mm). A bias in the measure of both C(d) and g(r) is expected for small values of d and r since we do not account for the tiniest aggregates during 

Analytical models and surface profiles

In this section, several analytical models are studied for the surface and bulk signatures presented earlier. In [START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF], Walraven derives the distribution of aggregate diameters from the Fuller's grading curve and with the assumption that the aggregates are spherical in shape. As shown in Figure 7, Walraven's model parameterized with a maximal aggregate diameter d max = 8mm leads to a cumulative density function C(d) which strongly differs from the one obtained in Section 2.1. It is possible that such a strong bias is introduced when the smallest aggregates are neglected during image analysis. However, it should not impact the distribution for diameters much larger than 0.16 mm.

The radial distribution function is not well defined for these models. Walraven's model consider the placement of aggregates as a purely random process, without a constraint for an average distance between aggregates. To the best of our knowledge, this leads to a constant average density of aggregates, and therefore g(r) = 1 uniformly. On the other hand, the models based on a slope distribution function [START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF][START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF] consider a unique material phase, making it impossible to distinguish mortar from aggregate, and thus to derive a relation for g(r).

Concerning the surface roughness, the assumptions of Walraven [START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF] (flat surface with spherical bumps and holes), Li and Bujadham [START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF][START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF] (a random walk constrained to a statistical slope distribution) lead to distinct profiles. Figure 9 shows such theoretical crack profiles, generated based on these models assumptions. The power spectral densities and the Hurst exponents for such analytical crack profiles are shown in Figure 10. Walraven's kind has H > 1.0 suggesting that it is not self-affine. The profiles of Li [START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF] and Bujadham [START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF] have a too rough H ≈ 0.3, irrespectively of the considered slope distribution. This suggests that surfaces representative of a crack profile roughness cannot be obtained by adjusting the slope distribution. [START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF] (H = 1.4), Li et al [START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF] (H = 0.3), Bujadham et al [START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF] (H = 0.3) and also for an actual concrete surface (2D) (H = 0.8). For profile H is computed from slope α as α = -2H -1 and for surface H is computed as α = -2H -2

(i) (ii) (iii)
In this perspective, none of the available analytical models consider crack profiles matching actual concrete surfaces. Next section presents a novel methodology to numerically generate cracked concrete surfaces, which respect aggregate placement as well as self-affinity roughness.

Numerical generation of rough surfaces in concrete

In numerical works previously issued in the literature [START_REF] Wriggers | Mesoscale models for concrete: Homogenisation and damage behaviour[END_REF][START_REF] Grassl | Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension[END_REF][START_REF] Ylmaz | A mesoscale fracture model for concrete[END_REF], a concrete sample is generally modeled as a random packing of aggregates, which allows to simulate mechanical behaviors after a proper meshing. Usually, gravel aggregates, which have rather smooth surfaces, are modeled as perfect spheres while crushed rock aggregates are modeled with arbitrary shaped polyhedrons. In a packing, the size distribution of aggregates is typically required to follow a granulometric curve such as Fuller's [START_REF] Fuller | The Laws of Proportioning Concrete[END_REF], so as to match an actual concrete casting. For the present study, the take-and-place algorithm as proposed by Wriggers et al [START_REF] Wriggers | Mesoscale models for concrete: Homogenisation and damage behaviour[END_REF][START_REF] Wittmann | Simulation and analysis of composite structures[END_REF][START_REF] Wang | Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh[END_REF] is employed to numerically generate concrete packings. The aggregates are progressively placed inside a box such that there is no overlap with already introduced aggregates. New aggregates are introduced until a targeted packing density, i.e. the aggregate volume ratio ρ, is reached. Figure 11 shows a numerically generated concrete sample with dimensions 50×50×50 mm 3 .

In real concrete, aggregates usually occupy 60% -80% of the total volume. However it is computationally difficult to achieve a packing with such densities. To overcome this, other authors considered coarse aggregates only (d > 4.75 mm) which led to packing densities around 40% [START_REF] Wriggers | Mesoscale models for concrete: Homogenisation and damage behaviour[END_REF][START_REF] Grassl | Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension[END_REF][START_REF] Ylmaz | A mesoscale fracture model for concrete[END_REF][START_REF] Gatuingt | Numerical determination of the tensile response and the dissipated fracture energy of concrete: role of the mesostructure and influenceof the loading rate[END_REF]. In this work we want to model the concrete sample studied in Section 2.1 for which aggregates have been identified to be in the range d ∈ [0.063, 8]mm. Modeling only aggregates above d = 4.75 mm greatly influences the granulometric curve, as shown in Figure 2. Signatures issued from the distribution of visible aggregates, i.e. C(d) and g(r), will also be impacted (see Figure 7 and Figure 8). Selecting aggregates satisfying d > 0.3 mm allowed to reach a packing density of 50% and a reduced mismatch of the granulometric curve, even if the real minimum aggregate size is d min = 0.063 mm. Nevertheless, it will be shown, later in this section, that this approximation does not affect significantly the surface signatures C(d) and g(r). Once a packing is generated, the procedure to generate a crack plane continues by cutting it at a given (random) height and by passing aggregates either beneath or underneath (depending on the height at which a spherical aggregate is cut). This assumes that ITZ is the weakest region in concrete. Figure 12 shows one such surface generated from the concrete packing of Figure 11. The power spectral density for the generated surface is shown in Figure 15. While it decays as a power-law, the corresponding Hurst exponent verifies H > 1, showing that the surface generated by cutting the aggregate packing does not match the value of H observed for real concrete surfaces (see Section 2.1).

