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We consider the problem of computing the topology and describing the geometry of a parametric curve in R𝑛 . We present an

algorithm, PTOPO, that constructs an abstract graph that is isotopic to the curve in the embedding space. Our method exploits

the benefits of the parametric representation and does not resort to implicitization.

Most importantly, we perform all computations in the parameter space and not in the implicit space. When the

parametrization involves polynomials of degree at most 𝑑 and maximum bitsize of coefficients 𝜏 , then the worst case

bit complexity of PTOPO is Õ𝐵 (𝑛𝑑6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏). This bound matches the current record

bound Õ𝐵 (𝑑6 + 𝑑5𝜏) for the problem of computing the topology of a planar algebraic curve given in implicit form. For planar

and space curves, if 𝑁 = max{𝑑, 𝜏}, the complexity of PTOPO becomes Õ𝐵 (𝑁 6), which improves the state-of-the-art result,

due to Alcázar and Díaz-Toca [CAGD’10], by a factor of 𝑁 10
. However, visualizing the curve on top of the abstract graph

construction, increases the bound to Õ𝐵 (𝑁 7). We have implemented PTOPO in maple for the case of planar curves. Our

experiments illustrate its practical nature.

Additional Key Words and Phrases: Parametric curve, topology, bit complexity, polynomial systems

1 INTRODUCTION
Parametric curves constitute a classical and important topic in computational algebra and geometry [38] that

constantly receives attention, e.g., [11, 13, 35, 39]. The interest in efficient algorithms for computing with

parametric curves has been motivated, among others, by the omnipresence of parametric representations in

computer modeling and computer aided geometric design, e.g., [16].

We focus on computing the topology of a real parametric curve, that is, the computation of an abstract graph

that is isotopic [7, p. 184] to the curve in the embedding space. We design a complete algorithm, PTOPO, that applies
directly to parametric curves of any dimension. We consider different characteristics of the parametrization, like

properness and normality, before computing the singularities and other interesting points on the curve. These

points are necessary for representing the geometry of the curve, as well as for producing a certified visualization

of planar and space curves.

Previous work. A common strategy when dealing with parametric curves is implicitization. There has been great

research effort, e.g., [11, 36] and references therein, in designing algorithms to compute the implicit equations

describing the curve. However, it is also important to manipulate parametric curves directly, without converting

them to implicit form.

The study of the topology of a real parametric curve is a topic that has not received much attention in the

literature, in contrast to its implicit counterpart [14, 22]. It requires special treatment, since for instance it is

not always easy to choose a parameter interval such that when we plot the curve over it, we include all the

important topological features [3]. Moreover, while visualizing the curve using symbolic computational tools, the

problem of missing points and branches may arise [32, 37]. Alcázar and Díaz-Toca [3] study the topology of real

parametric curves without implicitizing. They work directly with the parametrization and address both planar

and space real rational curves. Our algorithm to compute the topology is to be juxtaposed to their work; we refer
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to the next paragraph for more details. We also refer to [12] and [2] for other approaches based on computations

by values and subdivision, respectively.

To compute the topology of a curve it is essential to detect its singularities. This is an important and well studied

problem [3, 22, 33] of independent interest. Apart from classical approaches [17, 42] that work in the implicit

representation, we can also compute the singularities using directly the parametrization. For instance, necessary

and sufficient conditions to identify cusps and inflection points are expressed in the form of determinants,

e.g., [23, 26].

On computing the singularities of a parametric curve, a line of work related to our approach, does so by means

of a univariate resultant [1, 19, 29, 31, 33]. Notably in [33] the authors work on rational parametric curves in

affine 𝑛-space; they use generalized resultants to find the parameters of the singular points. Moreover, they

characterize the singularities and compute their multiplicities.

Cox [13] uses the syzygies of the ideal generated by the polynomials that give the parameterization to

compute the singularities and their structure. There are state-of-the-art approaches that exploit this idea and

relate the problem of computing the singularities with the notion of the 𝜇-basis of the parametrization, e.g.,

[21] and references therein. Another method is used in [6], where they compute and characterize the singularities

using factorization of resultants. In [5] they use the projection from the rational normal curve to the curve and

its relation with the secant varieties to the normal curve.

Overview of our contributions. We introduce PTOPO, a complete, exact, and efficient algorithm (Alg. 3) for

computing the geometric properties and the topology of parametric curves in R𝑛 . Unlike other algorithms,

e.g. [3], it makes no assumptions on the input curves, such as the absence of axis-parallel asymptotes, and

it does not perform any projections and liftings when 𝑛 ≥ 2. For this, it is applicable to any dimension.

Nevertheless, it does not handle knots for space curves.

If the (proper) parametrization of the curve consists of polynomials of degree 𝑑 and bitsize 𝜏 , then PTOPO
outputs a graph isotopic [7, p.184] to the curve in the embedding space, by performing

Õ𝐵 (𝑛𝑑6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏)

bit operations in the worst case (Thm. 5.5). We also provide a Las Vegas variant with expected complexity

Õ𝐵 (𝑑6 + 𝑑5 (𝑛 + 𝜏) + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏).

If 𝑛 = O(1), the bounds become Õ𝐵 (𝑁 6), where 𝑁 = max{𝑑, 𝜏}. The vertices of the output graph correspond to

special points on the curve, in whose neighborhood the topology is not trivial, given by their parameter values.

Each edge of the graph is associated with two parameter values and corresponds to a unique smooth parametric

arc. For an embedding isotopic to the curve, we map every edge of the abstract graph to the corresponding

parametric arc.

For planar and space curves, our bound improves the previously known one due to Alcázar and Díaz-Toca [3]

by a factor of Õ𝐵 (𝑁 10). The latter algorithm [3] performs computations in the implicit space. On the contrary,

PTOPO is a fundamentally different approach since we work exclusively in the parameter space; we do not use a

sweep-line algorithm to construct the isotopic graph. We handle only the parameters that give important points

on the curve and thus we avoid performing operations such as univariate root isolation in an extension field or

evaluation of a polynomial at an algebraic number.

Computing singular points is an essential part of PTOPO (Lem. 4.7). We chose not to exploit recent methods,

e.g., [6], for this task, but to employ older techniques, e.g., [3, 31, 33], that rely on a bivariate polynomial system,

Eq. (2). We take advantage of this system’s symmetry and of nearly optimal algorithms for bivariate system

solving and for computations with real algebraic numbers [8, 14, 15, 28]. In particular, we introduce an algorithm

for isolating the roots of over-determined bivariate polynomial systems by exploiting the Rational Univariate
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Representation (RUR) [8–10] that has worst case and expected bit complexity that matches the ones for square

systems (Thm. 4.6). These are definitive steps for obtaining the complexity bounds of Thm. 5.4 and Thm. 5.5.

Moreover, our bound matches the current state-of-the-art complexity bound, Õ𝐵 (𝑑6 + 𝑑5𝜏) or Õ𝐵 (𝑁 6), for
computing the topology of implicit plane curves [14, 22]. However, if we want to visualize the graph in 2D or 3D,

then we have to compute a characteristic box (Lem. 5.1) that contains all the the topological features of the curve

and the intersections of the curve with its boundary. In this case, the complexity of PTOPO becomes Õ𝐵 (𝑁 7)
(Thm. 5.4).

A preprocessing step of PTOPO consists in finding a proper reparametrization of the curve (if it is not proper).

We present explicit bit complexity bounds (Lem. 3.2) for the algorithm of Pérez [30] to compute a proper

parametrization. Another preprocessing step is to ensure that there are no singularities at infinity; Lem. 3.3

handles this task and provides explicit complexity estimates.

Last but not least, we provide a certified implementation
1
of PTOPO in maple. So far, the implementation

handles the topology computation and visualization of planar curves.

Organization of the paper. The next section presents our notation and some useful results needed for our proofs.

In Sect. 3 we give the basic background on rational curves in affine 𝑛-space. We characterize the parametrization

by means of injectivity and surjectivity and describe a reparametrization algorithm. In Sect. 4 we present the

algorithm to compute the singular, extreme points, and isolated points on the curve. In Sect. 5 we describe our

main algorithm, PTOPO, that constructs a graph isotopic to the curve in the embedding space and its complexity.

Finally, in Sect. 6 we give examples and experimental results.

2 NOTATION AND ALGEBRAIC TOOLS
For a polynomial 𝑓 ∈ Z[𝑥], its infinity norm is equal to the maximum absolute value of its coefficients. We denote

by L(𝑓 ) the logarithm of its infinity norm. We also call the latter the bitsize of the polynomial. A univariate

polynomial is of size (𝑑, 𝜏) when its degree is at most 𝑑 and has bitsize 𝜏 . The bitsize of a rational function is the

maximum of the bitsizes of the numerator and the denominator. We represent an algebraic number 𝛼 ∈ C by the

isolating interval representation. When 𝛼 ∈ R (resp. C), it includes a square-free polynomial which vanishes at 𝛼

and a (rational) interval (resp. Cartesian products of intervals) containing 𝛼 and no other root of this polynomial.

We denote by O, resp. O𝐵 , the arithmetic, resp. bit, complexity and we use Õ, resp. Õ𝐵 , to ignore (poly-)logarithmic

factors. We denote by res𝑥 (𝑓 , 𝑔) the resultant of the polynomials 𝑓 , 𝑔 with respect to 𝑥 . For 𝑡 ∈ C, we denote by
𝑡 its complex conjugate. We use [𝑛] to signify the set {1, . . . , 𝑛}.

