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Abstract
In this work, we develop a discretisation method for the mixed formulation of the magnetostatic

problem supporting arbitrary orders and polyhedral meshes. The method is based on a global dis-
crete de Rham (DDR) sequence, obtained patching the local spaces constructed in [17] by enforcing
the single-valuedness of the components attached to the boundary of each element. The first main
contribution of this paper is a proof of exactness relations for this global DDR sequence, obtained
leveraging the exactness of the corresponding local sequence and a topological assembly of the mesh
valid for domains that do not enclose any void. The second main contribution is the formulation and
well-posedness analysis of the method, which includes the proof of uniform Poincaré inequalities
for the discrete divergence and curl operators. The convergence rate in the natural energy norm is
numerically evaluated on standard and polyhedral meshes. When the DDR sequence of degree k ≥ 0
is used, the error converges as hk+1, with h denoting the meshsize.
Key words. Discrete de Rham, magnetostatics, mixed methods, compatible discretisations, polyhe-
dral methods
MSC2010. 65N30, 65N99, 78M10, 78M25

1 Introduction
In this work, we develop a discretisation method for the mixed formulation of the magnetostatic problem
supporting arbitrary orders and polyhedral meshes. The stability of the method hinges on a global version
of the discrete de Rham (DDR) sequence of [17].

Let Ω ⊂ R3 be an open connected polyhedral domain that does not enclose any void (that is, its
second Betti number is zero), with boundary ∂Ω and unit outward normal n. Denote by H(curl;Ω) the
space of vector-valued functions over Ω that are square-integrable along with their curl and by H(div;Ω)
the space of vector-valued functions over Ω that are square-integrable along with their divergence. Let
f ∈ curl H(curl;Ω) and g ∈ L2(∂Ω)3 denote, respectively, the forcing term and boundary datum. We
consider the following problem (see, e.g., [1, Section 4.5.3]): Find σ ∈ H(curl;Ω) and u ∈ H(div;Ω)
such that

a(σ, ζ ) − b(ζ, u) = −
∫
∂Ω

g · ζ ∀ζ ∈ H(curl;Ω),

b(σ, v) + c(u, v) =
∫
Ω

f · v ∀v ∈ H(div;Ω),
(1)

with bilinear forms a : H(curl;Ω) × H(curl;Ω) → R, b : H(curl;Ω) × H(div;Ω) → R, and c :
H(div;Ω) × H(div;Ω) → R such that, for all υ, ζ ∈ H(curl;Ω) and all w, v ∈ H(div;Ω),

a(υ, ζ ) B
∫
Ω

υ · ζ, b(ζ, v) B
∫
Ω

v · curl ζ, c(w, v) B
∫
Ω

div w div v.
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The solution of problem (1) satisfies almost everywhere

σ − curl u = 0 in Ω, (2a)
curlσ = f in Ω, (2b)
div u = 0 in Ω, (2c)
u × n = g on ∂Ω. (2d)

In the context of magnetostatics, the interpretation of the above relations is as follows: equation (2a)
expresses the magnetic field σ in terms of the vector potential u; equation (2b) is Ampère’s law (with
unit magnetic constant) relating the magnetic field to the current density; (2c) is the so-called Coulomb’s
gauge which, together with the boundary condition (2d), ensures the uniqueness of the vector potential
(notice that, since the second Betti number of Ω is zero, the space of 2-harmonic forms is trivial).

The well-posedness of problem (1) hinges on the fact that, under the above assumptions on the
domain, the image of the curl operator coincides with the kernel of the divergence operator, and the
latter is surjective in L2(Ω); cf., e.g., the discussion in [17, Section 2]. These relations correspond to the
exactness of the rightmost portion of the de Rham sequence

R H1(Ω) H(curl;Ω) H(div;Ω) L2(Ω) {0},iΩ grad curl div 0 (3)

where iΩ is the operator that maps a real value to a constant function over Ω and H1(Ω) the space
of scalar-valued functions over Ω that are square-integrable along with their derivatives. The design
of stable numerical approximations of problem (1) requires to mimic these exactness properties at the
discrete level. In the context of Finite Element approximations, this is achieved by a nontrivial choice
of finite-dimensional subspaces of H(curl;Ω) and H(div;Ω); cf. [1] for a comprehensive introduction
to this topic. Finite Elements can, however, display severe practical limitations: the construction of
the finite-dimensional spaces hinges upon conforming meshes with elements of simple geometric shape;
the number of degrees of freedom on hexahedral elements can become very large when increasing the
polynomial degree; the definition of unisolvent degrees of freedom can be tricky for high-order versions
(cf., e.g., [6] and references therein). Low-order frameworks that involve exact discrete sequences of
spaces and operators on general polyhedral meshes have been developed over the last years, among which
we cite Mimetic Finite Differences (see [5] and references therein), the Discrete Geometric Approach
(see, e.g., [13]), or Compatible Discrete Operators (see [8, 9] and also [7]). More recently, a de Rham
sequence of arbitrary-order virtual spaces has been proposed in [4]; see also the related works [2, 3]
concerning the Virtual Element approximation of the magnetostatic problem based on the formulation of
[18], different from the one considered here. Virtual spaces are spanned by functions whose expression
is not available at each point, therefore projections on polynomial spaces are used in practice. For
this reason, the exactness of the virtual sequence cannot be directly exploited to prove the stability of
numerical schemes. Fully nonconforming approximations of the magnetostatic problem have also been
explored, where stability is ensured by additional penalty terms. We mention here, in particular, the
Discontinuous Galerkin method of [20], the Hybridizable Discontinuous Galerkin methods of [11, 12,
19], and, on polyhedral meshes, the Hybrid High-Order method of [10].

The approach proposed in this work relies on a global DDR sequence involving spaces of (polynomial)
discrete unknowns and discrete counterparts of vector operators acting thereon. This sequence is obtained
patching the local spaces constructed in [17] by enforcing the single-valuedness of the components of
these spaces on the element boundaries. Its exactness, which constitutes the first key contribution of this
work, is proved in Theorem 2 below leveraging the exactness of the local sequence and a topological
assembly of the mesh valid for domains that do not enclose any void. The second contribution of this work
is the development and well-posedness analysis of a discretisation method for the mixed formulation (1)
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of the magnetostatic problem (the first, to our knowledge, supporting polyhedral meshes). The discrete
problem is formulated in terms of the spaces and operators appearing in the global DDR sequence, along
with discrete counterparts of L2-products. For this reason, the stability and well-posedness (Theorem 9
and Corollary 10) of the discrete problem are direct consequences of the exactness of the DDR sequence,
together with uniform Poincaré inequalities for the discrete divergence and curl operators. Besides
supporting polyhedral meshes and arbitrary orders, the proposed method has fewer unknowns than (non-
serendipity) Finite Elements on hexahedra (cf. Remark 7 below) and allows for great freedom in the
practical implementation of the polynomial spaces that lie at its core. The convergence rate of the method
is numerically evaluated on a set of standard and polyhedral refined mesh families. When the DDR
sequence of degree k ≥ 0 is used, the error in the natural energy norm associated with the problem
behaves as hk+1, with h denoting the meshsize.