In order to generate a surface with the desired H, a Fourier based filtering algorithm [START_REF] Hu | Simulation of 3-D random rough surface by 2-D digital filter and fourier analysis[END_REF] can be employed to numerically generate a self-affine surface. With such an algorithm, it is possible to choose both the Hurst exponent H and the root-mean-square of slopes. Figure 13 shows such a numerically generated self-affine rough surface for H = 0.8 and (∇h 2 ) 1/2 = 0.1. However, such surfaces do not have the holes and bumps typical of cracks breaking through the ITZ regions. Combining the surfaces extracted while cutting a concrete packing with purely fractal surfaces will allow to numerically generate self-affine rough surfaces acknowledging the placement of aggregates. Hence, a surface generated from the aggregate packing can be super-imposed to a self-affine surface generated for a given spectrum (q min = L/λ max , q max = L/λ min ) as shown in Figure 14. While generating the self-affine rough surface, the Hurst exponent and the root-mean-square of slopes (keeping the spectrum fixed) can be optimized to obtain a super-imposed surface with H = 0.8. Algorithm 1 summarizes the methodology to numerically generate rough surfaces in concrete.

Figure 14 shows an artificial concrete surface generated from the proposed algorithm. The input surface S is cut from an artificial concrete sample (ρ = 50%, d = [0.3 -8] mm see Figure 11) and has a Hurst exponent H ≈ 1.2. S is added to the optimal self-affine rough surface S af f ine , which is generated within the fixed spectral range q ∈ [2, 1024]. The Nelder-Mead simplex algorithm [START_REF] Nelder | A Simplex Method for Function Minimization[END_REF] available as a Python package [START_REF] Virtanen | Contributors, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF] was used to find the optimum H = 0.7 and (∇h 2 ) 1/2 = 1.3. The output surface verifies H = 0.8 ± 0.01. Figure 15 shows the power spectral density computed for a super-imposed surface. As can be seen, the power spectral density follows a power-law with an exponent leading to H ≈ 0.8.

Algorithm 1 Algorithm for generating rough surfaces in concrete

1: Input ρ, D, H target , q min , q max and N ρ is the aggregate volume ratio D ∈ [d max , d min ] is the aggregate diameter distribution. H target is the desired Hurst exponent The self-affine spectral range is q ∈ [q min , q max ] N 2 is the total number of points in the square surface to generate 2: Generate packing P = F(ρ, D) F is the packing algorithm [START_REF] Wriggers | Mesoscale models for concrete: Homogenisation and damage behaviour[END_REF] 3: Generate a discrete surface S by cutting through the packing P 4: Find the optimal Hurst exponent (H) and root-mean-square of slopes (∇h 2 ) 1/2 arg min

H∈[0,1] (∇h 2 ) 1/2 ∈R Φ(H, (∇h 2 ) 1/2 ) = H(S + S affine (H, (∇h 2 ) 1/2 )) -H target 2
S affine is generated with algorithm [START_REF] Hu | Simulation of 3-D random rough surface by 2-D digital filter and fourier analysis[END_REF] with excited modes within [q min , q max ] H uses Fast Fourier Transform and log-log regression in [q min , q max ] to return Hurst As mentioned earlier, along with the Hurst exponent, the root-mean-square of slopes can be used as a signature for the surface roughness. The table below shows (∇h 2 ) 1/2 averaged over 100 artificial surfaces, which proves to be in reasonable agreement with the values of actual concrete surfaces.

Artificial concrete surface Actual concrete surface (∇h 2 ) 1/2

1.61 ± 0.06 1.16 ± 0.19

To characterize the distribution of aggregates, the cumulative density function of aggregate surface-diameters, as well as the radial distribution function are computed for several numerically generated surfaces. By averaging over 100 surfaces C(d) and g(r) have been computed. Figure 7 shows that C(d) is in fine agreement with the one obtained from the micro-CT scans. Figure 8 shows the radial distribution of aggregates, also matching the one obtained from the micro-CT scans. In particular the expectation for the distance between aggregates is 0.85 mm which is close to 0.83 mm as obtained from micro-CT scans (see Section 2.1). It is again linked with the average surface-diameter here measured as 0.87 mm. These validations suggest that the surfaces generated with this novel approach have surface characteristics that are representative of real concrete surfaces.

Adding roughness over aggregate-based surfaces is not only an artificial method: the remnants of mortar sticking after crack development (see Figure 16), as well as a crack evolution breaking through aggregates would both lead to roughness. Also, small wave-length roughness accounts for the smallest aggregates that could not be included in the numerical generation of packing samples due to computational limitation, which eventually compensates for the bias in the granulometric curve.

Figure 16: Fractured surface of concrete with remnants of matrix over aggregates

Formulation for contact between rough surfaces

In this section is presented the mathematical formulation determining the total resistance force F R acting against the relative sliding of two surfaces in contact. Such surfaces are crack lips entering in contact because of the mixed mode loading. By definition, the total resisting force is the sum of all the forces acting along the area A where the two surfaces are in contact. Describing such forces with a contact pressure field p leads to the following integral equation

F R = A p(x)ndA (1) 
where n refers to the unit vector field normal to the surface. The contact area A can be decomposed into N smaller contacting patches (a i ) i=1..N such that ∪ N i a i = A. With f i the force acting on the i th contact patch, we can link the average contact force per patch f and its relation to the total force F R :

f = 1 N N i ai p(x)nda fi = 1 N F R (2) 
where • denotes the surface average operator. The number of independent contact patch N is linked to the total contact area A and the average area per contact patch:

ā = 1 N N i a i = A =⇒ N = A ā (3) 
This allows to write the normalized total resistance force:

F R A 0 = f ā A A 0 (4) 
The previous equation is valid for a single contact situation, and so far, does not contain any approximation. Assuming a kinematic loading, most of the quantities presented above will depend on a global displacement vector, named δ hereafter. However, the problem of shear resistance in cracked concrete has to be stochastic because of random roughness created during the crack propagation. This was motivated by the analysis of post-mortem cracked surfaces in concrete Section 2. Such a randomness invites to employ an ensemble average operator • to extract the expectation of shear resistance freed from fluctuations due to random roughness:

F R δ A 0 = 1 A 0 f δ āδ A δ (5) 
The above expression can be further simplified by expressing the total contact area A δ as āδ N δ , N δ being the number of contact patches.