We now present some useful results, needed for our analysis.

Lemma 2.1. Let 𝐴 =
∑𝑚

𝑖=0
𝑎𝑖𝑋

𝑖 , 𝐵 =
∑𝑛

𝑖=0
𝑏𝑖𝑋

𝑖 ∈ Z[𝑋 ] of degrees𝑚 and 𝑛 and of bitsizes 𝜏 and 𝜎 respectively. Let
𝛼1, . . . , 𝛼𝑚 be the complex roots of 𝐴, counting multiplicities. Then, for any 𝜅 = 1, . . . ,𝑚 it holds that

2
−𝑚𝜎−𝑛𝜏−(𝑚+𝑛) log(𝑚+𝑛) < |𝐵(𝛼𝜅) | < 2

𝑚𝜎+𝑛𝜏+(𝑚+𝑛) log(𝑚+𝑛) .

Proof. Following [40], let 𝑅 = res𝑋 (𝐴(𝑋 ), 𝑌 − 𝐵(𝑋 )) ∈ Z[𝑌 ]. Using the Poisson’s formula for the resultant

we can write 𝑅(𝑌 ) = 𝑎𝑛𝑚
∏𝑚

𝜅=1
(𝑌 − 𝐵(𝛼𝜅)). The maximum bitsize of the coefficients of 𝑅(𝑌 ) is at most𝑚𝜎 + 𝑛𝜏 +

(𝑚 + 𝑛) log(𝑚 + 𝑛). We observe that the roots of 𝑅(𝑌 ) are 𝐵(𝛼𝜅) for 𝜅 = 1, . . . ,𝑚. Therefore, using Cauchy’s

bound we deduce that

2
−𝑚𝜎−𝑛𝜏−(𝑚+𝑛) log(𝑚+𝑛) < |𝐵(𝛼𝜅) | < 2

𝑚𝜎+𝑛𝜏+(𝑚+𝑛) log(𝑚+𝑛) .

□

Lemmata 2.2, 2.3 restate known results on the gcd computation of various univariate and bivariate polynomials.

1
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Lemma 2.2. Let 𝑓1 (𝑋 ), . . . , 𝑓𝑛 (𝑋 ) ∈ Z[𝑋 ] of sizes (𝛿, 𝐿). We can compute their gcd in worst case complexity
Õ𝐵 (𝑛(𝛿3 + 𝛿2𝐿)), or with a Monte Carlo algorithm in Õ𝐵 (𝛿2 + 𝛿𝐿), or with a Las Vegas algorithm in Õ𝐵 (𝑛(𝛿2 + 𝛿𝐿)).

Proof. These are known results [41]; we repeat the arguments adapted to our notation.

Worst case: We compute 𝑔 by performing 𝑛 consecutive gcd computations, that is

gcd(𝑓1, gcd(𝑓2, gcd(· · · , gcd(𝑓𝑛−1, 𝑓𝑛))). Since each gcd computation costs Õ𝐵 (𝛿3 + 𝛿2𝐿) [10, Lem.4], the

result for this case follows.

Monte Carlo: We perform one gcd computation by allowing randomization. If we choose integers 𝑎3, . . . , 𝑎𝑛
independently at random from the set {1, . . . , 𝐾𝑑}, where 𝐾 = O(1), we get that gcd(𝑓1, . . . , 𝑓𝑛) = gcd(𝑓1, 𝑓2 +
𝑎3 𝑓3 + · · · + 𝑎𝑛 𝑓𝑛) in Z[𝑥], with probability ≥ 1/2 [41, Thm. 6.46]. We compute 𝑔∗ = gcd(𝑓1, 𝑓2 + 𝑎3 𝑓3 + · · · + 𝑎𝑛 𝑓𝑛).
Notice that the polynomial 𝑓2 + 𝑎3 𝑓3 + · · · + 𝑎𝑛 𝑓𝑛 is asymptotically of size (𝛿, 𝐿). So, it takes Õ𝐵 (𝛿2 + 𝛿𝐿) to find

𝑔∗, using the probabilistic algorithm in [34].

Las Vegas: We can reduce the probability of failure in the Monte Carlo variant of the gcd computation to

zero, by performing 𝑛 exact divisions. In particular, we check if 𝑔∗ divides ℎ3, . . . , ℎ𝑛 . Using [41, Ex.10.21], the bit

complexity of these operations is in total Õ𝐵 (𝑛(𝛿2 + 𝛿𝜏)). □

Lemma 2.3. Let 𝑓1 (𝑋,𝑌 ), . . . , 𝑓𝑛 (𝑋,𝑌 ) ∈ Z[𝑋,𝑌 ] of bidegrees (𝛿, 𝛿) and L(𝑓𝑖 ) = 𝐿. We can compute their gcd in
worst case complexity Õ𝐵 (𝑛(𝛿5 + 𝛿4𝐿)), or with a Monte Carlo algorithm in Õ𝐵 (𝛿3 + 𝛿2𝐿), or with a Las Vegas
algorithm in Õ𝐵 (𝑛(𝛿3 + 𝛿2𝐿)).

Proof. The straightforward approach is to perform 𝑛 consecutive gcd computations, that is

gcd(𝑓1, gcd(𝑓2, gcd(· · · , gcd(𝑓𝑛−1, 𝑓𝑛))). To accelerate the practical complexity we should sort 𝑓𝑖 in increasing

order with respect to their degree. Each gcd computation costs Õ𝐵 (𝛿5 + 𝛿4𝐿) [8, Lem. 5], so the total worst case

cost is Õ𝐵 (𝑛𝛿5 + 𝑛𝛿4𝐿).
Alternatively, we consider the operation gcd(𝑓1,

∑𝑛
𝑘=2

𝑎𝑘 𝑓𝑘 ), where 𝑎𝑘 are random integers, following [41,

Thm. 6.46]. The expected cost of this gcd is Õ𝐵 (𝛿3 + 𝛿2𝐿). To see this, notice that we can perform a bivariate gcd

in expected time Õ(𝛿2) [41, Cor. 11.12], over a finite field with enough elements, and the bitsize of the result is

Õ(𝛿 + 𝐿) [25].
Then, for a Las Vegas algorithm, using exact division, we test if the resulting polynomial divides all 𝑓𝑖 , for

2 ≤ 𝑖 ≤ 𝑛. This costs Õ𝐵 (𝑛(𝛿3 + 𝛿2𝐿)), by adapting [41, Ex.10.21] to the bivariate case. □

3 RATIONAL CURVES
Following closely [3], we introduce basic notions for rational curves. Let C̃ be an algebraic curve over C𝑛 ,
parametrized by the map

𝜙 : C d C̃

𝑡 ↦→
(
𝜙1 (𝑡), . . . , 𝜙𝑛 (𝑡)

)
=

(𝑝1 (𝑡)
𝑞1 (𝑡)

, . . . ,
𝑝𝑛 (𝑡)
𝑞𝑛 (𝑡)

)
, (1)

where 𝑝𝑖 , 𝑞𝑖 ∈ Z[𝑡] are of size (𝑑, 𝜏) for 𝑖 ∈ [𝑛], and C̃ is the Zariski closure of Im(𝜙). We call𝜙 (𝑡) a parametrization
of C̃.

We study the real trace of
˜C, that is C := ˜C ∩ R𝑛 . A parametrization 𝜙 is chatacterized by means of properness

(Sec. 3.1) and normality (Sec. 3.2). To ensure these properties, one can reparametrize the curve, i.e., apply a rational

change of parameter to the given parametrization. We refer to [39, Ch. 6] for more details on reparameterization.

Without loss of generality, we assume that no component of the parametrization 𝜙 is constant; otherwise we

could embed
˜C in a lower dimensional space. We consider that 𝜙 is in reduced form, i.e., gcd(𝑝𝑖 (𝑡), 𝑞𝑖 (𝑡)) = 1, for
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all 𝑖 ∈ [𝑛]. The point at infinity, p∞, is the point on C we obtain for 𝑡 → ±∞ (if it exists). For a parametrization 𝜙 ,

we consider the following system of bivariate polynomials:

ℎ𝑖 (𝑠, 𝑡) =
𝑝𝑖 (𝑠)𝑞𝑖 (𝑡) − 𝑞𝑖 (𝑠)𝑝𝑖 (𝑡)

𝑠 − 𝑡 , for 𝑖 ∈ [𝑛] . (2)

Remark 1. The ℎ𝑖 ’s are polynomials since (𝑠, 𝑠) is a root of the numerator for every 𝑠 . Also, ℎ𝑖 (𝑡, 𝑡) = 𝜙 ′𝑖 (𝑡)𝑞2

𝑖 (𝑡) for
𝑖 ∈ [𝑛] [20, Lem. 1.7].

3.1 Proper parametrization

A parametrization is proper if 𝜙 (𝑡) is injective for almost all points on C̃. In other words, almost every point on

C̃ is the image of exactly one parameter value (real or complex). For other equivalent definitions of properness

we refer to [39, Ch. 4], [33]. The following condition [3, Thm. 1] leads to an algorithm for checking properness:

a parametrization is proper if and only if deg(gcd(ℎ1 (𝑠, 𝑡), . . . , ℎ𝑛 (𝑠, 𝑡))) = 0. By applying Lem. 2.3 we get the

following:

Lemma 3.1. There is an algorithm that checks if a parametrization 𝜙 is proper in worst-case bit complexity Õ𝐵 (𝑛(𝑑5+
𝑑4𝜏)) and in expected bit complexity Õ𝐵 (𝑛(𝑑3 + 𝑑2𝜏)).