The rest of this paper is organised as follows. In Section 2 we introduce the setting, recalling the
appropriate notion of polyhedral mesh, the definitions of vector operators on faces, and those of the
local polynomial spaces. In Section 3 we define the global DDR sequence and prove the required
exactness relations. Section 4 contains the statement of the discrete problem along with a theoretical
well-posedness result and a numerical assessment of its convergence rate. In Section 5 we discuss the
practical implementation. Finally, Appendix A contains the proof of the stability result, which is based
on uniform discrete Poincaré inequalities. The proofs in this appendix are rather technical, and the reader
mainly interested in the practical aspects of the proposed numerical scheme can skip them at first reading.

2 Setting
In this section we define the discrete setting: the mesh, the vector operators on faces, and various
polynomial spaces that appear in the construction.

2.1 Mesh

Given a set X ⊂ R3, denote by hX its diameter, that is, the supremum of the distance between two points
of X . We consider meshesMh B Th ∪ Fh ∪ Eh ∪ Vh, where: (i) Th is a finite collection of polyhedral
elements that partitions Ω and such that h = maxT ∈Th hT > 0; (ii) Fh is a finite collection of planar
faces; (iii) Eh is the set collecting the polygonal edges (line segments) of the faces; (iv) Vh is the set
collecting the edge endpoints. It is assumed, in what follows, that (Th,Fh) matches the conditions in
[16, Definition 1.4]. Notice that this notion of mesh is related to that of cellular complex from algebraic
topology. We additionally assume that the polytopes in Th ∪Fh are simply connected and have connected
boundaries that are Lipschitz-continuous (that is, each polytope can locally be represented as epigraphs
of Lipschitz-continuous functions). We denote by F b

h
⊂ Fh the set of boundary faces contained in ∂Ω.

For all F ∈ Fh, an orientation is set by prescribing a unit normal vector nF . Similarly, each edge
E ∈ Eh is endowed with a unit tangent vector tE defining its orientation. Given a mesh element T ⊂ R3,
we denote by FT ⊂ Fh the set of faces contained in the boundary ∂T of T . For all F ∈ FT , we denote by
ωTF ∈ {−1,1} the orientation of F relative to T , that is, ωTF = 1 if nF points out of T , −1 otherwise.
With this choice, ωTFnF is the unit vector normal to F that points out of T . Similarly, for a face F,
we denote by EF the set of edges that lie on the boundary ∂F of F. The boundary of F is oriented
counter-clockwise with respect to nF , and we denote by ωFE ∈ {−1,1} the orientation of tE opposite to
∂F: ωFE = 1 if tE points on E in the opposite orientation to ∂F, ωFE = −1 otherwise. For any polygon
F and any edge E ∈ EF , we also denote by nFE the unit normal vector to E lying in the plane of F such
that (tE, nFE ) forms a system of right-handed coordinates in the plane of F, which means that the system
of coordinates (tE, nFE, nF ) is right-handed. It can be checked that ωFEnFE is the normal to E , in the
plane where F lies, pointing out of F. In what follows, we will also need the set of edges of an element
T ⊂ R3, which we denote by ET , and the set of vertices of a mesh entity X ∈ Mh, which we denote by
VX . Finally, for all V ∈ Vh, we denote by xV the corresponding vector of coordinates.
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2.2 Vector operators on faces

The DDR construction requires vector operators on faces. Specifically, for any F ∈ Fh, we respectively
denote by gradF and divF the tangent gradient and divergence operators acting on smooth functions and,
for any r : F → R smooth enough, we define the two-dimensional vector curl operator such that

rotF r B %−π/2 (gradF r) ,

where %−π/2 is the rotation, in the oriented tangent space to F, of angle − π2 . We will also need the
two-dimensional scalar curl operator such that, for any v : F → R2 smooth enough,

rotF v B divF
(
%−π/2v

)
.

2.3 Polynomial spaces

For given integers ` ≥ 0 and n ≥ 0, we denote by P`n the space of n-variate polynomials of total degree
≤ `, with the convention that P`0 B R for any ` and P−1

n B {0} for any n. For X polyhedron, polygon
(immersed in R3), or segment (again immersed in R3), we denote by P`(X) the space spanned by the
restriction to X of functions in P`3. Denoting by 0 ≤ n ≤ 3 the dimension of X , P`(X) is isomorphic to
P`n (the proof, quite simple, follows the ideas of [16, Proposition 1.23]). With a little abuse of notation,
we denote both spaces with P`(X), and the exact meaning of this symbol should be inferred from the
context. We will also need the space P0,`(X) B

{
q ∈ P`(X) :

∫
X

q = 0
}
spanned by functions in P`(X)

with zero average over X .
For any X ∈ Th ∪ Fh ∪ Eh, π`P,X : L1(X) → P`(X) is the L2-orthogonal projector such that, for any

q ∈ L1(X), ∫
X

(π`
P,Xq − q)r = 0 ∀r ∈ P`(X).

As a projector, π`
P,X

is polynomially consistent, that is, it maps any r ∈ P`(X) onto itself. Optimal
approximation properties for this projector have been proved in [15]; see also [14] for more general
results on projectors on local polynomial spaces. Letting n be the dimension of X , we also denote by
π`P,X : L1(X)n → P`(X)n the vector version obtained applying the projector component-wise.

For any F ∈ Fh and any integer ` ≥ −1, we define the following relevant subspaces of P`(F)2:

G`(F) B gradF P
`+1(F), G`(F)⊥B L2-orthogonal complement of G`(F) in P`(F)2,

R`(F) B rotF P`+1(F), R`(F)⊥B L2-orthogonal complement of R`(F) in P`(F)2.

The corresponding L2-orthogonal projectors are, with obvious notation, π`G,F , π
⊥,`
G,F , π

`
R,F , and π

⊥,`
R,F .

Similarly, for any T ∈ Th and any integer ` ≥ −1 we introduce the following subspaces of P`(T)3:

G`(T) B gradP`+1(T), G`(T)⊥B L2-orthogonal complement of G`(T) in P`(T)3,

R`(T) B curlP`+1(T), R`(T)⊥B L2-orthogonal complement of R`(T) in P`(T)3.

The corresponding L2-orthogonal projectors are π`G,T , π
⊥,`
G,T , π

`
R,T , and π

⊥,`
R,T .

At the global level, we will need the space of broken polynomial functions of total degree ≤ ` defined
by

P`(Th) B
{
q ∈ L2(Ω) : q |T ∈ P`(T) ∀T ∈ Th

}
. (4)
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Continuous space Discrete space Definition

R R —
H1(Ω) Xk

grad,h Eq. (6)
H(curl;Ω) Xk

curl,h Eq. (9)
H(div;Ω) Xk

div,h Eq. (13)
L2(Ω) Pk(Th) Eq. (4)

Table 1: Correspondence between continuous and discrete spaces in the de Rham (3) and DDR (18) sequences.

Continuous operator Discrete operator Definition

grad Gk
h Eq. (15)

curl Ck
h Eq. (16)

div Dk
h

Eq. (17)

Table 2: Correspondence between continuous and discrete vector operators in the de Rham (3) and DDR (18)
sequences.