F R δ A 0 = 1 A 0 f δ N δ (6) 
In the following section we will compute and characterize the quantities f δ and N δ thanks to an elasto-plastic contact solver.

Numerical results

Elasto-plastic contact resolution

Modeling self-contact between crack lips needs a pair of surfaces, initially perfectly conforming. Obtaining a relative displacement is achieved by considering the lower one as fixed and rigid, while the upper one will be the boundary of a semi-infinite elasto-plastic half space. The required mixed-mode displacement is applied onto the top surface as a weak (average) constraint. The global displacement vector δ = δ s e y +(δ o +δ i o )e z is defined with a normal component δ o +δ i o , and a tangent component δ s . Similarly to the experiment of Jacobsen et al. [START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF], a Mode-I initial displacement δ i o is imposed, then followed by a progressive mixed-mode loading, which is characterized by the ratio γ = δ o /δ s .

At each loading step, an interpenetration between the two surfaces will occur, as shown in Figure 17a. Indeed, prior to solving contact mechanics, the configuration for the upper surface at a given displacement vector δ will be h δ up (x) = h(xδ s e y ) + δ o + δ i o . Contact forces will be resolved with a boundary-element approach [START_REF] Polonsky | A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques[END_REF][START_REF] Rey | Normal adhesive contact on rough surfaces : efficient algorithm for FFTbased BEM resolution[END_REF] available in the open-source contact software Tamaas [START_REF] Frérot | Tamaas, a high-performance library for periodic rough surface contact[END_REF] which is computationally much faster than a traditional finite-element resolution. This allows to perform many large scale simulations, each with a finely discretized surface.

Nevertheless, there are several necessary approximations for using a Boundary-integral formulation to this problem. In order to benefit from accelerated Fast Fourier Transform approaches, invariance/symmetry hypotheses are required so that only systems with a flat-deformable surface in contact with another rough-rigid surface can be used. In principle, this do not apply to the rough on rough case of this study. Assuming that the bottom surface is rigid, the trial gap g , before any contact mechanics resolution, is given as

g ,δ (x) = h δ up (x) -h(x) = h(x -δ s e y ) -h(x) + γ δ s + δ i o ḡ ,δ = γ δ s + δ i o
where γ = γ is considered as a trial loading angle. As illustrated in Figure 17b a negative gap is considered as interpenetration. The final gap will be modified with the vertical displacement field u produced while resolving contact elasto-plastic constraints. The final gap becomes:

g δ (x) = h δ up (x) + u(x) -h(x) = g ,δ (x) + u(x) ḡδ = ū + γ δ s δo +δ i o
It is important to note that the final vertical opening δ o , and therefore the effective loading angle, are unknown since they depend on the contact resolution. This is somewhat similar to how the loading kinematics are enforced in experiments [START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF], where a control loop measures constantly the average relative displacements ∆u n and ∆u s with four strain gauges placed along the crack, in order to adjust the vertical opening (in real-time) and to achieve the sought loading ratio γ = ∆u n /∆u s . For the numerical method presented, the loading remains displacement-controlled and the trial loading angle γ will lead to an effective loading angle γ which will be computed a posteriori.

The overall procedure to find displacements, tractions and γ is achieved in two stages. First, the rough on rough configuration is mapped onto a rough on flat normal contact problem: the rough profile is taken as the trial gap field g ,δ , and is assumed rigid. A trial displacement u is produced by canceling interpenetrated regions (where g < 0). The displacement field u which complies with a mean gap ḡδ = ḡ ,δ + ū as well as contact constraints can be found with the boundary element solver under linear elasticity hypotheses. This displacement leads to the deformation of the flat half-space, with the accompanying surface pressures (see Figure 17c).

By considering only elastic interactions, non-physical values of contact pressures (beyond the yield limit) will be encountered. In reality plastic flow should have occurred, with the effect of saturating pressure, roughly leading to a plateau at a maximal value p max κσ y [START_REF] Johnson | Contact Mechanics[END_REF][START_REF] Chandler | The Hardness of Metals[END_REF][START_REF] Hill | The Mathematical Theory of Plasticity[END_REF]. Therefore plasticity needs to be resolved in a second stage, similarly to the classical return mapping algorithm. For this purpose, the pressure saturation model [START_REF] Almqvist | On the dry elasto-plastic contact of nominally flat surfaces[END_REF] will be employed. However, this algorithm is formulated in its dual form (unknowns are gaps or displacements), so that the input is the applied average pressure. The previous elasticity resolution was performed as a primal problem (average gap was prescribed, pressures were unknown). Switching to a dual pressure formulation, is performed by evaluating a compatible average pressure. In order to do so, the contact patches (where pressure is strictly positive) are located with a flood-fill algorithm considering 8-neighbors. For each contact cluster, its average pressure p cluster is computed. Wherever p cluster > p max , the cluster pressure is predicted as completely saturated, as shown in Figure 17d. This projection of the contact pressure per cluster leads to a trial pressure field p compatible with plasticity constraints. Then the final pressure field is obtain with the saturation model [START_REF] Almqvist | On the dry elasto-plastic contact of nominally flat surfaces[END_REF] by requiring that the average pressure must be p which provides the final displacements and tractions in the rough-rigid on flat-deformable space (Figure 18b). The displacement and pressure fields thus obtained provide the deformed rough-on-rough configuration by mapping them back to the original configuration. In order to account for the curvature, the outward vector normal to the original rough surface (n) is giving the direction of the contact force that prevents interlocking of the contacting asperities (see Figure 18c). After solving the elasto-plastic contact problem, the final loading angle can be computed with