Proof. The construction of all ℎ𝑖 costs O𝐵 (𝑛𝑑2𝜏). We need to check if deg(gcd(ℎ1 (𝑠, 𝑡), . . . , ℎ𝑛 (𝑠, 𝑡))) = 0 [3,

Thm. 1]. For the gcd computation, we employ Lem. 2.3 and the result follows. □

If 𝜙 is a not a proper parametrization, then there always exists a parametrization𝜓 ∈ Z(𝑡)𝑛 and 𝑅(𝑡) ∈ Z(𝑡)
such that 𝜓 (𝑅(𝑡)) = 𝜙 (𝑡) and 𝜓 is proper [39, Thm. 7.6]. There are various algorithms for obtaining a proper

parametrization, e.g., [18, 19, 30, 35, 39]. We consider the algorithm in [30] for its simplicity; its pseudo-code is in

Alg. 1.

Lemma 3.2. Consider a non-proper parametrization of a curve C, consisting of univariate polynomials of size (𝑑, 𝜏).
Alg. 1 computes a proper parametrization of C, involving polynomials of degree at most 𝑑 and bitsize O(𝑑2 + 𝑑𝜏), in
Õ𝐵 (𝑛(𝑑5 + 𝑑4𝜏)), in the worst case.

Proof. The algorithm first computes the bivariate polynomials 𝐻1, . . . 𝐻𝑛 . They have bi-degree at most (𝑑,𝑑)
and bitsize at most 2𝜏 + 1. Then, we compute their gcd, that we denote by 𝐻 , in Õ𝐵 (𝑛(𝑑5 + 𝑑4𝜏)) (Lem. 2.3). By

[25] and [4, Prop. 10.12] we have that L(𝐻 ) = O(𝑑 + 𝜏), which is also the case for 𝐶 𝑗 (𝑠).
If the degree of 𝐻 is one, then the parametrization is already proper and we have nothing to do. Otherwise, we

consider 𝐻 as a univariate polynomial in 𝑠 and we find two of its coefficients that are relatively prime, using

exact division. The complexity of this operation is𝑚2 · Õ𝐵 (𝑑2 + 𝑑𝜏) = Õ𝐵 (𝑑4 + 𝑑3𝜏) [41, Ex. 10.21].
Subsequently, we perform 𝑛 resultant computations to get 𝐿1, . . . 𝐿𝑛 . From these we obtain the rational functions

of the new parametrization. We focus on the computation of 𝐿1. The same arguments hold for all 𝐿𝑖 . The bi-degree

of 𝐿1 (𝑠, 𝑥) is (𝑑, 𝑑) [4, Prop. 8.49] and L(𝐿1) = O(𝑑2 + 𝑑𝜏) [4, Prop. 8.50]; the latter dictates the bitsize of the new
parametrization.

To compute 𝐿1, we consider 𝐹1 and𝐺 as univariate polynomials in 𝑡 and we apply a fast algorithm for computing

the univariate resultant based on subresultants [24]; it performs Õ(𝑑) operations. Each operation consists of

multiplying bivariate polynomials of bi-degree (𝑑, 𝑑) and bitsize O(𝑑2 +𝑑𝜏); so it costs Õ𝐵 (𝑑4 +𝑑3𝜏). We compute

the resultant in Õ𝐵 (𝑑5 + 𝑑4𝜏). We multiply the latter bound by 𝑛 to conclude the proof. □
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Algorithm 1: Make_Proper(𝜙)
Input: A parametrization 𝜙 ∈ Z(𝑡)𝑛 as in Eq. (1)

Output: A proper parametrization𝜓 = (𝜓1, . . . ,𝜓𝑛) ∈ Z(𝑡)𝑛

1 for 𝑖 ∈ [𝑛] do 𝐻𝑖 (𝑠, 𝑡) ← 𝑝𝑖 (𝑠)𝑞𝑖 (𝑡) − 𝑝𝑖 (𝑡)𝑞𝑖 (𝑠) ∈ Z[𝑠, 𝑡] ;
2 𝐻 ← gcd(𝐻1, . . . , 𝐻𝑛) = 𝐶𝑚 (𝑡)𝑠𝑚 + · · · +𝐶0 (𝑡) ∈ (Z[𝑡]) [𝑠]
3 if 𝑚 = 1 then return 𝜙 (𝑡) ;
4 Find 𝑘, 𝑙 ∈ [𝑚] such that:

deg(gcd(𝐶𝑘 (𝑡),𝐶𝑙 (𝑡))) = 0 and
𝐶𝑘 (𝑡 )
𝐶𝑙 (𝑡 ) ∉ Q

5 𝑅(𝑡) ← 𝐶𝑘 (𝑡 )
𝐶𝑙 (𝑡 )

6 𝑟 ← deg(𝑅) = max{deg(𝐶𝑘 ), deg(𝐶𝑙 )}
7 𝐺 ← 𝑠 𝐶𝑙 (𝑡) −𝐶𝑘 (𝑡)
8 for 𝑖 ∈ [𝑛] do
9 𝐹𝑖 ← 𝑥𝑞𝑖 (𝑡) − 𝑝𝑖 (𝑡)

10 𝐿𝑖 (𝑠, 𝑥) ← res𝑡 (𝐹𝑖 (𝑡, 𝑥),𝐺 (𝑡, 𝑠)) = (𝑞𝑖 (𝑠)𝑥 − 𝑝𝑖 (𝑠))𝑟
11 end
12 return𝜓 (𝑡) =

( �̃�1 (𝑡 )
�̃�1 (𝑡 ) , . . . ,

�̃�𝑛 (𝑡 )
�̃�𝑛 (𝑡 )

)
3.2 Normal parametrization
Normality of the parametrization concerns the surjectivity of the map 𝜙 . The parametrization 𝜙 (𝑡) is R-normal if

for all points p on C there exists 𝑡0 ∈ R such that 𝜙 (𝑡0) = p. When the parametrization is not R-normal, the points

that are not in the image of 𝜙 for 𝑡 ∈ R are p∞ (if it exists) and the isolated points that we obtain for complex

values of 𝑡 [32, Prop. 4.2]. An R-normal reparametrization does not always exist. We refer to [39, Sect. 7.3] for

further details.

However, if p∞ exists, then we reparametrize the curve to avoid possible singularities at infinity. The point p∞
exists if deg(𝑝𝑖 ) ≤ deg(𝑞𝑖 ), for all 𝑖 ∈ [𝑛].

Lemma 3.3. If p∞ exists, then we can reparametrize the curve with a linear function to ensure that p∞ is not a
singular point, using a Las Vegas algorithm in expected time Õ𝐵 (𝑛(𝑑2 + 𝑑𝜏)). The new parametrization involves
polynomials of size (𝑑, Õ(𝑑 + 𝜏)).

Proof. The point at infinity depends on the parametrization. So, for this proof, let us denote the point at

infinity of 𝜙 by p𝜙∞.
The reparametrization consists in choosing 𝑡0 ∈ R and applying the map 𝑟 : 𝑡 ↦→ 𝑡0 𝑡+1

𝑡−𝑡0

to 𝜙 , to obtain a new

parametrization, 𝜓 = 𝜙 ◦ 𝑟 . The point at infinity of the new parametrization is p𝜓∞ = 𝜙 (𝑡0). We need to ensure

that p𝜓∞ = 𝜙 (𝑡0) is not singular. There are O(𝑑2) singular points, so we choose 𝑡0 uniformly at random from the

set {1, . . . , 𝐾𝑑2} where 𝐾 = O(1). Then, with probability ≥ 1/2, 𝜙 (𝑡0) is not singular and p𝜓∞ is also not singular.

The bound on the possible values of 𝑡0 implies that the bitsize of 𝑡0 is O(lg(𝑑)).
We compute the new parametrization,𝜓 , in Õ𝐵 (𝑛(𝑑2 + 𝑑𝜏)) using multipoint evaluation and interpolation, by

exploiting the fact that the polynomials in𝜓 have degrees at most 𝑑 and bitsize Õ(𝑑 + 𝜏).
For a Las Vegas algorithm we need to check if 𝜙 (𝑡0) is a cusp or a multiple point. For the former, we

evaluate 𝜙 ′ at 𝑡0 (see Rem. 1). This costs Õ𝐵 (𝑛𝑑𝜏) [9, Lem. 3]. For the latter, we check if deg(gcd(𝜙1 (𝑡0)𝑞1 (𝑡) −
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𝑝1 (𝑡), . . . , 𝜙1 (𝑡0)𝑞1 (𝑡) − 𝑝1 (𝑡))) = 0 in Õ𝐵 (𝑛(𝑑2 + 𝑑𝜏)) (Lem. 2.2). If 𝜙 ′(𝑡0) is not the zero vector and the degree of

the gcd is zero, then 𝜙 (𝑡0) is not singular. □

Remark 2. Since the reparametrizing function in the previous lemma is linear, it does not affect properness [39,
Thm. 6.3].

4 SPECIAL POINTS ON THE CURVE
We consider a parametrization 𝜙 of C as in Eq. (1), such that 𝜙 is proper and there are no singularities at infinity.