3 Global DDR sequence
In this section, we define a DDR sequence mimicking the de Rham sequence (3). Each space in the DDR
sequence consists of vectors of polynomial functions attached to appropriate geometric entities of the
mesh in order to imitate, through their single-valuedness, the continuity properties of the corresponding
space in the continuous sequence. The discrete vector operators in the DDR sequence are defined
taking L2-orthogonal projections of full operators, each mimicking an appropriate version of the Stokes
formula. The adjective full refers to the fact that these operators map on full polynomial spaces (and,
correspondingly, enjoy optimal approximation properties). Full operators that only appear in the discrete
sequence through projections are identified by a dot. The correspondence between continuous and discrete
spaces and operators are summarised in Tables 1 and 2, respectively. For the sake of brevity, we recall
here only the main facts and refer to [17] for a more detailed presentation of the local DDR sequence.

As pointed out in [17, Section 2], the exactness relations

Im curl = Ker div, Im div = L2(Ω) (5)

play a key role in the well-posedness of problem (1). The main result of this section, proved in Theorem
2, is a discrete counterpart of (5) for the global DDR sequence. In what follows, we fix an integer k ≥ 0
corresponding to the polynomial degree.

3.1 Discrete H1(Ω) space and full gradient operators

The discrete counterpart of the space H1(Ω) is

Xk
grad,h B

{
rh =

(
(rT )T ∈Th , (rF )F ∈Fh , (rE )E∈Eh , (rV )V ∈Vh

)
:

rT ∈ Pk−1(T) for all T ∈ Th, rF ∈ Pk−1(F) for all F ∈ Fh,

rE ∈ Pk−1(E) for all E ∈ Eh, and rV ∈ R for all V ∈ Vh

}
. (6)

The restrictions of Xk
grad,h and rh ∈ Xk

grad,h to a mesh element, face, or edge X ∈ Th∪Fh∪Eh are denoted
by, respectively, Xk

grad,X and rX ∈ Xk
grad,X . The interpolator on Xk

grad,h is Ikgrad,h : C0(Ω) → Xk
grad,h
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such that, for all r ∈ C0(Ω),

Ikgrad,hr B
(
(πk−1
P,T r)T ∈Th , (π

k−1
P,Fr)F ∈Fh , (π

k−1
P,Er)E∈Eh , (r(xV ))V ∈Vh

)
, (7)

that is, the discrete element Ikgrad,hr representing r is obtained taking the L2-projections of r on the
polynomial spaces composing Xk

grad,h.
For any edge E ∈ Eh and any rE = (rE, (rV )V ∈VE ) ∈ Xk

grad,E , denote by γk+1
E rE the unique

polynomial in Pk+1(E) such that (γk+1
E rE )(xV ) = rV for all V ∈ VE and πk−1

P,E
(γk+1

E rE ) = rE . We define
the (full) edge gradient Gk

E : Xk
grad,E → P

k(E) setting

Gk
ErE B (γk+1

E rE )
′ ∀rE ∈ Xk

grad,E, (8)

where the derivative is taken along E in the direction of tE .
Remark 1 (Edge unknowns). Selecting a family ((rE )E∈Eh , (rV )V ∈Vh

) of edge and vertex degrees of
freedom is equivalent to selecting a function q :

⋃
E∈Eh E → R on the edge skeleton that is polynomial

of degree ≤ k + 1 on each edge and continuous at the vertices (hence, q is globally continuous on the
edge skeleton). This function is simply given by q |E = γk+1

E rE for all E ∈ Eh.

For any face F ∈ Fh, we define the full face gradient
•

Gk
F : Xk

grad,F → P
k(F)2 such that, for all

rF ∈ Xk
grad,F ,∫

F

•

Gk
FrF · v = −

∫
F

rF divF v +
∑

E∈EF

ωFE

∫
E

γk+1
E rE (v · nFE ) ∀v ∈ Pk(F)2,

along with the corresponding scalar potential γk+1
F : Xk

grad,F → P
k+1(F) such that, for all rF ∈ Xk

grad,F ,

γk+1
F rF B rF + γ̃k+1

F rF − π
k−1
P,F (γ̃

k+1
F rF ).

Above, γ̃k+1
F : Xk

grad,F → P
k+1(F) is a face potential reconstruction that is consistent for polynomials of

total degree ≤ k + 1, that is, denoting by Ikgrad,F : C0(F) → Xk
grad,F the restriction of the interpolator

(7) to F, γ̃k+1
F (I

k
grad,Fr) = r for all r ∈ Pk+1(F). Finally, for all T ∈ Th, the full element gradient

•

Gk
T : Xk

grad,T → P
k(T)3 is such that, for all rT ∈ Xk

grad,T ,∫
T

•

Gk
T rT · v = −

∫
T

rT div v +
∑
F ∈FT

ωTF

∫
F

γk+1
F rF (v · nF ) ∀v ∈ Pk(T)3.

3.2 Discrete H(curl;Ω) space and full curl operators

The role of the space H(curl;Ω) is played at the discrete level by

Xk
curl,h B

{
υh =

(
(υR,T ,υ

⊥
R,T )T ∈Th , (υR,F,υ

⊥
R,F )F ∈Th , (υE )E∈Eh

)
:

υR,T ∈ Rk−1(T) and υ⊥R,T ∈ R
k(T)⊥ for all T ∈ Th,

υR,F ∈ Rk−1(F) and υ⊥R,F ∈ R
k(F)⊥ for all F ∈ Fh,

and υE ∈ Pk(E) for all E ∈ Eh
}
. (9)

The restrictions of Xk
curl,h and υh ∈ Xk

curl,h to a mesh element or face X ∈ Th ∪ Fh are denoted by,
respectively, Xk

curl,X and υX ∈ Xk
curl,X .
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For any face F ∈ Fh, we reconstruct the discrete (full) face curlCk
F : Xk

curl,F → P
k(F) approximating

rotF such that, for all υF ∈ Xk
curl,F ,∫

F

Ck
FυFq =

∫
F

υR,F · rotF q −
∑

E∈EF

ωFE

∫
E

υEq ∀q ∈ Pk(F), (10)

as well as the discrete tangential face potential γk
t,F : Xk

curl,F → P
k(F)2 such that, for all υF ∈ Xk

curl,F ,
it holds, for all (r,τ) ∈ P0,k+1(F) ×Rk(F)⊥,∫

F

γk
t,FυF · (rotF r + τ) =

∫
F

Ck
FυFr +

∑
E∈EF

ωFE

∫
E

υEr +
∫
F

υ⊥R,F · τ. (11)

Similarly, for any elementT ∈ Th, we define the discrete full element curl operator
•

Ck
T : Xk

curl,T → P
k(T)3

such that, for all υT ∈ Xk
curl,T ,∫

T

•

Ck
TυT · τ =

∫
T

υR,T · curl τ +
∑
F ∈FT

ωTF

∫
F

γk
t,FυF · (τ × nF ) ∀τ ∈ Pk(T)3. (12)

3.3 Discrete H(div;Ω) space and full divergence operator

The discrete counterpart of the space H(div;Ω) is

Xk
div,h B

{
wh =

(
(wG,T ,w

⊥
G,T )T ∈Th , (wF )F ∈Fh

)
:

wG,T ∈ Gk−1(T) and w⊥G,T ∈ G
k(T)⊥ for all T ∈ Th, and wF ∈ P

k(F) for all F ∈ Fh
}
. (13)

The restrictions of Xk
div,h and wh ∈ Xk

div,h to a mesh element T ∈ Th are denoted by, respectively, Xk
div,T

and wT ∈ Xk
div,T .