γ = ḡδ (x) -δ i o δ s = ḡ ,δ (x) + ūδ -δ i o δ s = γ + ūδ δ s
Figure 19 shows the final loading ratio γ computed for three different inputs (γ , δ i o ). Each of the shown loading ratio has been averaged over 50 surfaces. The expected γ is a constant independently of the sliding displacement, with only a small standard deviation. The deviation in value of γ is measured in loading angle i.e. θ = tan -1 γ and is well within ±1 • for majority of loading history (except for γ = 1.73 where at the beginning it is within ±2 • ) as shown in Figure 19. The expected value of γ depends only on γ and not on the original opening δ 

Numerical predictions

This section presents how roughness is impacting contact forces f , the number of contacts N and eventually the shear resistance τ . For this, surfaces with a superposed self-affine roughness (class S A ) and surfaces with only protruding aggregates (class S B ) will be considered. Thus, the values of f , N and τ will be compared. The surfaces used throughout this work are generated with the algorithm presented in Section 3 with a packing density of ρ = 40%, a distribution of aggregate diameters within the range d = density and the aggregate distribution are chosen similar to the concrete samples that Jacobsen et al. [START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF] used for evaluating τ experimentally.

For S A surfaces, the roughness spectrum is chosen such that q min = L/λ max = 2 and q max = L/λ min = 1024. Every surface is discretized with 2048×2048 grid points (with a discretization such that ∆x = L/2048) which allows to model fine roughness details (λ min = 2∆x ∼ 50µm). The material properties are taken from Jacobsen et. al. [START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF] where E = 31GPa, ν = 0.22, σ y = 36MPa and p max = 3σ y . The value for yield stress σ y is estimated according to the empirical relation σ y = (f c,ref /f c ) 1/3 f c as reported in [START_REF]fib (International Federation for Structural Concrete), fib Model Code for Concrete Structures[END_REF], with the compressive strength f c is taken as 41 MPa [START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF] and the characterstic compressive strength f c,ref is taken as 30 MPa [START_REF]fib (International Federation for Structural Concrete), fib Model Code for Concrete Structures[END_REF].

The effect of roughness on the real contact area is now presented. One surface with roughness (of class S A ) and one surface without (of class S B ) will be loaded with the kinematic constraint following a loading ratio γ ≈ 1.73 and an initial opening δ i o = 0.025 mm. Figure 20 shows the contact pressure field obtained for a sliding displacement δ s = 0.073 mm. As expected, the contact patches for a surface without roughness have crescent shapes following the protruding aggregates contours. While including roughness produces the same global shapes, it adds small patches distributed randomly throughout the surface. Figure 21 shows the contact pressure field at a larger sliding displacement δ s = 0.49 mm. This time both S A and S B share comparable features, revealing that the additional contact spots initially induced by the roughness tend to vanish for large displacements.

In order to obtain meaningful statistics, 50 realizations are studied for each surface class (S A and S B ). Every such surface is a cut, at a specific height, through the same numerical concrete packing. The real contact area is calculated from the contact pressure field since a positive value of pressure p(x) > 0 corresponds to a contact point where the gap vanishes (g = 0). The real contact area is shown in a normalized form A/A o , where A o is the nominal area. Figure 22a shows the expected real contact areas A S A and A S B as function of the sliding displacement δ s . It can be observed that for small sliding displacements, the real contact area A S A is greater than the real contact area A S B . This confirms that roughness initially introduces many new contact spots. However, after reaching a maximum area for a specific sliding displacement, A S A decreases. On the other hand, the real contact area expected for S B follows a monotonic increase with the sliding displacement. As a consequence of roughness A S A becomes smaller than A S B for large displacements. In order to clarify the origin of this behavior, the contact area evolution close to the aggregate shown in the insets of Figure 20 and Figure 21 is shown on a series of snapshot at different sliding displacements, on Figure 22b. The contact area around the S B -type aggregate increases with the sliding displacement whereas it decreases for a S A -type, which is due to the It is clear, and was expected, that the addition of roughness modified the true contact area, which will consequently impact shear resistance. This is now studied by computing and comparing ensemble averages of the shear resistance stress, defined as:

τ δ = F R,δ .e y A 0 = 1 A 0 ( f .e y ) δ N δ = 1 A 0 f δ y N δ (7) 
After identifying every contact patch with a flood-fill, their number N and the average force per contact patch f are both extracted. The study of the covariance of f δ y and N δ reveals that these two terms are independent of each other irrespective of loading kinematics for both surface classes (please refer to Appendix A for further details). Eventually we obtain the separation formula

τ δ = 1 A 0 fy δ N δ (8) 
which allows to study contact forces and contact clusters separately, which is done in the following sections.