We highlight the necessity of these assumptions when needed. We detect the parameters that generate the special
points of C, namely the singular, the isolated, and the extreme points. We identify the values of the parameter for

which 𝜙 is not defined, namely the poles (see Def. 1); in presence of poles, C consists of multiple components.

Definition 1. The parameters for which 𝜙 (𝑡) is not defined are the poles of 𝜙 . The sets of poles over the complex
and the reals are:

TC𝑃 = {𝑡 ∈ C :

∏
𝑖∈[𝑛]

𝑞𝑖 (𝑡) = 0} and TR𝑃 = TC𝑃 ∩ R.

We consider the solution set 𝑆 of system (2) over C2
:

𝑆 = {(𝑡, 𝑠) ∈ C2
: ℎ𝑖 (𝑡, 𝑠) = 0 for all 𝑖 ∈ [𝑛]}.

Remark 3. Notice that when 𝜙 is in reduced form, if (𝑠, 𝑡) ∈ 𝑆 and (𝑠, 𝑡) ∈ (C \ TC
𝑃
) ×C, then also 𝑡 ∉ TC

𝑃
[33, (in the

proof of) Lem. 9].

Next, we present some well known results [33, 39] that we adapt in our notation.

Singular points. Quoting [26], "Algebraically, singular points are points on the curve, in whose neighborhood

the curve cannot be represented as an one-to-one and 𝐶∞ bijective map with an open interval on the real line".

Geometrically, singularities correspond to shape features that are known as cusps and self-intersections of smooth

branches. Cusps are points on the curve where the tangent vector is the zero vector. This is a necessary and

sufficient condition when the parametrization is proper [26]. Self-intersections are multiple points, i.e., points on
C with more than one preimages.

Lemma 4.1. The set of parameters corresponding to real cusps is

T𝐶 =
{
𝑡 ∈ R \ TR𝑃 : (𝑡, 𝑡) ∈ 𝑆

}
.

The set of parameters corresponding to real multiple points is

T𝑀 = {𝑡 ∈ R \ TR𝑃 : ∃𝑠 ≠ 𝑡, 𝑠 ∈ R such that (𝑡, 𝑠) ∈ 𝑆}.

Proof. The description of T𝐶 is an immediate consequence of Rem. 1. It states that ℎ𝑖 (𝑡, 𝑡) = 𝜙 ′𝑖 (𝑡)𝑞2

𝑖 (𝑡), for
𝑖 ∈ [𝑛].

Now let p = 𝜙 (𝑡) be a multiple point on C. Then, there is 𝑠 ∈ R \ TR
𝑃
with 𝜙 (𝑡) = 𝜙 (𝑠) ⇒ ℎ𝑖 (𝑡, 𝑠) = 0 for all

𝑖 ∈ [𝑛] and so 𝑡 ∈ T𝑀 . Conversely, let 𝑡 ∈ T𝑀 and 𝑠 ≠ 𝑡 , 𝑠 ∈ R such that ℎ𝑖 (𝑡, 𝑠) = 0 for all 𝑖 ∈ [𝑛]. From [33,

(in the proof of) Lem. 9], when 𝜙 is in reduced form, if (𝑡, 𝑠) ∈ 𝑆 and (𝑡, 𝑠) ∈ (R \ TR
𝑃
) × R, then also 𝑠 ∉ TR

𝑃
. So,

ℎ𝑖 (𝑡, 𝑠) = 0⇔ 𝑝𝑖 (𝑡 )
𝑞𝑖 (𝑡 ) =

𝑝𝑖 (𝑠)
𝑞𝑖 (𝑠) for all 𝑖 ∈ [𝑛], and thus p = 𝜙 (𝑡) = 𝜙 (𝑠) is real multiple point. □

Notice that T𝐶 and T𝑀 are not necessarily disjoint, for at the same point we may have both cusps and smooth

branches that intersect.
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Isolated points. An isolated point on a real curve can only occur for complex values of the parameter. The

point at infinity is not isolated because it is the limit of a sequence of real points.

Lemma 4.2. The set of parameters generating isolated points of C is

T𝐼 ={𝑡 ∈ C \ (R ∪ TC𝑃 ) : (𝑡, 𝑡) ∈ 𝑆 and �𝑠 ∈ R s.t. (𝑡, 𝑠) ∈ 𝑆}.

Proof. Let p = 𝜙 (𝑡) ∈ R𝑛 be an isolated point, where 𝑡 ∈ C \ (R ∪ TC
𝑃
). Notice that p is also a multiple

point, since it holds that 𝜙𝑖 (𝑡) = 𝜙𝑖 (𝑡) = 𝜙𝑖 (𝑡) for 𝑖 ∈ [𝑛]. Thus, ℎ𝑖 (𝑡, 𝑡) = 0 for all 𝑖 ∈ [𝑛] and (𝑡, 𝑡) ∈ 𝑆 .
Moreover, since p is isolated, there are no real branches through p and there does not exist 𝑠 ∈ R such that

𝜙 (𝑡) = 𝜙 (𝑠) ⇒ ℎ𝑖 (𝑡, 𝑠) = 0, for all 𝑖 ∈ [𝑛]. So, 𝑡 ∈ T𝐼 .
Conversely, let (𝑡, 𝑡) ∈ 𝑆 with 𝑡 ∈ C \ R ∪ TC

𝑃
. Since 𝜙 is in reduced form, we have that 𝑡 ∉ 𝑃C[33, (in the proof

of) Lem. 9], therefore ℎ𝑖 (𝑡, 𝑡) = 0, for all 𝑖 ∈ [𝑛], implies that 𝜙 (𝑡) = 𝜙 (𝑡) = 𝜙 (𝑡) ∈ R𝑛 . Since there does not exist
𝑠 ∈ R with 𝜙 (𝑡) = 𝜙 (𝑠), p is an isolated point on C. □

Extreme points. Consider a vector ®𝛿 and a point on C whose tangent vector is parallel to
®𝛿 . If the point is not

singular, then it is an extreme point of C with respect to
®𝛿 . We compute the extreme points with respect to the

direction of each coordinate axis. Rem. 1 leads to the following lemma:

Lemma 4.3. The set of parameters generating extreme points is

T𝐸 =
{
𝑡 ∈ R \ TR𝑃 :

∏
𝑖∈[𝑛]

ℎ𝑖 (𝑡, 𝑡) = 0 and 𝑡 ∉ T𝐶 ∪ T𝑀
}
.

4.1 Computation and Complexity
From Lemmata 4.1, 4.2, and 4.3, it follows that given a proper parametrization 𝜙 without singular points at infinity,

we can easily find the poles and the set of parameters generating cusps, mutliple, extreme, and isolated points. We

do so, by solving an over-determined bivariate polynomial system and univariate polynomial equations. Then,

we classify the parameters that appear in the solutions, by exploiting the fact the system is symmetric. For sake

of completeness, we describe the procedure in Alg. 2.

To compute the RUR of an overdetermined bivariate system (Thm. 4.6), we employ Lem. 4.4 and Prop. 4.5,

which adapt the techniques used in [8] to our setting.

Lemma 4.4. Let 𝑓 , 𝑔, ℎ1, . . . , ℎ𝑛 ∈ Z[𝑋,𝑌 ] with degrees bounded by 𝛿 and bitsize of coefficients bounded by 𝐿.
Computing a common separating element in the form 𝑋 + 𝛼𝑌, 𝛼 ∈ Z for the 𝑛+1 systems of bivariate polynomial
equations {𝑓 = 𝑔 = 0}, {𝑓 = ℎ𝑖 = 0}, 𝑖 = 1 . . . 𝑛 needs Õ𝐵 (𝑛(𝛿6 + 𝛿5𝐿)) bit operations in the worst case, and
Õ𝐵 (𝑛(𝛿5 + 𝛿4𝐿)) in the expected case with a Las Vegas Algorithm. Moreover, the bitsize of 𝛼 does not exceed
log(2𝑛𝛿4).

Proof. A straightforward strategy consists in running simultaneously Algorithm 5 (worst case) or Algorithm

5’ (Las Vegas) from [8] on all the systems. The only modifications needed are that the values of 𝛼 to be considered

are less than 2𝑛𝛿4
(twice a bound on the total number of solutions of all the systems) and that the exit test is

valid if and only if it is valid for all the systems. □

Proposition 4.5. Let 𝑓 , 𝑔 ∈ Z[𝑋,𝑌 ] with degrees bounded by 𝛿 and coefficients’ bitsizes bounded by 𝐿. We can
compute a rational parameterization {ℎ(𝑇 ), 𝑋 =

ℎ𝑋 (𝑇 )
ℎ1 (𝑇 ) , 𝑌 =

ℎ𝑌 (𝑇 )
ℎ1 (𝑇 ) } of 𝑓 , 𝑔 with ℎ,ℎ1, ℎ𝑋 , ℎ𝑌 ∈ Z[𝑇 ] with degrees less

than 𝛿2 and coefficients’ bitsizes in Õ(𝛿 (𝐿 +𝛿)), in Õ𝐵 (𝛿5 (𝐿 +𝛿)) bit operations in the worst case and Õ𝐵 (𝛿4 (𝐿 +𝛿))
expected bit operations with a Las Vegas Algorithm.
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Algorithm 2: Special_Points(𝜙)
Input: Proper parametrization 𝜙 ∈ Z(𝑡)𝑛 without singularity at infinity, as in Eq. (1)

Output: Real poles and parameters that give real cusps, multiple, isolated and extreme points.