For any T ∈ Th, starting from the discrete unknowns in Xk
div,T , we define the (full) discrete divergence

reconstruction Dk
T : Xk

div,T → P
k(T) such that, for any wT ∈ Xk

div,T ,∫
T

Dk
TwT q = −

∫
T

wG,T · grad q +
∑
F ∈FT

ωTF

∫
F

wFq ∀q ∈ Pk(T). (14)

3.4 Global DDR sequence and exactness

Define the discrete counterparts Gk
h : Xk

grad,h → Xk
curl,h of the gradient operator, Ck

h : Xk
curl,h → Xk

div,h
of the curl operator, and Dk

h
: Xk

div,h → P
k(Th) of the divergence operator such that, for all (rh,υh,wh) ∈

Xk
grad,h × Xk

curl,h × Xk
div,h,

Gk
hrh B

(
(πk−1

R,T
•

Gk
T rT ,π

⊥,k
R,T

•

Gk
T rT )T ∈Th , (π

k−1
R,F

•

Gk
FrF,π

⊥,k
R,F

•

Gk
FrF )F ∈Fh , (G

k
ErE )E∈Eh

)
, (15)

Ck
hυh B

(
(πk−1

G,T
•

Ck
TυT ,π

⊥,k
G,T

•

Ck
TυT )T ∈Th , (C

k
FυF )F ∈Fh

)
, (16)

(Dk
hwh) |T B Dk

TwT ∀T ∈ Th . (17)

Recalling the definition (7) of the interpolator on Xk
grad,h, the global DDR sequence reads

R Xk
grad,h Xk

curl,h Xk
div,h Pk(Th) {0}.

I kgrad,h Gk
h Ck

h
Dk

h 0
(18)

The following theorem establishes a discrete counterpart of the exactness relations (5), a crucial step to
prove the well-posedness of the discrete problem.
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Figure 1: Illustration of the proof of Theorem 2: adding a new element to the mesh.

Theorem 2 (Exactness). It holds

Im Dk
h = P

k(Th), (19)

ImCk
h = Ker Dk

h . (20)

Remark 3 (No voids assumption). The assumption that Ω does not enclose any void is only used to prove
Ker Dk

h
⊂ ImCk

h. The relations Im Dk
h
= Pk(Th) and ImCk

h ⊂ Ker Dk
h
hold for any polyhedral domain.

Proof. 1. Proof of (19). We only have to show the inclusion Im Dk
h
⊃ Pk(Th). Let qh ∈ Pk(Th).

A classical result gives the existence of v ∈ H1(Ω)3 such that div v = qh (see, e.g., [16, Lemma 8.3]
in the case where qh has a zero average over Ω; the case of a generic qh follows easily since constant
functions can be trivially written as divergences). Let wh ∈ Xk

div,h be the global interpolate of v, that is,
wG,T = πk−1

G,T v and w⊥G,T = π
⊥,k
G,T v for all T ∈ Th, while wF = π

k
P,F
(v · nF ) for all F ∈ Fh. Then, for all

T ∈ Th, wT is the local interpolate of v in the cell T and by [16, Lemma 25] we have

Dk
TwT = π

k
P,T (div v |T ) = π

k
P,T qh |T .

This proves that Dk
h
wh = qh and concludes the proof that Im Dk

h
= Pk(Th).

2. Proof of (20).
2.a) Proof that ImCk

h ⊂ Ker Dk
h
. Let wh ∈ ImCk

h. For any T ∈ Th, denote by Ck
T the restriction of Ck

h to

T such that, for all υT ∈ Xk
curl,T ,

Ck
TυT B

(
πk−1
G,T

•

Ck
TυT ,π

⊥,k
G,T

•

Ck
TυT , (C

k
FυF )F ∈FT

)
.

Then, for all T ∈ Th, we have wT ∈ ImCk
T = Ker Dk

T , the last equality following from the exactness of
element-wise operators stated in [17, Theorem 17]. This shows that Dk

TwT = 0 for all T ∈ Th, and thus
that Dk

h
wh = 0 as required.

2.b) Proof that Ker Dk
h
⊂ ImCk

h. Let wh ∈ Ker Dk
h
. We have to find υh ∈ Xk

curl,h such that Ck
hυh = wh.

By definition of Dk
h
, for all T ∈ Th we have Dk

TwT = 0 and the local exactness stated in [17, Theorem
17] gives υT ∈ Xk

curl,T such that Ck
TυT = wT . However, nothing ensures at that stage that the vectors

(υT )T ∈Th are the restrictions to the spaces (Xk
curl,T )T ∈Th of some υh ∈ Xk

curl,h; this only happens if the
face and edge values of these local vectors (υT )T ∈Th match between each pair of neighbouring elements.

To construct local vectors with matching interface values, we use an inductive approach. Since Ω
does not enclose any void, the meshMh can be topologically assembled starting from a single element
by a succession of the following two operations:

8



V4

V1

V3

V2

F

F

T♦

T?

V5

V6

Ec

Ed

Eb

Ea

Figure 2: Illustration of the proof of Theorem 2: gluing two faces in a mesh.

A. Adding a new element by gluing one of its faces to the face of another element already in the mesh;
see Figure 1.

B. Gluing together two faces of elements already in the mesh, such that the edges along which the faces
are already glued together form a connected path (which could be empty); see Figure 2.

We note that, for a domain enclosing one or more voids, these two operations alone would not be sufficient
to construct the mesh (see Remark 4).

From the analytical point of view, we do not “deform/move” the elements, their faces, or edges to
actually assemble the mesh; our elements/faces/edges are those already in the final mesh. However, we
will interpret the topological aspects of this construction the following way: polynomial functions defined
on faces/edges that are already glued together are single-valued (as in the global space Xk

curl,h), while
polynomial functions on faces/edges that are not yet “glued” have two values, one for each element on
each side of the face we are gluing along. We nonetheless preserve the topological vocabulary of “gluing”
faces together as it seems more intuitive and helps following the arguments in the proof.

The inductive construction of υh ∈ Xk
curl,h such that C

k
hυh = wh starts from one element and follows

the two operations described above. The base case is already covered above: if T ∈ Th, [17, Theorem 17]
gives a pre-image υT through Ck

T of wT . We therefore only have to consider the inductive step: starting
from a submeshMh,? ofMh (possibly with some unglued faces) and an element

υh,? ∈ Xk
curl,h,? such that Ck

Tυh,? = wT ∀T ∈ Th,?, (21)

and considering a submeshMh,♦ ofMh built fromMh,? through one of the operations A or B, we need
to establish the existence of

υh,♦ ∈ Xk
curl,h,� such that Ck

Tυh,♦ = wT ∀T ∈ Th,�. (22)

Above, for ◦ ∈ {?,♦}, Xk
curl,h,◦ and Th,◦ denote, respectively, the discrete curl space and set of elements

associated to Mh,◦. In what follows, for any T ∈ Th, we denote byMT B {T} ∪ FT ∪ ET ∪ VT the
submesh associated with T .

9



Operation A: Adding a new element by gluing one of its faces. Let us call T♦ the element added to
Mh,?, and F the face along which we glue it; let T? be the element inMh,? to which T♦ is glued. We will
construct an extension υh,♦ of υh,? toMh,♦ =Mh,?∪MT♦ such that its values on F viewed from T♦ and
from T? match (which ensures that υh,♦ ∈ Xk

curl,h,♦), and such that C
k
T♦
υh,♦ = wT♦

. Since υh,♦ = υh,? on
each T ∈ Th,?, the inductive assumption (21) will then prove that (22) holds.