Number of contact clusters, N

Figure 23 shows the ensemble average of number of contact clusters N for classes S A and S B , under the loading kinematics defined by γ ≈ 1.73 and δ i o = 0.025 mm. The average number of contact clusters is always larger with roughness (for S A ). For sliding displacements where A S A / A S B > 1 such a behavior was expected since many contact patches are created due to the additional roughness. However, at larger sliding displacements such a difference is not trivial. Surfaces from class S A have a large number of contact clusters with small areas, explaining how the number of contact remains large while the contact area drops. In order to demonstrate this, the probability density function of area of contact clusters ρ(a) is computed and shown in Figure 24 for a sliding displacement δ s = 0.49 mm (where A S A / A S B < 1). This probability density was computed from the 50 realizations for both surface classes. As expected the probability density of small contact areas is indeed larger with roughness. Besides the large difference in the number of contact clusters for S A and S B , their evolutions are decaying as a power-law of the sliding displacement δ s (see Figure 23). For surfaces with including roughness (S A ) the decay initiate after a certain amount of sliding. At the onset, the expected number of contacts first increases before following the power-law decay. Such a switch of behavior is sensitive to the initial opening (see Figure 23). The origin of this non-monotonic behavior has to be sought in the relative contribution of roughness and protruding aggregates to the total number of contact clusters. Figure 25 shows series of snapshots of two regions, with and without a protuding aggregate, taken from a loaded S A -type surface. As can be observed the number of contact patches created due to the protruding aggregates decreases monotonically while δ s increases, whereas the number of contact patches created in the isolated region initially increases before decreasing. The combined effect of contact with aggregates and roughness leads to a non-monotonic evolution of N for surfaces having roughness. The power-law behavior observed for the ensemble average of the number of contact clusters allows to analytically predict it as a function of the sliding displacement δ s :

N = Bδ -κ s (9)
where B is a constant of proportionality and κ is a power-law exponent. Both these coefficients can be extracted by fitting the numerical results (please refer to Appendix B.1 for a detailed description of the fitting procedure). For the surfaces with roughness and aggregates (S A ), the following analytical model is obtained:

N = B(γ)δ -κ(δ i o ) s with B(γ) = (cγ + d) κ(δ i o ) = aδ i o + b
with c, d, a, b constants which are independent of the loading kinematics (see Table 3 for the numerical values of such constants). This power-law model is shown in Figure 23, which matches quite well the numerical predictions, except at the onset of the sliding displacement. At the beginning, the surfaces are indeed close to conformity with important true contact areas, dominated by aggregate shapes, and therefore leading to the a monotonic behavior deviating from the powerlaw. On the other end, the power-law is a signature of rough contact, which happens only after a sufficient opening occurred, therefore depending on the initial opening and the loading angle. 

Average contact force per contact cluster, fy

Figure 26 shows the ensemble average of fy both for surface classes S A and S B . The average force per cluster is always larger for surface without roughness (i.e. S B ). As observed earlier, the inclusion of roughness results in the formation of a large number of contact clusters with smaller areas (please refer to Figure C.39 for more details). Since the maximum contact pressure saturates to p max , it is expected that the force per contact cluster will be close to proportional with the contact area per cluster ā. As a consequence, the added roughness and plasticity diminishes substantially the average force per cluster. The details of the statistics of the force per contact cluster are presented in Appendix D, which includes the probability density of fy . The ensemble average of force per cluster fy follows an increasing power-law, as revealed in Figure 27. The following analytical expression can be used: fy ∼ δ α s [START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF] with an exponent α = 1.34 for rough surfaces, and α = 0.7 for the aggregate only surface. As can be seen on Figure 27, this equation is a good approximation of fy for large sliding displacements. It is remarkable that α only moderately depends on the loading kinematic parameters (γ, δ i o ), whereas it strongly depends on the roughness (S A surfaces have H 0.8, and S B surfaces have H 1.1)

Shear stress, τ

Figure 28 presents the shear stress response for surface classes S A and S B for identical loading kinematics. The shear stress for S A increases initially before decreasing, whereas for S B the shear stress monotonically increases. At small sliding displacements τ S A is greater than τ S B and at large sliding displacements it is reversed. This behavior is similar to the evolution of the total contact area A S A and A S B respectively (see Figure 22). Furthermore, the peak stress observed for S A -type surfaces is likely due to the behavior of the total number of contact clusters (see Figure 23) which is absent for S B -type surfaces.

Using Equation ( 8) along with the expressions Equation ( 9) and Equation (10) leads to a power-law approximation of the shear resistance:

τ βδ -κ+α s ( 11 
)
where β is a multiplicative factor which will condition the elevation of the resistance. With the approximations that were made, this expression is expected to fit the behavior of τ only for large sliding displacements. Equation [START_REF] Calvi | Pure Mechanics Crack Model for Shear Stress Transfer in Cracked Reinforced Concrete[END_REF] illustrates the predicted behavior of this simple powerlaw model for various loading kinematics and roughness (see Table 4 for the numerical values of the constants). While the tail of the curves fit particularly well, the peak stress cannot be reproduced correctly. In order to capture the bell shape, the expression of the shear resistance can be empirically modified as follows: τ = β 1e δsζ δ -κ+α s [START_REF] Pundir | Review of fundamental assumptions of the Two-Phase model for aggregate interlocking in cracked concrete using numerical methods and experimental evidence[END_REF] where the exponential term brings a saturation allowing to capture the entire numerical prediction. Figure 29 shows the analytic expression computed using Equation [START_REF] Pundir | Review of fundamental assumptions of the Two-Phase model for aggregate interlocking in cracked concrete using numerical methods and experimental evidence[END_REF] (see Table 5 for the numerical values of β and ζ). An excellent agreement is demonstrated. Furthermore, the exponential term compensates for the uncertainty observed at the onset of sliding displacement (for N and fy ). The parameter ζ is only a fitting parameter which controls how quickly the saturation is reached and shows, as expected, a dependence on loading kinematics. [START_REF] Pundir | Review of fundamental assumptions of the Two-Phase model for aggregate interlocking in cracked concrete using numerical methods and experimental evidence[END_REF]. The values of α and κ used for fitting are taken from Table 4.