/* The subroutines SOLVE_R and SOLVE_C return the solution set of a univariate

polynomial or a system of polynomials over the real and complex numbers resp. */

1 Compute polynomials ℎ1 (𝑠, 𝑡), . . . , ℎ𝑛 (𝑠, 𝑡)
2 TR

𝑃
← ⋃

𝑖∈𝑛 SOLVE_R(𝑞𝑖 (𝑡) = 0)
3 TC

𝑃
← ⋃

𝑖∈[𝑛] SOLVE_C(𝑞𝑖 (𝑡) = 0)
4 𝑆 ← SOLVE_C(ℎ1 (𝑠, 𝑡) = 0, . . . , ℎ𝑛 (𝑠, 𝑡) = 0)
5 T𝐶 , T𝑀 , T𝐼 ,𝑊 ← ∅
6 for (𝑠, 𝑡) ∈ 𝑆 do
7 if 𝑠 = 𝑡 and 𝑠 ∈ R \ TR

𝑃
then

8 T𝐶 ← T𝐶 ∪ {𝑡}
9 end

10 else if 𝑠 ≠ 𝑡 then
11 if 𝑠 ∈ R \ TR

𝑃
then

12 if 𝑡 ∈ R then
13 T𝑀 ← T𝑀 ∪ {𝑡}
14 end
15 else
16 𝑊 ←𝑊 ∪ {𝑡}
17 end
18 end
19 else if 𝑠 = 𝑡 and 𝑠 ∉ TC

𝑃
then

20 T𝐼 ← T𝐼 ∪ {𝑡}
21 end
22 end
23 end
24 T𝐼 ← T𝐼 \𝑊

/* Extreme points */

25 T𝐸 ←
⋃

𝑖∈𝑛 SOLVE_R(ℎ𝑖 (𝑡, 𝑡) = 0)
26 T𝐸 ← T𝐸 \ (𝑇𝐸 ∩ (T𝐶 ∪ T𝑀 ))

Proof. Algorithms 6 and 6’ from [8] compute a RUR decomposition of 𝑓 = 𝑔 = 0 in Õ𝐵 (𝛿5 (𝐿+𝛿)) bit operations
in the worst case and Õ𝐵 (𝛿4 (𝐿 + 𝛿)) expected bit operations with a Las Vegas Algorithm respectively. They

provide 𝑠 ⩽ 𝛿 parameterizations in the form {ℎ𝑖 (𝑇 ), ℎ𝑖,𝑋 (𝑇 )ℎ𝑖,1 (𝑇 ) ,
ℎ𝑖,𝑌 (𝑇 )
ℎ𝑖,1 (𝑇 ) }, where 𝑖 = 1..𝑠 , with the following properties:

• ∏𝑠
𝑖=1
ℎ𝑖 is a polynomial of degree at most 𝛿2

with coefficients of bitsize Õ(𝛿𝐿 + 𝛿2).
• The degrees of ℎ𝑖,1 (𝑇 ), ℎ𝑋,1 (𝑇 ) and ℎ𝑌,1 (𝑇 ) are less then the degree of ℎ𝑖 .

• The coefficients’ bitsizes of ℎ𝑖,1 (𝑇 ), ℎ𝑋,1 (𝑇 ) and ℎ𝑌,1 (𝑇 ) are in Õ𝐵 (𝛿𝐿 + 𝛿2).
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Also,

∏𝑠
𝑖=1
ℎ𝑖 ,

∑𝑛
𝑛=1

ℎ 𝑗,𝑋

∏
𝑖≠𝑗 ℎ𝑖∑𝑛

𝑛=1
ℎ 𝑗,1

∏
𝑖≠𝑗 ℎ𝑖

,

∑𝑛
𝑛=1

ℎ 𝑗,𝑌

∏
𝑖≠𝑗 ℎ𝑖∑𝑛

𝑛=1
ℎ 𝑗,1

∏
𝑖≠𝑗 ℎ𝑖

is a rational parameterization of the system {𝑓 = 𝑔 = 0}, defined by

polynomials of degree less than 𝛿2
with coefficients of bitsizes Õ(𝛿 (𝐿 + 𝛿)) and can be computed from the RUR

decomposition performing O(𝑠) multiplications of polynomials of degree at most 𝛿2
with coefficients of bitsize

Õ(𝛿 (𝐿 + 𝛿)), which requires Õ𝐵 (𝛿4 (𝐿 + 𝛿)) bit operations. □

Theorem 4.6. There exists an algorithm that computes the RUR and the isolating boxes of the roots of the system
{ℎ1 (𝑠, 𝑡) = · · · = ℎ𝑛 (𝑠, 𝑡) = 0} with worst-case bit complexity Õ𝐵 (𝑛(𝑑6 + 𝑑5𝜏)). There is also a Las Vegas variant
with expected complexity Õ𝐵 (𝑑6 + 𝑛𝑑5 + 𝑑5𝜏 + 𝑛𝑑4𝜏).

Proof. Assume that we know a common separating linear element ℓ (𝑠, 𝑡) = ℓ0 + ℓ1𝑠 + ℓ2𝑡 that separates the
roots of the 𝑛-1 systems of bivariate polynomial equations {ℎ1 = ℎ2 = 0}, {ℎ1 = ℎ𝑖 = 0}, for 3 ≤ 𝑖 ≤ 𝑛. We

can compute ℓ with Õ𝐵 (𝑛(𝑑6 + 𝑑5𝜏)) bit operations in the worst case and with Õ𝐵 (𝑛(𝑑5 + 𝑑4𝜏)) expected bit

operations with a Las Vegas algorithm (Lem. 4.4).

We denote by {𝑟 (𝑇 ), 𝑟𝑠 (𝑇 )
𝑟𝐼 (𝑇 ) ,

𝑟𝑡 (𝑇 )
𝑟𝐼 (𝑇 ) } a RUR for {ℎ1 = ℎ2 = 0} with respect to ℓ . In addition, for 𝑖 = 3 . . . 𝑛, let

{𝑟𝑖 (𝑇 ), 𝑟𝑖,𝑠 (𝑇 )𝑟𝑖,𝐼 (𝑇 ) ,
𝑟𝑖,𝑡 (𝑇 )
𝑟𝑖,𝐼 (𝑇 ) } be the RUR of {ℎ1 = ℎ𝑖 = 0}, also with respect to ℓ . We can compute all these representations

with Õ𝐵 (𝑛(𝑑6 + 𝑑5𝜏)) bit operations in the worst case, and with Õ𝐵 (𝑛(𝑑5 + 𝑑4𝜏)) in expected case with a Las

Vegas algorithm (Lem. 4.5).

Then, for the system {ℎ1 = ℎ2 = . . . = ℎ𝑛 = 0} we can define a rational parameterization {𝜒 (𝑇 ), 𝑟𝑠 (𝑇 )
𝑟𝐼 (𝑇 ) ,

𝑟𝑡 (𝑇 )
𝑟𝐼 (𝑇 ) },

where

𝜒 (𝑇 ) = gcd( 𝑟 (𝑇 ), 𝑟3 (𝑇 ), . . . , 𝑟𝑛 (𝑇 ),
𝑟𝑠 (𝑇 )𝑟3,𝐼 (𝑇 ) − 𝑟3,𝑠 (𝑇 )𝑟𝐼 (𝑇 ), 𝑟𝑡 (𝑇 )𝑟3,𝐼 (𝑇 ) − 𝑟3,𝑡 (𝑇 )𝑟𝐼 (𝑇 ),

.

.

.

𝑟𝑠 (𝑇 )𝑟𝑛,𝐼 (𝑇 ) − 𝑟𝑛,𝑠 (𝑇 )𝑟𝐼 (𝑇 ), 𝑟𝑡 (𝑇 )𝑟𝑛,𝐼 (𝑇 ) − 𝑟𝑛,𝑡 (𝑇 )𝑟𝐼 (𝑇 )) .
So, to compute such a parameterization we still need to compute the gcd of 3𝑛 − 5 univariate polynomials of

degrees at most 𝑑2
and coefficients of bitsizes in Õ(𝑑𝜏) which needs Õ𝐵 (𝑛(𝑑6 + 𝑑4𝜏)) bit operations in the worst

case. Isolating the roots of such a parameterization requires Õ𝐵 (𝑑6 + 𝑑5𝜏) according to Alg. 7 from [8]. □

Remark 4 (RUR and isolating interval representation). If we use Thm.4.6 to solve the over-determined
bivariate system of the ℎ𝑖 polynomials of Eq. (2), then we obtain in the output a RUR for the roots, which is as follows:
There is a polynomial 𝜒 (𝑇 ) ∈ Z[𝑇 ] of size (O(𝑑2), Õ(𝑑2 + 𝑑𝜏)) and a mapping

𝑉 (𝜒) → 𝑉 (ℎ1, . . . , ℎ𝑛)

𝑇 ↦→
(𝑟𝑠 (𝑇 )
𝑟𝐼 (𝑇 )

,
𝑟𝑡 (𝑇 )
𝑟𝐼 (𝑇 )

)
, (3)

that defines an one-to-one correspondence between the roots of 𝜒 and those of the system. The polynomials 𝑟𝑠 , 𝑟𝑡 , and
𝑟𝐼 are in Z[𝑇 ] and have also size (O(𝑑2), Õ(𝑑2 + 𝑑𝜏)).