Since wT♦
∈ Ker Dk

T♦
, the local exactness of [17, Theorem 17] gives ζ

T♦
∈ Xk

curl,T♦ that satisfies

Ck
T♦
ζ
T♦
= wT♦

. Since Ck
T?
υh,? = wT?

, by restricting these two relations to the face F in common
between T♦ and T?, we have Ck

FζF
= Ck

FυF ,? (where υF ,? is the restriction to F of υh,?). Hence,
ζ
F
−υF ,? ∈ Ker Ck

F = Im Gk
F (see [17, Theorem8]), whereGk

F : Xk
grad,F → Xk

curl,F is the restriction to F

of the global gradientGk
h defined by (15). There exists thus q

F ,♦
∈ Xk

grad,F such that ζ
F
+Gk

Fq
F ,♦
= υF ,?.

The vector q
F ,♦

can easily be extended into an element q
T♦
∈ Xk

grad,T♦ ; letting q∂F ,♦ be the continuous
piecewise polynomial function on ∂F corresponding to the boundary values of q

F ,♦
(see Remark 1), it

suffices to extend q∂F ,♦ by continuity to ET♦ (following the notations in Figure 1, the function q∂F ,♦ can
be continuously extended as a linear function along each edge Ei from its value at the vertex Vi to 0 at
the other end of Ei, and then set to zero on the remaining edges), and to set all the face values (except on
F) and the element value of q

T♦
to zero. Then, υT♦ := ζ

T♦
+ Gk

T♦
q
T♦
∈ Xk

curl,T♦ satisfies C
k
T♦
υT♦ = wT♦

(because Im Gk
T♦
⊂ KerCk

T♦
by [17, Theorem 17]) and, by construction, the values of υh,? and υT♦ on F

coincide. This completes the construction of the extension υh,♦ of υh,? in the case of Operation A.
Operation B: Gluing together two mesh faces, already glued together along a connected path of their
edges. No new element is added to the mesh, but two faces of neighbouring elements T? and T♦ are glued
together along one of their faces F. In this situation, the element υh,? given by (21) has, on F, two values
υF ,?,υF ,♦ ∈ Xk

curl,F , viewed from T? and T♦ respectively, which coincide only along the edges that are
already glued together (e.g., those with vertices V1,V2,V3,V4 in Figure 2). We have to find a modification
υh,♦ of υh,? that preserves the relation Ck

Tυh,♦ = wT for all T ∈ Th,? = Th,♦, and is single-valued on
F. This will be done by modifying the vector υF ,♦ so that it coincides with υF ,?; this modification will,
however, have repercussions on other values of υh,?, that need to be properly tracked.

Let Eg
F be the set of edges of F already glued between T? and T♦, and E

ng
F B EF \ E

g
F the edges that

are not glued; similarly, Vg
F and Vng

F B VF \ V
g
F respectively denote the vertices of F that are glued

and not glued between T? and T♦. In Figure 2, E
g
F is made of [V1,V2], [V2,V3] and [V3,V4], E

ng
F comprises

[V4,V5] and [V5,V6],V
g
F = {V1,V2,V3,V4} andV

ng
F = {V5,V6} (remember that there is only one face F, its

representation as two faces in this figure is just a mnemotechnic way to remember that some functions
can be double-valued on the face or some of its edges).

As in Operation A above, we start by noticing that Ck
F (υF ,? − υF ,♦) = wF − wF = 0, and thus that

there exists q
F ,♦
∈ Xk

grad,F such that υF ,? − υF ,♦ = Gk
Fq

F ,♦
. By definition (8) of the boundary gradient,

the derivative of q∂F ,♦ on each edge E ∈ EF is (υF ,? − υF ,♦) |E , and therefore vanishes on the connected
path of edges in Eg

F . The function q∂F ,♦ is thus constant along this path and, since adding a constant
vector to q

F ,♦
does not change the relation υF ,? − υF ,♦ = Gk

Fq
F ,♦

, we can assume that q∂F ,♦ = 0 on the
edges in Eg

F .
Still following ideas developed in Operation A above, the boundary function q∂F ,♦ is then extended

to all edges starting from a vertex inVng
F : the extension is linear from the value of q∂F ,♦ at the considered

vertex to zero at the other edge endpoint (in Figure 2, this extends q∂F ,♦ to Ea, Eb, Ec, Ed – notice that
some of these edges do not belong to ET♦). None of these edges belongs to ET? , since they originate from
a vertex in Vng

F at which T♦ and T? are not connected. Recalling that q∂F ,♦ = 0 at the vertices in Vg
F ,

we can further extend this function by zero on all remaining edges (that is, edges that do not contain any
vertex in Vng

F ). This yields a continuous piecewise polynomial function on the complete edge skeleton

10



T♦T♦T?

T3

T2

T1

T?

T1

T3FF

T2

Figure 3: Example of gluing appearing when assembling a mesh of an open set enclosing a void (here, the open
set is a layer between two concentric balls, the inner one being below in the figures above).

of Mh,?, that is single-valued on all edges except those in Eng
F , and that vanishes on all edges of T?.

Setting all face values (except F when viewed from T♦) and all element values to zero, we obtain q
h,♦

that is single-valued on the edge skeleton (except the edges in Eng
F ), single-valued on the faces (except F),

vanishes on T?, and satisfies q
T ,♦
∈ Xk

grad,T for all T ∈ Th,?. By definition of Gk
h, the vector G

k
hq

h,♦
can

be defined element-wise, and is single-valued on all faces except F, and on all edges except those in Eng
F .

Setting υh,♦ B υh,?−G
k
hq

h,♦
, we obtain by construction an element that is single-valued on all faces,

including F (since q
h,♦
= 0 on T?, the addition of Gk

hq
h,♦

does not modify υF ,?, while it adjusts υF ,♦ to

match υF ,?). Hence, υh,♦ ∈ Xk
curl,h,♦. Moreover, since Im Gk

T ⊂ KerCk
T for all T ∈ Th,♦, from (21) we

deduce that (22) holds. �

Remark 4 (Domain with voids). Consider assembling, following similar steps as in Operations A and B
above, a mesh for an open set enclosing a void, e.g., a one-layer mesh of a domain contained between
two concentric (polyhedral approximations of) balls. At some stage, to close the layer, we would end up
in the situation described in Figure 3 (in which the ball enclosed by the domain is below the part of the
mesh depicted): all the mesh except one element, T♦, has been fully assembled and this last element has
to be glued to the existing mesh. On the left of this picture, it has already been glued to the elements
T1 and T2, which can be done using Operations A and B above. Then, applying another Operation B to
glue it to T3, we would end up in a situation described on the right of the picture: T♦ and T? are then only
glued along the two vertical edges of F, and not the horizontal edges. The consequence is that, when
attempting to apply Operation B as in the proof of Theorem 2 to finalise the gluing of T♦ and T? along
F, the function q∂F ,♦ could only be chosen to vanish on one of the vertical edges, and not necessarily
the other; its extension to the edges skeleton would therefore have non-zero values on the edges of T?,
and the resulting element Gk

hq
h,♦

would modify the value of υF ,? on T?, thus preventing Gk
Fq

F ,♦
from

properly gluing υF ,? and υF ,♦.