S A S A S A S B δ i o = 0.025 δ i o = 0.04 δ i o = 0.025 δ i o = 0.025 γ ≈ 1.2 γ ≈ 1.2 γ ≈ 1.73 γ ≈ 1.
Equation 12 is considered as an important outcome of the presented work, as it can be employed in large scale finite element simulations, where describing roughness of fractured surfaces would lead to extremely fine meshes and computationally expensive simulations. This simplified expression of the shear resistance stress can be used to formulate a traction separation law (TSL) which would account for interlocking phenomena occurring in fractured concrete, similarly to the traction-separation laws used for cohesive zone modeling [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF]. Such a TSL would incorporate the effects of roughness and the aggregate distribution present at micro and meso-scales. Therefore, macro-cracks can be modeled with their global shape, while the microscopic details due to surface roughness will be handled with cohesive elements placed along the crack surface. Figure 31 and Figure 32 show the normalized contact pressure maps along the surface p y = f (δ s , δ o ) and normal to the surface p z = f (δ s .δ o ) computed from the presented numerical simulations. In this study we aimed at understanding the role topography of cracks plays in determining the shear resistance τ in concrete. For that, we carried out a statistically meaningful (50 realizations) numerical analysis for carefully synthesized rough surfaces in concrete. Only considering aggregate profiles (S B -type) brings a purely monotonic evolution of τ , which is the consequence of neglecting the contribution of small scale asperities. However, considering aggregate profiles with roughness (S A -type) results in a non-monotonic evolution of τ . It was shown to be due to the non-monotonic evolution of number of contact clusters. All reported results are based on the material properties of real concrete [START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF], without using any fitting parameter.

We now attempt to compare our numerical predictions with experimental results, which is possible since the numerical concrete used to generate S A -type surfaces have material properties similar to the ones characterizing the concrete used by Jacobsen et. al [START_REF] Jacobsen | Constitutive Mixed Mode Behavior of Cracks in Concrete: Experimental Investigations of Material Modeling[END_REF]. Figure 30 put in perspective the experiments and the presented numerical model: qualitative predictions are obtained. The order of magnitude of the peak stress is also within an acceptable range, whereas neglecting the roughness would have led to large over-estimations with no peak stress. This clearly demonstrates that roughness is crucial to this problem. Nevertheless, the simulations with S A -type surfaces tend to overestimate the stress levels especially at large sliding displacements. While the positions of the peak stress are predicted with acceptable precision, the power-law issued from the measures of Jacobsen decays much faster than our numerical prediction. The position of the peak is controlled by the initial opening δ i o , whereas the roughness characteristics (i.e. Hurst exponent and root-mean-square of slopes) control the power law exponents of N S A and fy S A . The steep decay observed in the measurements could mean a much different roughness produced by fracturing the concrete employed by Jacobsen. While a slight difference of Hurst exponent could happen in the range [0.7 -0.9] it is not believed that it could explain the observed bias.

Imprecise constitutive behaviors could be an explanation. For instance, the maximal pressure employed for the saturation model for resolving the elasto-plastic assumes that the surface contact pressure does not exceed a value kσ y where the factor k = 3 was chosen based on the literature [START_REF] Hill | The Mathematical Theory of Plasticity[END_REF][START_REF] Johnson | Contact Mechanics[END_REF]. However, for concrete it was observed that a highly confined matrix should produce a large value of κ [START_REF] Richart | A Study of the Failure of Concrete under Combined Compressive Stresses[END_REF][START_REF] Nielsen | Limit analysis and concrete plasticity, 3rd Edition[END_REF]. The authors themselves observed values of κ for concretes ranging from 2 to 5 [START_REF] Pundir | Review of fundamental assumptions of the Two-Phase model for aggregate interlocking in cracked concrete using numerical methods and experimental evidence[END_REF]. For instance, a smaller value of the critical stress would bring an earlier plastic flow, higher shear stresses, and possibly different power-laws. An accurate modeling of the critical plastic stress, however, requires more expensive numerical methods such as Finite-Elements or mixed boundary-volume integral methods [START_REF] Frérot | Crack Nucleation in the Adhesive Wear of an Elastic-Plastic Half-Space[END_REF].

The absence of Coulomb friction could also be at the origin of the bias. The source of the shear resistance in the presented results is exclusively due to interlocking of asperities, without any shear transfer by Coulomb frictional forces. While adding a tangential contribution to the force created at each contact patch is a possibility, it would only increase τ . Such an effect can be corrected by lowering the Young's modulus, transforming our formulation with two unknowns E and the Coulomb friction coefficient µ. However, the first principles derivation of our model would have to include fitting of constitutive quantities, whereas the current numerical model contains no extrapolation from experimental values.

Finally, and certaily more importantly, the presented model do not consider crack nucleation or damage in the bulk or nearby the contacting surfaces. Nevertheless, the significant amount of damage observed for highly confined concrete is expected to result in the degradation of the material stiffness [START_REF] Di Prisco | Crushcrack': a nonlocal damage model for concrete[END_REF]. As a consequence, lower values of τ are observed experimentally, especially during the post peak regime. The damage can be modeled as a constitutive law using various damage mechanics approaches [START_REF] Grassl | Damage-plastic model for concrete failure[END_REF][START_REF] Wu | Phase-field simulation of interactive mixed-mode fracture tests on cement mortar with full-field displacement boundary conditions[END_REF]. However, this will require a full scale finite element simulation with a fine discretization of rough surfaces. Indeed, it cannot be done with boundary integral methods as it requires translation invariance which precludes a varying constitutive behavior.

It is believed that the development of faithful, yet simple, relations such as Equation ( 12), with modified power-law tails (with experimental validations) are viable extensions of the current work, with the potential to bring reliable and simple predictions of shear resistance in cracked concrete.