Taking into account the cost to compute this parametrization of the solutions (Thm.4.6), we can also compute at no
extra cost the resultant of {ℎ1, ℎ2} with respect to 𝑠 or 𝑡 . Notice that both resultants are the same polynomial, since
the system is symmetric. Let 𝑅𝑠 (𝑡) = res𝑠 (ℎ1, ℎ2). It is of size (O(𝑑2),O(𝑑2 + 𝑑𝜏)) [4, Prop. 8.46].

Under the same bit complexity, we can sufficiently refine the isolating boxes of the solutions of the bivariate system
(computed in Thm.4.6), so that every root ( 𝑟𝑠 (𝜉)

𝑟𝐼 (𝜉) ,
𝑟𝑡 (𝜉)
𝑟𝐼 (𝜉) ), where 𝜒 (𝜉) = 0, has a representation as a pair of algebraic

numbers in isolating interval representation:

((𝑅𝑠 , 𝐼1,𝜉 × 𝐼2,𝜉 ), (𝑅𝑠 , 𝐽1,𝜉 × 𝐽2,𝜉 )) . (4)

Both coordinates are roots of the same polynomial. Moreover, 𝐼2,𝜉 , 𝐽2,𝜉 are empty sets when the corresponding algebraic
number is real. Therefore, we can immediately distinguish between real and complex parameters. At the same time,
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we associate to each isolating box of a root of 𝑅𝑠 the algebraic numbers 𝜌 = (𝜒, 𝐼𝜌 × 𝐽𝜌 ) for whom it holds that 𝑟𝑠 (𝜌)
𝑟𝐼 (𝜌)

projects inside this isolating box. We can interchange between the two of representations in constant time, and this
will simplify our computations in the sequel.

Lemma 4.7. Let C be a curve with a proper parametrization 𝜙 (𝑡) as in (1), that has no singularities at infinity.
We compute the real poles of 𝜙 and the parameters corresponding to singular, extreme, and isolated points of C in
worst-case bit complexity

Õ𝐵 (𝑛𝑑6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),
and using a Las Vegas algorithm in expected bit complexity

Õ𝐵 (𝑑6 + 𝑑5 (𝑛 + 𝜏) + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏).

Proof. The proof is an immediate consequence of the following:

•We compute all ℎ𝑖 ∈ Z[𝑠, 𝑡] in Õ𝐵 (𝑛𝑑2𝜏): To construct each ℎ𝑖 we perform 𝑑2
multiplications of numbers of

bitsize 𝜏 ; the cost for this is Õ𝐵 (𝑑2𝜏). The bi-degree of each is at most (𝑑, 𝑑) and L(ℎ𝑖 ) ≤ 2𝜏 + 1 = O(𝜏).
• The real poles of 𝜙 are computed in Õ𝐵 (𝑛2 (𝑑4 + 𝑑3𝜏)): To find the poles of 𝜙 , we isolate the real roots of each

polynomial 𝑞𝑖 (𝑡), for 𝑖 ∈ [𝑛]. This costs Õ𝐵 (𝑛(𝑑3 + 𝑑2𝜏)) [28]. Then we sort the roots in Õ𝐵 (𝑛 𝑑 𝑛(𝑑3 + 𝑑2𝜏)) =
Õ𝐵 (𝑛2 (𝑑4 + 𝑑3𝜏)).
• The parameters corresponding to cusps, multiple and isolated points of C are computed in Õ𝐵 (𝑛(𝑑6 + 𝑑5𝜏)):
We solve the bivariate system (2) in Õ𝐵 (𝑛(𝑑6 + 𝑑5𝜏)) or in expected time Õ𝐵 (𝑑6 + 𝑛𝑑5 + 𝑑5𝜏 + 𝑛𝑑4𝜏) (Thm. 4.6).

Then we have a parametrization of the solutions of the bivariate system (2) of the form (3) and in the same

time of the form (4) (see Rem. 4). Some solutions (𝑠, 𝑡) ∈ 𝑆 may not correspond to points on the curve, since

𝑠, 𝑡 can be poles of 𝜙 . Notice that from Rem. 3, 𝑠 and 𝑡 are either both poles or none of them is a pole. We

compute 𝑔𝑠 = gcd(𝑅𝑠 , 𝑄), where 𝑄 (𝑡) =
∏

𝑖∈[𝑛] 𝑞𝑖 (𝑡), and the gcd-free part of 𝑅𝑠 with respect to 𝑄 . This is done

in Õ𝐵 (max{𝑛,𝑑} (𝑛𝑑3𝜏 + 𝑛𝑑2𝜏2)) [10, Lem. 5].

Every root of 𝑅∗𝑠 is an algebraic number of the form (𝑅𝑠 , 𝐼1,𝜉 × 𝐼2,𝜉 ), for some 𝜉 that is root of 𝜒 . We can easily

determine if it corresponds to a cusp, a multiple or an isolated point; when real (i.e., 𝐼2,𝜉 = ∅) it corresponds to
a cusp of C if and only if ((𝑅𝑠 , 𝐼1,𝜉 ), (𝑅𝑠 , 𝐼1,𝜉 )) is in 𝑆 . Otherwise, it corresponds to a multiple point. When it is

complex (i.e., 𝐼2,𝜉 ≠ ∅), it corresponds to an isolated pont of C if and only if ((𝑅𝑠 , 𝐼1,𝜉 × 𝐼2,𝜉 ), (𝑅𝑠 , 𝐼1,𝜉 × (−𝐼2,𝜉 ))) ∈ 𝑆
and there is no root in 𝑆 of the form ((𝑅𝑠 , 𝐼1,𝜉 × 𝐼2,𝜉 ), (𝑅𝑠 , 𝐽1,𝜉′)).
• The parameters corresponding to extreme points of C are computed in Õ𝐵 (𝑑4𝑛𝜏 + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑑2𝑛3𝜏):
For all 𝑖 ∈ [𝑛], ℎ𝑖 (𝑡, 𝑡) is a univariate polynomial of size (O(𝑑),O(𝜏)). Then, 𝐻 (𝑡) = ∏

𝑖∈[𝑛] ℎ𝑖 (𝑡, 𝑡) is of size
(O(𝑛𝑑), Õ(𝑛𝜏)). The parameters that correspond to extreme points are among the roots of 𝐻 (𝑡). To make sure

that poles and parameters that give singular points are excluded, we compute gcd(𝐻,𝑄 · 𝑅𝑠 ), where 𝑄 (𝑡) =∏
𝑖∈[𝑛] 𝑞𝑖 (𝑡), and the gcd-free part of 𝐻 with respect to 𝑄 · 𝑅𝑠 , say 𝐻 ∗. Since 𝑄 · 𝑅𝑠 is a polynomial of size

(𝑑2 +𝑛𝑑, (𝑑 +𝑛)𝜏), the computation of the gcd and the gcd-free part costs Õ𝐵 (𝑛(𝑑4𝜏 +𝑛𝑑3𝜏 +𝑛2𝑑2𝜏)) [10, Lem. 5].

Then, 𝐻 = gcd(𝐻,𝑄 · 𝑅𝑠 )𝐻 ∗, and the real roots of 𝐻 ∗ give the parameters that correspond to extreme points. We

isolate the real roots of 𝐻 ∗ in Õ𝐵 (𝑛3 (𝑑3 + 𝑑2𝜏)), since it is a polynomial of size (O(𝑛𝑑), Õ(𝑛(𝑑 + 𝜏))). □

5 PTOPO: TOPOLOGY AND COMPLEXITY
We present PTOPO, an algorithm to construct an abstract graph 𝐺 that is isotopic [7, p.184] to C when we embed

it in R𝑛 . We emphasize that, currently, we do not treat/compute knots in the case of space curves. The embedding

consists of a graph whose vertices are points on the curve given by their parameter values. The edges are smooth

parametric arcs that we can continuously deform to branches of C without any topological changes. We need

to specify a bounding box in R𝑛 inside which the constructed graph results in an isotopic embedding to C. We
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comment at the end of the section on the case where an arbitrary box is provided at the input. We determine a

bounding box in R𝑛 , which we call characteristic, that captures all the topological information of C:
Definition 2. A characteristic box of C is a box enclosing a subset of R𝑛 that intersects all components of C and
contains all its singular, extreme, and isolated points.

Let BC be a characteristic box of C. If C is bounded, then C ⊂ BC . If C is unbounded, then the branches of C
that extend to infinity intersect the boundary of BC . A branch of the curve extends to infinity if for 𝑡 → 𝑡0, it

holds | |𝜙 (𝑡) | | > 𝑀 , for any𝑀 > 0, where 𝑡0 ∈ R ∪ {∞}. Lem. 5.1 computes a characteristic box using the degree

and bitsize of the polynomials in the parametrization (1).

Lemma 5.1. Let C be a curve with a parametrization as in (1). For 𝑏 = 15𝑑2 (𝜏 + log𝑑) = O(𝑑2𝜏), BC = [−2
𝑏, 2𝑏]𝑛

is a characteristic box of C.
Proof. We estimate the maximum and minimum values of 𝜙𝑖 , 𝑖 ∈ [𝑛], when we evaluate it at the parameter

values that correspond to special points and also at each pole that is not a root of 𝑞𝑖 .