4 DDR-based discretisation
In this section, we formulate the DDR-based discretisation of problem (1). The key ingredients are
reconstructions of vector potentials and discrete L2-products on the spaces Xk

curl,h and Xk
div,h. The vector

potential reconstructions are obtained element-wise by mimicking the Stokes formula with the role of the
exterior derivative played by the appropriate vector operator reconstruction. The discrete L2-products
consist of two terms, one in charge of consistency based on the vector potential reconstructions, and the
other in charge of stability. The latter is obtained by penalising in a least-square sense the difference
between projections of the vector potential reconstruction and the polynomial functions in the space.
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4.1 Discrete vector potential reconstructions and L2-products

Let a mesh element T ∈ Th be fixed. The vector potential reconstruction on Xk
curl,T is Pk

curl,T : Xk
curl,T →

Pk(T)3 such that, for all υT ∈ Xk
curl,T ,

Pk
curl,TυT B P̂k

curl,TυT − π
k−1
R,T (P̂

k
curl,TυT ) + υR,T , (23)

where P̂k
curl,TυT satisfies, for all (v,τ) ∈ Gk+1(T)⊥ ×Rk(T)⊥,∫

T

P̂k
curl,TυT · (curl v + τ) =

∫
T

•

Ck
TυT · v −

∑
F ∈FT

ωTF

∫
F

γk
t,FυT · (v × nF ) +

∫
T

υ⊥R,T · τ. (24)

Based on this potential reconstruction, we define the discrete L2-product such that, for all υh, ζh ∈ Xk
curl,h,

(υh, ζh
)curl,h B

∑
T ∈Th

(υT , ζT
)curl,T

with (υT , ζT )curl,T B

∫
T

Pk
curl,TυT · P

k
curl,T ζT

+ scurl,T (υT , ζT
) for all T ∈ Th.

(25)

In the above expression, scurl,T : Xk
curl,T × Xk

curl,T → R is a stabilisation bilinear form that can be taken
such that

scurl,T (υT , ζT
) B

∑
F ∈FT

hF

∫
F

(πk−1
R,FP

k
curl,TυT − υR,F ) · (π

k−1
R,FP

k
curl,T ζT

− ζR,F )

+
∑
F ∈FT

hF

∫
F

(π⊥,kR,FP
k
curl,TυT − υ

⊥
R,F ) · (π

⊥,k
R,FP

k
curl,T ζT

− ζ⊥R,F )

+
∑
E∈ET

h2
E

∫
E

(Pk
curl,TυT · tE − υE )(P

k
curl,T ζT

· tE − ζE ).

Given T ∈ Th, the vector potential reconstruction on Xk
div,T is Pk

div,T : Xk
div,T → P

k(T)3 such that for
all wT ∈ Xk

div,T it holds, for all (q, v) ∈ P0,k+1(T) ×Gk(T)⊥,∫
T

Pk
div,TwT · (grad q + v) = −

∫
T

Dk
TwT q +

∑
F ∈FT

ωTF

∫
F

wFq +
∫
T

w⊥G,T · v. (26)

Based on this potential reconstruction, we define the L2-product such that, for all wh, vh ∈ Xk
div,h,

(wh, vh)div,h B
∑
T ∈Th

(wT , vT )div,T (27a)

with (wT , vT )div,T B

∫
T

Pk
div,TwT · P

k
div,T vT + sdiv,T (wT , vT ) for all T ∈ Th. (27b)

Above, sdiv,T : Xk
div,T × Xk

div,T → R is a stabilisation bilinear form that can be taken such that

sdiv,T (wT , vT ) B

∫
T

(πk−1
G,TP

k
div,TwT − wG,T ) · (π

k−1
G,TP

k
div,T vT − vG,T )

+
∑
F ∈FT

hF

∫
F

(Pk
div,TwT · nF − wF )(P

k
div,T vT · nF − vF ).

(28)

The following result establishes, for all T ∈ Th, a link between the potential reconstruction Pk
div,T applied

to the restriction to T of the discrete curl operator defined by (16), and the full element curl operator
defined by (12).
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Proposition 5 (Link between Pk
div,T and

•

Ck
T ). For all T ∈ Th, it holds

Pk
div,T (C

k
T ζT
) =

•

Ck
T ζT

∀ζ
T
∈ Xk

curl,T . (29)

Proof. Let a mesh element T ∈ Th be fixed. Writing (26) for wT = Ck
T ζT

and v = 0, we infer that it
holds, for all q ∈ P0,k+1(T),∫

T

Pk
div,T (C

k
T ζT
) · grad q = −

∫
T
������Dk

T (C
k
T ζT
)q +

∑
F ∈FT

ωTF

∫
F

Ck
FζT

q =
∫
T

•

Ck
T ζT
· grad q,

where we have used the fact that Ker Dk
T = ImCk

T (cf. [17, Theorem 17]) in the cancellation, and [17, Eq.
(5.21)] to conclude. Hence, πk

G,T
(
Pk

div,T (C
k
T ζT
)
)
= πk

G,T
( •
Ck
T ζT

)
. On the other hand, (26) with q = 0

and v spanning Gk(T)⊥ implies π⊥,kG,T
(
Pk

div,T (C
k
T ζT
)
)
= π⊥,kG,T

( •
Ck
T ζT

)
. Combining these facts with the

orthogonal decomposition Pk(T)3 = Gk(T) ⊕ Gk(T)⊥ yields (29) and concludes the proof. �

4.2 Discrete problem

Define the discrete bilinear forms ah : Xk
curl,h × Xk

curl,h → R, bh : Xk
curl,h × Xk

div,h → R, and ch :
Xk

div,h × Xk
div,h → R such that, for all υh, ζh ∈ Xk

curl,h and all wh, vh ∈ Xk
div,h,

ah(υh, ζh) B (υh, ζh)curl,h, bh(ζ
h
, vh) B (C

k
hζh

, vh)div,h, ch(wh, vh) B

∫
Ω

Dk
hwh Dk

hvh .

The discrete problem reads: Find σh ∈ Xk
curl,h and uh ∈ Xk

div,h such that

ah(σh, ζh
) − bh(ζ

h
, uh) = −

∑
F ∈Fb

h

∫
F

g · γk
t,Fζh

∀ζ
h
∈ Xk

curl,h,

bh(σh, vh) + ch(uh, vh) =

∫
Ω

f · Pk
div,hvh ∀vh ∈ Xk

div,h .

(30)

Remark 6 (Characterisation of bh). Expanding, in the definition of bh, the discrete L2-inner product on
Xk

div,h according to (27) and recalling (29), we obtain the following equivalent expression, which can be
used for its practical implementation: For all (ζ

h
,wh) ∈ Xk

curl,h × Xk
div,h,

bh(ζ
h
,wh) =

∑
T ∈Th

[∫
T

•

Ck
T ζT
· Pk

div,TwT +
∑
F ∈FT

hF

∫
F

(
•

Ck
T ζT
· nF − Ck

FζF
)(Pk

div,TwT · nF − wF )

]
.

Remark 7 (Comparison with Finite Elements). Even on standard meshes, the proposed method does not
coincide, in general, with the Finite Element approximation of degree k. Bearing in mind [17, Table 2],
the number of degrees of freedom is slightly higher on tetrahedra and significantly smaller on hexahedra.