Conclusion

In this work, we have investigated the role played by cracks topography on the shear resistance of concrete loaded by mixed-mode displacements. This was motivated by the necessity to describe the interlocking nature of shear transfer across surface of cracks, in order to use more reliable and physically-based laws in design criteria.

An accurate representation of surfaces was shown to require a multi-scale description, built upon meso-scale aggregates and micro-scale roughness. The typical signature of the placement of aggregates was devised based on the cumulative density function and the radial distribution function. A signature of the small scale roughness was constructed with self-affine concepts, such as the Hurst exponent and the root-mean-square of surface slopes. micro-CT and digital microscope measurements have been made on actual surfaces, which were previously sheared until failure. A novel algorithm was presented to synthesis rough surfaces. The principle consists in adding a fractal-like roughness on protruding aggregates, which proves to reproduce the signature of the experimental samples.

To investigate the effect of roughness on shear stress, we perform a stochastic study using an elasto-plastic solver based on a boundary integral formulation. Such a computationally efficient method allowed to discretize surface topographies with four million points, and to collect detailed 

Appendix C. Average contact area per cluster ā

The average contact are per cluster is computed for surface classes S A and S B . The average is computed by considering data from all 50 realizations. 

Figure 1 :

 1 Figure 1: One of the concrete sample used for this study. The sample is scanned at different heights (shown in green) to generate micro-CT scans.
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 2 Figure 2: Granulometric curve of diameter of aggregates passing through sieve computed for the real concrete sample and for the numerically generated concrete samples.

Figure 3 :

 3 Figure 3: A rough surface extracted from concrete sample (Table2) under mixed-mode loading. The surface is scanned using a digital microscope.
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 456 Figure 4: A micro-CT scan from a concrete sample at a particular height

Figure 7 :

 7 Figure 7: Average cumulative density of diameter of aggregates for 100 micro-CT scans from the actual concrete sample and for 100 numerically generated concrete surfaces.Figurealsoshows cumulative density function as computed by Walraven[START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF] 

Figure 8 :

 8 Figure 8: Average radial distribution function computed for 100 micro-CT scans from the actual concrete sample and for 100 numerically generated concrete surfaces

Figure 9 :

 9 Figure9: Surface profiles generated for (i) assumed by Walraven[START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF] (ii) probability density of slope angle is represented by a cosine function[START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF] (iii) probability density of slope angle is represented by a Gaussian distribution[START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF] 

Figure 10 :

 10 Figure10: Power spectral densities and Hurst exponents computed for the rough profiles (1D) assumed by Walraven[START_REF] Walraven | Fundamental Analysis of Aggregate Interlock[END_REF] (H = 1.4), Li et al[START_REF] Li | Contact density model for stress transfer across cracks in concrete[END_REF] (H = 0.3), Bujadham et al[START_REF] Bujadham | Qualitative studies on mechanisms of stress transfer across cracks in[END_REF] (H = 0.3) and also for an actual concrete surface (2D) (H = 0.8). For profile H is computed from slope α as α = -2H -1 and for surface H is computed as α = -2H -2
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 1112 Figure 11: A concrete packing for ρ = 50% cut along a random plane (shown in green) Figure 12: Crack plane with distribution of aggregates Figure 13: Numerically generated self-affine surface for H = 0.8

5 :Figure 14 :

 514 Figure 14: Artificial self-affine rough surface S af f ine is added to a surface cut S having random distribution of aggregates to fabricate rough heterogeneous surface S out .

Figure 15 :

 15 Figure 15: Power spectral density for numerically fabricated surfaces: S surface cut from concrete packing fig. 11, S af f ine self-affine rough surface and S out super-imposed surface from Algorithm 1

Figure 17 :

 17 Figure 17: Elastic resolution procedure (a→b) Mapping a rough-on-rough configuration onto a rough-on-flat configuration. (b→c) Solving for interpenetration by enforcing a mean gap ḡ. The outputs are pressure field p and displacement field u. (c→d) Projection of the average pressure at each cluster by saturating it to p max , producing a predictor state. This trial pressure p allows to compute a compatible mean pressure p .

Figure 18 :

 18 Figure 18: Elasto-plastic resolution procedure (a→b) Starting from the configuration fig.17c, the initial condition u, p , solve for a prescribed average pressure p using the pressure saturation model[START_REF] Almqvist | On the dry elasto-plastic contact of nominally flat surfaces[END_REF]. The resolution leads to a new displacement u and a new pressure field p. (b→c) The new displacement field u is used to obtain the deformation in rough-on-rough configuration. The new pressure field p(x) is mapped back to the rough-on-rough configuration along the outward normal field n at each contact point.

  Figure19shows the final loading ratio γ computed for three different inputs (γ , δ i o ). Each of the shown loading ratio has been averaged over 50 surfaces. The expected γ is a constant independently of the sliding displacement, with only a small standard deviation. The deviation in value of γ is measured in loading angle i.e. θ = tan -1 γ and is well within ±1 • for majority of loading history (except for γ = 1.73 where at the beginning it is within ±2 • ) as shown in Figure19. The expected value of γ depends only on γ and not on the original opening δ i o .

Figure 19 :

 19 Figure 19: The expected value of γ for different inputs (γ , δ i o ). The values of loading angle are within ±1 • range (shown as dotted line) of the targeted angle θ = tan -1 γ .

AFigure 20 :

 20 Figure 20: Snapshots of the pressure field when δ s = 0.07 mm, δ i o = 0.025 mm and γ ≈ 1.73. (a) For one surface of class S A . The zoom insets show a contact patch formed due to a protruding aggregate as well as due to roughness. (b) For one surface of class S B . The zoom inset shows a contact patch formed due to a protruding aggregate only. This demonstrates that adding roughness increases the real contact area.