Let 𝑡0 be a parameter that corresponds to a cusp or an extreme point with respect to the 𝑖-th direction. Then, it

is a root of 𝜙 ′𝑖 (𝑡). Let 𝑁 (𝑡) = 𝑝 ′𝑖 (𝑡)𝑞𝑖 (𝑡) − 𝑝𝑖 (𝑡)𝑞′𝑖 (𝑡) the numerator of 𝜙 ′𝑖 (𝑡). Then 𝑁 (𝑡0) = 0. The degree of 𝑁 (𝑡)
is ≤ 2𝑑 − 1 and L(𝑁 ) ≤ 2

2𝜏+log𝑑+1
. From Lem. 2.1 we conclude that |𝑝𝑖 (𝑡0) | ≤ 2

4𝑑𝜏+𝑑 log(𝑑)+(3𝑑−1) log(3𝑑−1)+𝑑−𝜏
.

Analogously, it holds that |𝑞𝑖 (𝑡0) | ≥ 2
−4𝑑𝜏−𝑑 log(𝑑)−(3𝑑−1) log(3𝑑−1)−𝑑+𝜏

. Therefore,

|𝜙𝑖 (𝑡0) | ≤ 2
2(4𝑑𝜏+𝑑 log(𝑑)+(3𝑑−1) log(3𝑑−1)+𝑑−𝜏) .

Now, let (𝑡1, 𝑡2) be two parameters corresponding to a multiple point of C, i.e., (𝑡1, 𝑡2) is a root of the bivariate
system in Eq. (2). Take any 𝑗, 𝑘 ∈ [𝑛] with 𝑗 ≠ 𝑘 and let 𝑅(𝑡) = res𝑠 (ℎ 𝑗 , ℎ𝑘 ). It holds that 𝑅(𝑡1) = 0. The degree

of 𝑅 is ≤ 2𝑑2
and L(𝑅) ≤ 2𝑑 (𝜏 + log(𝑑) + log(𝑑 + 1) + 1) [4, Prop. 8.29]. Applying Lem. 2.1, we deduce that

|𝜙𝑖 (𝑡1) | ≤ 2
4𝑑2 (𝜏+log(𝑑)+log(𝑑+1)+1)+4𝑑2𝜏+(2𝑑2+𝑑) log(2𝑑2+𝑑) .

Let 𝑡3 be a pole of 𝜙 with 𝑞 𝑗 (𝑡3) = 0, for some 𝑗 ≠ 𝑖 . If 𝜙𝑖 (𝑡3) is defined, applying Lem. 2.1 gives

|𝜙𝑖 (𝑡3) | ≤ 2
4𝑑𝜏+4𝑑 log 2𝑑 .

To conclude, we take the maximum of the three bounds. However, to simplify notation, we slightly overestimate

the latter bound. □

The vertices of the embedded graph must include the singular and the isolated points of C. Additionally, to
rigorously visualize the geometry of C, we consider as vertices the extreme points of C, with respect to all

coordinate directions, as well as the intersections of C with the boundary of the bounding box. We label the

vertices of𝐺 using the corresponding parameter values generating these points and we connect them accordingly.

Alg. 3 presents the pseudo-code of PTOPO and here we give some more details on the various steps. We construct

𝐺 as follows:

First, we compute the poles and the sets T𝐶 , T𝑀 , T𝐸 , and T𝐼 of parameters corresponding to “special points”.

Then, we compute the characteristic box of C, say BC . We compute the set T𝐵 of parameters corresponding to

the intersections of C with the boundary of BC (if any). Lem. 5.2 describes this procedure and its complexity.

Lemma 5.2. Let B = [𝑙1, 𝑟1] × · · · × [𝑙𝑛, 𝑟𝑛] in R𝑛 and L(𝑙𝑖 ) = L(𝑟𝑖 ) = 𝜎 , for 𝑖 ∈ [𝑛]. We can find the parameters
that give the intersection points of 𝜙 with the boundary of B in Õ𝐵 (𝑛2𝑑3 + 𝑛2𝑑2 (𝜏 + 𝜎)).
Proof. For each 𝑖 ∈ [𝑛] the polynomials 𝑞𝑖 (𝑡)𝑙𝑖 − 𝑝𝑖 (𝑡) = 0 and 𝑞𝑖 (𝑡)𝑟𝑖 − 𝑝𝑖 (𝑡) = 0 are of size (O(𝑑),O(𝜏 + 𝜎)).

So, we compute isolating intervals for all their real solutions in Õ𝐵 (𝑑2 (𝜏 + 𝜎)) [27]. For any root 𝑡0 of each of

these polynomials, since 𝜙 is in reduced form (by assumption), we have 𝑡0 ∉ TR
𝑃
. We check if 𝜙 𝑗 (𝑡0) ∈ [𝑙 𝑗 , 𝑟 𝑗 ],

𝑗 ∈ [𝑛] \ 𝑖 . This requires 3 sign evaluations of univariate polynomials of size (𝑑, 𝜏 +𝜎) at all roots of a polynomial
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of size (𝑑, 𝜏 + 𝜎). The bit complexity of performing these operations for all the roots is Õ𝐵 (𝑑3 + 𝑑2 (𝜏 + 𝜎)) [40,
Prop. 6]. Since we repeat this procedure 𝑛 − 1 times for every 𝑖 ∈ [𝑛], the total cost is Õ𝐵 (𝑛2𝑑3 +𝑛2𝑑2 (𝜏 +𝜎)). □

We partition T𝐶 ∪ T𝑀 ∪ T𝐸 ∪ T𝐼 ∪ T𝐵 into groups of parameters that correspond to the same point on C. For
each group, we add a vertex to 𝐺 if and only if the corresponding point is inside the bounding box B; for the
characteristic box it is inside by construction.

Lemma 5.3. The graph𝐺 has 𝜅 = O(𝑑2+𝑛𝑑) vertices, which can be computed using O(𝑑2+𝑛𝑑) arithmetic operations.

Proof. Since T𝐵 ∩ T𝑀 = ∅ and T𝐸 ∩ T𝑀 = ∅, to each parameter in T𝐵 and T𝐸 corresponds a unique point

on C. So for every 𝑡 ∈ T𝐵 ∪ T𝐸 we add a vertex to 𝐺 , labeled by the respective parameter. Next, we group the

parameters in T𝐶 ∪ T𝑀 ∪ T𝐼 that give the same point on C and we add for each group a vertex at𝐺 labeled by the

corresponding parameter values.

Grouping of the parameters is done as follows: For every 𝑡 ∈ T𝐶 ∪ T𝑀 we add a vertex to 𝐺 labeled by the set

{𝑠 ∈ R : (𝑠, 𝑡) ∈ 𝑆} ∪ {𝑡} and for every 𝑡 ∈ T𝐼 we add a vertex to 𝐺 labeled by the set {𝑠 ∈ C : (𝑠, 𝑡) ∈ 𝑆} ∪ {𝑡}.
Notice that we took into account Rem.3. We compute these sets simply by reading the elements of 𝑆 .

It holds that T𝐵 = O(𝑛𝑑), T𝐸 = O(𝑛𝑑) and |𝑆 | = O(𝑑2). Since for each vertex, we can find the parameters that

give the same point in constant time, the result follows. □

We denote by 𝑣1, . . . , 𝑣𝜅 the vertices (with distinct labels) of G and by 𝜆(𝑣1), . . . , 𝜆(𝑣𝜅) their label sets (i.e., the
parameters that correspond to each vertex). Let T be the sorted list of parameters in T𝐶 ∪ T𝑀 ∪ T𝐸 ∪ T𝐵2. If for two
consecutive elements 𝑡1 < 𝑡2 in T, there exists a pole 𝑠 ∈ TR

𝑃
such that 𝑡1 < 𝑠 < 𝑡2, then we split T into two lists: T1

containing the elements ≤ 𝑡1 and T2 containing the elements ≥ 𝑡2. We continue recursively for T1 and T2, until

there are no poles between any two elements of the resulting list. This procedure partitions T into T1, . . . , Tℓ .
To add edges to 𝐺 , we consider each T𝑖 with more than one element, where 𝑖 ∈ [ℓ], independently. For any

consecutive elements 𝑡1 < 𝑡2 in T𝑖 , with 𝑡1 ∈ 𝜆(𝑣𝑖,1) and 𝑡2 ∈ 𝜆(𝑣𝑖,2), we add the edge {𝑣𝑖,1, 𝑣𝑖,2}3. If p∞ exists, we

add an edge to the graph connecting the vertices corresponding to the last element of Tℓ and the first element of

the T1.

Theorem 5.4 (PTOPO inside the characteristic box). Consider a proper parametrization 𝜙 of curve C involving
polynomials of degree 𝑑 and bitsize 𝜏 , as (1). Alg. 3 outputs a graph𝐺 that, if embedded in R𝑛 , is isotopic to C, within
the characteristic box BC . It has worst case complexity

Õ𝐵 (𝑑6 (𝑛 + 𝜏) + 𝑛𝑑5𝜏 + 𝑛2𝑑4𝜏 + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),
while its expected complexity is

Õ𝐵 (𝑑6𝜏 + 𝑛𝑑5𝜏 + 𝑛2𝑑4𝜏 + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏).

If 𝑛 = O(1), then bounds become Õ𝐵 (𝑁 7), where 𝑁 = max{𝑑, 𝜏}.