4.3 Well-posedness analysis

The discrete problem (30) can be recast as: Find (σh, uh) ∈ Xk
curl,h × Xk

div,h such that

Ah((σh, uh), (ζh
, vh)) = Lh(ζ

h
, vh) ∀(ζ

h
, vh) ∈ Xk

curl,h × Xk
div,h,

where the bilinear formAh : (Xk
curl,h × Xk

div,h)
2 → R and the linear form Lh : Xk

curl,h × Xk
div,h → R are

such that, for all ((υh,wh), (ζh
, vh)) ∈ (X

k
curl,h × Xk

div,h)
2,

Ah((υh,wh), (ζh
, vh)) B ah(υh, ζh) − bh(ζ

h
,wh) + bh(υh, vh) + ch(wh, vh) (31)
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and
Lh(ζ

h
, vh) B −

∑
F ∈Fb

h

∫
F

g · γk
t,Fζh

+

∫
Ω

f · Pk
div,hvh .

In the following, we consider a regular sequence (Mh)h>0 of polyhedral meshes, meaning that
(Th,Fh)h>0 matches the requirements of [16, Definition 1.9]. The well-posedness analysis requires a
discrete Poincaré inequality for Ck

h. This inequality can be established under the following assumption,
which only requires a proper control the averages of the edge unknowns. Proposition 15 in the appendix
shows that this assumption is satisfied if Ω is simply connected.

Assumption 8 (Poincaré inequality for edge averages). There is an inner product on Xk
curl,h whose norm

is equivalent (uniformly in h) to ‖·‖curl,h and such that, letting (KerCk
h)
⊥ be the orthogonal complement

of KerCk
h in Xk

curl,h for this inner product, there exists α > 0 satisfying( ∑
E∈Eh

h2
E |E |(υE )

2

) 1
2

≤ α‖Ck
hυh ‖div,h ∀υh ∈ (KerCk

h)
⊥, (32)

where |E | denotes the length of E ∈ Eh and υE is the average value on E of υE .

The uniform inf–sup property ofAh is established in the following discrete versions of theH(curl;Ω)
and H(div;Ω) norms: denoting by ‖·‖curl,h and ‖·‖div,h the L2-like norms respectively associated with
the inner products (·, ·)curl,h and (·, ·)div,h, we let

‖ζ
h
‖curl,1,h B

(
‖ζ

h
‖2curl,h + ‖C

k
hζh
‖2div,h

) 1
2

∀ζ
h
∈ Xk

curl,h,

and

‖vh ‖div,1,h B
(
‖vh ‖

2
div,h + ‖D

k
hvh ‖

2
Ω

) 1
2

∀vh ∈ Xk
div,h .

Theorem 9 (Inf-sup condition for Ah). Let Ω ⊂ R3 be an open connected polyhedral domain that does
not enclose any void (i.e., its second Betti number is zero), and let (Mh)h>0 be a regular polyhedral
mesh sequence. Then, under Assumption 8, there exists β > 0 depending only on Ω, the mesh regularity
parameter, and α, but not depending on h, such that, for all (υh,wh) ∈ Xk

curl,h × Xk
div,h,

sup
(ζ

h
,vh )∈X

k
curl,h×X

k
div,h\{0}

Ah((υh,wh), (ζh
, vh))

‖ζ
h
‖curl,1,h + ‖vh ‖div,1,h

≥ β
(
‖υh ‖curl,1,h + ‖wh ‖div,1,h

)
. (33)

Proof. See Section A.6. �

Corollary 10 (Well-posedness of the discrete problem). Under the assumptions of Theorem 9, there is a
unique solution (σh, uh) ∈ Xk

curl,h × Xk
div,h to (30) and there exists C > 0 not depending on h such that

‖σh ‖curl,1,h + ‖uh ‖div,1,h ≤ C (‖g‖∂Ω + ‖ f ‖Ω) . (34)

Proof. Using the boundedness of γk
t,F stated in (45), the norm equivalence (49), and the definition of

‖·‖div,1,h (which implies
∑

T ∈Th ‖P
k
div,T vT ‖

2
T ≤ ‖vh ‖

2
div,1,h), we obtain an upper bound of the dual norm

ofLh (for the norm Xk
curl,h×X

k
div,h 3 (ζh

, vh) 7→ ‖ζh
‖curl,1,h+ ‖vh ‖div,1,h ∈ R) in terms of the right-hand

side of (34). The conclusion then follows from Theorem 9 and [16, Proposition A.4]. �
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(a) “Cubic-Cells” mesh (b) “Tetgen-Cube-0” mesh

(c) “Voro-small-0” mesh (d) “Voro-small-1” mesh

Figure 4: Members of the refined mesh families used in the numerical example of Section 4.4.

4.4 Numerical assessment of the convergence rate

In order to numerically assess the convergence properties of the DDR-based method (30), we consider
the following manufactured exact solution on the unit cube Ω = (0,1)3:

σ(x) = 3π
©«

sin(πx1) cos(πx2) sin(πx3)

0
− cos(πx1) cos(πx2) sin(πx3)

ª®®¬ , u(x) =
©«

cos(πx1) sin(πx2) sin(πx3)

−2 sin(πx1) cos(πx2) sin(πx3)

sin(πx1) sin(πx2) cos(πx3)

ª®®¬ ,
with g inferred from u and forcing term

f (x) = 3π2 ©«
cos(πx1) sin(πx2) sin(πx3)

−2 sin(πx1) cos(πx2) sin(πx3)

sin(πx1) sin(πx2) cos(πx3)

ª®®¬ .
Specifically, we compute numerical approximations of this solution on refined Cartesian, tetrahedral, and
Voronoimesh sequences (see Figure 4) and polynomial degrees k ranging from0 to 3. The implementation
has been carried out within the HArDCore3D C++ framework (see https://github.com/jdroniou/
HArDCore), using linear algebra facilities from the Eigen3 (see http://eigen.tuxfamily.org) and,
for the resolution of the sparse linear systems, Intel MKL PARDISO (see https://software.intel.
com/en-us/mkl) libraries.

Define the following interpolate of the exact solution:

σ̂h B
(
(πk−1

R,Tσ,π
⊥,k
R,Tσ)T ∈Th , (π

k−1
R,Fσt,F,π

⊥,k
R,Fσt,F )F ∈Fh , (π

k
P,E (σ · tE ))E∈Eh

)
∈ Xk

curl,h,

ûh B
(
(πk−1

G,T u,π
⊥,k
G,T u)T ∈Th , (π

k
P,T (u · nF ))F ∈Fh

)
∈ Xk

div,h,
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(b) “Tetgen-Cube-0” mesh
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(c) “Voro-small-0” mesh
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(d) “Voro-small-1” mesh

Figure 5: Energy error ‖(σh − σ̂h, uh − ûh)‖en versus meshsize h for the numerical example of Section 4.4.
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where, for all F ∈ Fh, σt,F B nF × (σ |F × nF ) denotes the tangential component of σ over F. We
display in Figure 5 the error ‖(σh − σ̂h, uh − ûh)‖en versus the meshsize h, with ‖·‖en denoting the energy
norm naturally associated with problem (30), that is

‖(ζ
h
, vh)‖en B

(
ah(ζ

h
, ζ

h
) + ch(vh, vh)

) 1
2
.