Figure 21 :

 21 Figure 21: Snapshots of pressure field at loading kinematics: δ s = 0.49 mm, δ i o = 0.025 mm and γ ≈ 1.73 for (a) surface class S A (b) surface class S B . For both surface classes, contact patches are formed only due to protruding aggregates.

  Figure 22: (a) Ensemble averge of real contact areas for a loading defined by γ ≈ 1.73 and an initial opening δ i o = 0.025 mm. Inset shows the ratio of ensemble average of real contact areas.The added roughness initially leads to an increase of the real contact area, and ultimately a decrease. (b) Zoom of the pressure map around an aggregate identified in the insets of Figure 20 at four different sliding displacements (highlighted in red on the curve Figure 22a).
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 42324 Figure 23: Evolution of average number of contacts for surface class S A and S B in log-log scale for same loading ratio but different initial openings. Figure also show the analytical fits over the power-law behavior.

Figure 25 :

 25 Figure 25: Evolution of number of contact patches formed (a) only due to the roughness of the surface (b) only due to the protruding aggregate. The snapshots are for surface class S A captured at various sliding displacements. The loading ratio is γ ≈ 1.73 and the initial opening is δ i o = 0.025 mm.

Table 3 :

 3 Values of constants a, b, c, d obtained for predicitng κ and B. Please refer to Appendix B.1 for further details.

SFigure 26 :fy S B ∝ δ 0. 7 sFigure 27 :

 26727 Figure 26: Evolution of the average contact force per cluster for surface classes S A and S B for different loading kinematics.

τFigure 28 :τFigure 29 :

 2829 Figure 28: Ensemble average of shear stress τ computed for surface classes S A , S B at different loading kinematics. Figure also shows, as solid lines, the analytical prediction for tail regime of τ using powerlaw model Equa-(11).

Figure 30 :

 30 Figure 30: Ensemble average of shear stress τ computed surface class S A to experiments values reported by Jacobsen et. al. [1], as dashed lines, for similar loading kinematics. The value of Young's modulus E is 31 GPa with no inclusion of friction, µ = 0.0.

Figure 32 :

 32 Figure 32: Normalized contact pressure normal to the surface p z as a function of opening and sliding displacement. The values are linearly interpolated based on our simulations for different loading kinematics
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 3613738 Figure B.36: Variation of κ as a function of initial opening δ i o for different loading ratios γ for surface class S A .
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Figure C. 39 :

 39 Figure C.39: Average contact area per cluster computed for surface classes S A , S B for loading kinematics: γ = δ o /δ s ≈ 1.73, δ i o = 0.025 mm.

Table 1 :

 1 Symbols and notations

	Description

Table 2 :

 2 1/2 = 1.16 ± 0.19. Mix design for the concrete casting

	d max	Water	Cement	Cement Type	Aggregates
	8 mm 204 kg/mm 3 316 kg/mm 3 CEMII A-LL42.5n(white) 1809	kg/mm 3 ,
				Medium-Hard gravel

Table 4 :

 4 Values of α obtained after fitting τ to the tail using Equation[START_REF] Calvi | Pure Mechanics Crack Model for Shear Stress Transfer in Cracked Reinforced Concrete[END_REF]. The value of κ used for fitting is obatined from expression κ = cδ i o + d and Table3.

	73

Table 5 :

 5 Values of β and ζ obtained after fitting τ to the entire regime using Equation

Table B .

 B 6: Obtained values of κ and B after fitting procedure shown in Figure B.35. The values of initial opening δ i o are in mm.

		i o =0.025 δ i o =0.025 δ i o =0.025 δ i o =0.04 δ i o =0.04 δ i o =0.04 δ i o =0.1	δ i o =0.1	δ i o =0.1
	B	γ ≈ 1.2 218.8	γ ≈ 1.55 115.1	γ ≈ 1.73 45.7	188.2	71.0	59.2	217.2	124.8	73 100.9
	κ	1.79	1.92	1.90	1.72	1.78	1.58	1.00	0.87	0.78

γ ≈ 1.2 γ ≈ 1.55 γ ≈ 1.73 γ ≈ 1.2 γ ≈ 1.55 γ ≈ 1.

information on real contact area and contact forces. The results obtained with surfaces only having a distribution of protruding aggregates are compared with the same surface superposed to a selfaffine fractal roughness. It is demonstrated that the roughness is crucial to obtain a non-monotonic evolution of shear stress, which is observed in the experimental data available from the literature. Such a behavior results from the evolution of true contact area, which first increases before decaying as a power-law. When considering only aggregates without a micro-scale roughness, a monotonic evolution of the shear stress is predicted. Such power-law behaviors, undoubtedly resulting from small scale asperities, predict very well the shear resistance at sliding displacements larger than 0.4 mm. However, during the onset of sliding, the aggregates modify this behavior by introducing a peak shear stress. This last is influenced by loading kinematics (initial opening and loading angle) whereas the post-peak decay is influenced by the roughness characteristics of the surface. In order to capture the bell-shape around the peak, an empirical modification of the power law expression is introduced. This final equation predicts very well the resisting shear stress for the entire loading history.

This study confirms that it is crucial to consider micro-scale roughness to achieve a reliable and a physically-based numerical model: for this model, devised from first principles, the inputs are simply material constitutive and geometrical properties. It is thus possible to obtain a matching prediction with the experiments of Jacobsen, thus without any fitting of parameters. It is believed that this work opens the path to larger scale finite elements modeling of shear resistance in cracked concrete with a traction-separation law (and cohesive elements) capable of representing implicitly the complex mechanisms occurring during rough-on-rough interlock.
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