Proof. We count on the fact that 𝜙 is continuous in R\TR
𝑃
. Thus, for each real interval [𝑠, 𝑡] with [𝑠, 𝑡] ∩TR

𝑃
= ∅,

there is a parametric arc connecting the points 𝜙 (𝑠) and 𝜙 (𝑡). Since for any (sorted) list T𝑖 , for 𝑖 ∈ [ℓ], the interval
defined by the minimum and maximum value of its elements has empty intersection with TR

𝑃
, then for any 𝑠, 𝑡 ∈ T𝑖

there exists a parametric arc connecting 𝜙 (𝑠) and 𝜙 (𝑡) and it is entirely contained in BC . If p∞ exists, then

p∞ is inside BC . Let 𝑡1,1, 𝑡ℓ,𝑘ℓ be the first element of the first list and the last element of the last list. There is a

parametric arc connecting 𝜙 (𝑡1,1) with p∞ and p∞ with 𝜙 (𝑡ℓ,𝑘ℓ ). So we add the edge {𝑡1,1, 𝑡ℓ,𝜅ℓ } to 𝐺 . Then, every
2
Notice that we exclude the parameters of the isolated points.

3
To avoid multiple edges, we make the convention that we add an edge between 𝑣𝑖,𝑗 , 𝑗 = 1, 2, and an (artificial) intermediate

point corresponding to a parameter in (𝑡1, 𝑡2) .
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Algorithm 3: PTOPO(𝜙) (Inside the characteristic box)

Input: A proper parametrization 𝜙 ∈ Z(𝑡)𝑛 without singular points at infinity.

Output: Abstract graph 𝐺

1 Compute real poles TR
𝑃
.

2 Compute parameters of ‘special points’ T𝐶 , T𝑀 , T𝐸, T𝐼 .

/* Characteristic box */

3 𝑏 ← 15𝑑2 (𝜏 + log𝑑), BC ← [−2
𝑏, 2𝑏]𝑛

4 T𝐵 ← parameters that give to intersections of C with BC
5 Construct the set of vertices of 𝐺 using Lem.5.3

6 Sort the list of all the parameters T = [T𝐶 , T𝑀 , T𝐸, T𝐵].
7 Let 𝑇1, . . . ,𝑇ℓ the sublists of T when split at parameters in TR

𝑃

8 for every list T𝑖 = [𝑡𝑖,1, . . . , 𝑡𝑖,𝑘𝑖 ] do
9 for 𝑗 = 1, . . . , 𝑘𝑖 − 1 do
10 Add the edge {𝑡𝑖, 𝑗 , 𝑡𝑖, 𝑗+1} to the graph

11 end
12 end
13 if p∞ exists then
14 Add the edge {𝑡1,1, 𝑡ℓ,𝑘ℓ } to the graph

15 end

edge of 𝐺 is embedded to a unique smooth parametric arc and the embedding of 𝐺 can be trivially continuously

deformed to C.
For the complexity analysis, we know from Lem.4.7 that steps 1-2 can be performed in wost-case bit complexity

Õ𝐵 (𝑛𝑑6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),

and in expected bit complexity

Õ𝐵 (𝑑6 + 𝑑5 (𝑛 + 𝜏) + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),

using a Las Vegas algorithm. From Lemmata 5.1, 5.2, and 5.3 steps 4-5 cost Õ𝐵 (𝑛2 (𝑑3𝜏)).
To perform steps 6-7 we must sort all the parameters in T∪ TR

𝑃
, i.e., we sort O(𝑑2 +𝑛𝑑) algebraic numbers: The

parameters that correspond to cusps and extreme points can be expressed as roots of

∏
𝑖∈[𝑛] ℎ𝑖 (𝑡, 𝑡), which is

of size (𝑛𝑑, 𝑛𝜏). The poles are roots of∏𝑖∈[𝑛] 𝑞𝑖 (𝑡), which has size (𝑛𝑑, 𝑛𝜏). The parameters that correspond to

multiple points are roots of 𝑅𝑠 which has size (𝑑2, 𝑑𝜏). At last, parameters in T𝐵 are roots of a polynomial of size

(𝑑,𝑑2𝜏).
We can consider all these algebraic numbers together as roots of a single univariate polynomial (the product of

all the corresponding polynomials). It has degree O(𝑑2+𝑛𝑑) and bitsize Õ(𝑑2𝜏+𝑛𝜏). Hence, its separation bound is
Õ(𝑑4𝜏+𝑛𝑑3𝜏+𝑛𝑑2𝜏+𝑛2𝑑𝜏). To sort the list of all the algebraic numbers we have to perform O(𝑑2+𝑛𝑑) comparisons

and each costs Õ(𝑑4𝜏+𝑛𝑑3𝜏+𝑛𝑑2𝜏+𝑛2𝑑𝜏). Thus, the overall cost for sorting is Õ𝐵 (𝑑6𝜏+𝑛𝑑5𝜏+𝑛2𝑑4𝜏+𝑛2𝑑3𝜏+𝑛3𝑑2𝜏).
The overall bit complexities in the worst and expected case follow by summing the previous bounds. □

Following the proof of Thm. 5.4 we notice that the term 𝑑6𝜏 in the worst case bound is due to the introduction

of the intersection points of C with BC . For visualizing the curve within BC , these points are essential and we
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Fig. 1. The left figure is the output of ptopo for the parametric curve ( 3 𝑡2+3 𝑡+1
𝑡6−2 𝑡4−3 𝑡−1

,
(𝑡4−2 𝑡+2)𝑡2

𝑡6−2 𝑡4−3 𝑡−1
), while the right figure is the

output for the curve ( 6 𝑡8−756 𝑡6+3456 𝑡5−31104 𝑡3+61236 𝑡2−39366

𝑡8+36 𝑡6+486 𝑡4+2916 𝑡2+6561
,
−18(6 𝑡6−16 𝑡5−126 𝑡4+864 𝑡3−1134 𝑡2−1296 𝑡+4374)𝑡

𝑡8+36 𝑡6+486 𝑡4+2916 𝑡2+6561
).

Fig. 2. The left figure is the output of ptopo for the parametric curve (𝑡8 − 8 𝑡6 + 20 𝑡4 − 16 𝑡2 + 2, 𝑡7 − 7 𝑡5 + 14 𝑡3 − 7 𝑡) while the
right figure is the output for the curve ( 37 𝑡3−23 𝑡2+87 𝑡+44

29 𝑡3+98 𝑡2−23 𝑡+10
, −61 𝑡3−8 𝑡2−29 𝑡+95

11 𝑡3−49 𝑡2−47 𝑡+40
).

.

cannot avoid them. However, if we are interested only in the topology of C, i.e., the abstract graph𝐺 , these points
are not important any more. We sketch a procedure to avoid them and gain a factor of 𝑑 in the complexity bound:

Assume that we have not computed the points on C ∩ BC . We split again the sorted list T = [T𝐶 , T𝑀 , T𝐸] at
the real poles, and we add an artificial parameter at the beginning and at the end of each sublist. The rest of the

procedure remains unaltered.

To verify the correctness of this approach, it suffices to prove that the graph that we obtain by this procedure,

is isomorphic to the graph 𝐺 . It is immediate to see that the latter holds, possibly up to the dissolution of the

vertices corresponding to the first and last artificial vertices. Adding these artificial parameters does not affect

the overall complexity, since we do not perform any algebraic operations. Therefore, the bit complexity of the

algorithm is determined by the complexity of computing the parameters of the special points (Lem.4.7), and so

we have the following theorem:

Theorem 5.5 (PTOPO and an abstract graph). Consider a proper parametrization 𝜙 of curve C involving
polynomials of degree 𝑑 and bitsize 𝜏 , as (1). Alg. 3 outputs a graph𝐺 that, if we embed it in R𝑛 , then it is isotopic to
C. It has worst case complexity

Õ𝐵 (𝑛𝑑6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),

while its expected complexity is

Õ𝐵 (𝑑6 + 𝑑5 (𝑛 + 𝜏) + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),
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If 𝑛 = O(1), then bounds become Õ𝐵 (𝑁 6), where 𝑁 = max{𝑑, 𝜏}.
Remark 5. If we are given a box B ⊂ R𝑛 at the input, we slightly modify PTOPO, as follows: We discard the parameter
values in T𝐶 ∪ T𝑀 ∪ T𝐸 ∪ T𝐼 that correspond to points not contained in B. The set of 𝐺 ’s vertices is constructed
similarly. To connect the vertices, we follow the same method with a minor modification: For any consecutive lements
𝑡1 < 𝑡2 in a list T𝑖 with more than two elements, such that 𝑡1 ∈ 𝜆(𝑣𝑖,1) and 𝑡2 ∈ 𝜆(𝑣𝑖,2), we add the edge {𝑣𝑖,1, 𝑣𝑖,2} if
and only if 𝜙 (𝑡1), 𝜙 (𝑡2) are not both on the boundary of B; or in other words 𝑡1 and 𝑡2 are not both in T𝐵 .

6 IMPLEMENTATION AND EXAMPLES
We have implemented PTOPO in maple

4
. We build upon the real root isolation routines of maple’s RootFinding

library and the slv package [15], in order to use a certified implementation of general purpose exact computations

with one and two real algebraic numbers, like comparison and sign evaluations. PTOPO computes the topology

and visualizes parametric curves (currently planar).

To demonstrate its capabilities, we present in Fig. 1 and Fig. 2 the topology of four planar curves from [3]. For

a given parametric representation of a curve, PTOPO computes the special points on the curve, the characteristic

box, the corresponding graph, and then it visualizes the curve (inside the box). The computation, in all cases,

takes less than a second in a MacBook laptop, running maple 2019. The red squares correspond to cusps or

multiple points, the khaki squares correspond to extreme points, and the black stars correspond to intermediate

or boundary points.
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