The observed convergence rate is of hk+1, with a slight degradation on the “Voronoi-small-0” mesh
sequence, which can be ascribed to the fact that the regularity parameter increases upon refinement in this
case. A full theoretical justification of the fact that the scheme converges with order k + 1 is postponed
to a future work.

To assess the impact of the degree k, we plot in Figure 6 the energy norm of the error as a function
of the total number of degrees of freedom. For all the considered mesh families, the convergence rate
increases as expected with the polynomial degree. For the standard Cartesian and tetrahedral meshes, a
trade-off is present between the meshsize and the approximation degree. Specifically, on the Cartesian
mesh family, the choice k = 0 is advantageous for less than ≈ 2 · 103 degrees of freedom, while on the
tetrahedral mesh family this threshold is ≈ 7 ·103 degrees of freedom. We notice however that, on generic
polyhedral meshes such as those obtained by Voronoi tessellation, increasing the polynomial degree
appears to always be advantageous. Complex geometries can be more efficiently meshed using generic
polyhedral elements (which result in fewer elements than meshes of tetrahedra, for example); the tests
presented here justify the practical interest of developing and using arbitrary-order methods on generic
polyhedral meshes. Finally, it is worth noticing that these results can be further improved resorting to
static condensation to eliminate the element (and, possibly, face) unknowns by the local computation of
a Schur complement, which we have however not done in the current implementation.

5 Implementation
In this section, we discuss the implementation of the DDR-based method (30). We start with the
identification of suitable bases for the local polynomial spaces introduced in Section 2.3, then move to the
implementation of the discrete vector operators defined in Section 3 along with the vector potentials and
discrete L2-products of Section 4.1. In what follows, we use the C++ convention that numbering starts
from 0. Vectors and matrices are denoted with simple and bold sans-serif font, respectively. Intervals of
integers are denoted using double brackets so that, e.g., for any n,m ∈ N with n < m, nn,mn denotes the
set of integers greater or equal than n and strictly smaller than m.

Note that the principles described here are very close to those used in the implementation of other
polytopal methods; in particular, the reader will find many similarities with the implementation of the
Hybrid High-Order method for the Poisson problem described in [16, Appendix B].

5.1 Bases for the local polynomial spaces

Let a mesh element T ∈ Th and an integer ` ≥ 0 be given, set N`
P,T

B dim
(
P`(T)

)
=

(`+3
3

)
, and denote

by
P
`
T B

{
ϕi
P,T : i ∈ n0,N`

P,Tn
}

a basis for the space P`(T), such that ϕ0
P,T

is constant over T and
∫
T
ϕi
P,T

ϕ0
P,T
= 0 for all i ∈ n1,N`

P,T
n.

For a discussion on the choice of the basis P`T , we refer the reader to [16, Section B.1.1]. Here, we limit
ourselves to noticing that the choice of P`T can have a sizeable impact on the conditioning of the discrete
problem, especially on distorted meshes. In practice, especially when non-isotropic elements are present,
choosingP`T orthonormal with respect to the usual L2(T)-inner product can mitigate these issues. A basis

P`T B
{
ϕi
P,T : i ∈ n0,3N`

P,Tn
}
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Figure 6: Energy error ‖(σh − σ̂h, uh − ûh)‖en versus number of degrees of freedom for the numerical example of
Section 4.4.
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for P`(T)3 can be obtained by tensorisation of P`T setting ϕi
P,T B ϕ

(i%N `
P ,T
)

P,T
e(i÷N `

P ,T
) for all i ∈

n0,3N`
P,T

n, where ÷ and % denote, respectively, the integer division and the modulo operations and, for
j ∈ n0,2o, e j denotes the ( j + 1)th vector of the canonical basis of R3. For future use, we notice that it
holds

curl ϕi
P,T = grad ϕ

(i%N `
P ,T
)

P,T
e(i÷N `

P ,T
). (35)

Letting N`
G,T B dim

(
G`(T)

)
= N`+1

P,T
− 1, and recalling that grad : P0,`+1(T)

�
−→ G`(T) is an

isomorphism, a basisG`T for the space G`(T) is obtained setting

G`T B
{
ϕi
G,T B grad ϕi+1

P,T : i ∈ n0,N`
G,Tn

}
.

In order to find a basis for G`(T)⊥, the L2(T)3-orthogonal complement of G`(T) in P`(T)3, define the
matrix

A`G,T B
[∫

T

ϕi
G,T · ϕ

j
P,T

]
(i, j)∈n0,N `

G ,T n×n0,3N `
P ,T

n
∈ RN `

G ,T×3N `
P ,T .

The right null space of this matrix is formed by the vectors V =
[
Vj

]
j∈n0,3N `

P ,T
n ∈ R

3N `
P ,T such that

A`G,TV = 0.

Hence, V is in the right null space of A`G,T if and only if v B
∑3N `

P ,T
−1

j=0 Vjϕ
j
P,T satisfies(∫

T

ϕG,T · v = 0 ∀ϕG,T ∈ G
`
T

)
⇐⇒ v ∈ G`(T)⊥.

A basisG`T forG`(T)⊥ is thus easily obtained once a basis for the right null space of the matrix A`G,T has
been found, which can be done in Eigen3 using the method FullPivLU::kernel. As the matrix A`G,T
has full rank, this basis is composed of N`,⊥

G,T B 3N`
P,T
− N`

G,T vectors, each containing the coefficients
of the expansion of a basis function ϕ⊥G,T ∈ G

`
T in P`T .

Recalling that curl : G`+1(T)⊥
�
−→ R`(T) is an isomorphism, a basisR`T forR`(T) is simply obtained

taking the curl of the elements ofG`+1,⊥
T , that is,

R`T B
{
ϕi
R,T B curl ϕi,⊥

G,T : i ∈ n0,N`+1,⊥
G,T n

}
.

Notice that the curl of ϕ⊥G,T ∈ G
`+1,⊥
T is easily computable from (35) using the expansion of this function

in P`+1
T . Finally, a basis R`,⊥T for R`(T)⊥ from a basis for the right null space of the matrix

A`R,T B
[∫

T

ϕi
R,T · ϕ

j
P,T

]
(i, j)∈n0,N `

R ,T n×n0,3N `
P ,T

n
,

where N`
R,T B N`+1,⊥

G,T is the dimension of R`(T).
For any F ∈ Fh, bases for the spacesP`(F), P`(F)2,G`(F),G`(F)⊥,R`(F),R`(F)⊥ can be obtained

in a similar way considering a local orthogonal system of coordinates.
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5.2 Vector operators and potentials

The construction of the discrete vector operators and potentials requires the solution of local problems
on mesh elements and faces. For the sake of simplicity, we only detail the construction of the discrete
divergence operator defined by (14) and of the corresponding potential defined by (26) for a given mesh
elementT ∈ Th. The construction of the discrete curl operators and of the corresponding vector potentials
on mesh faces and elements follows similar principles.

According to the discussion in the previous section, a basis Bk
div,T for Xk

div,T can be obtained taking
the Cartesian product of the bases for the spaces that compose Xk

div,T , that is,

Bk
div,T BGk−1

T ×Gk ,⊥
T ×

?
F ∈FT

P
k
F . (36)

Let vT = (vG,T , v
⊥
G,T , (vF )F ∈FT ) ∈ Xk

div,T be given, and denote by VT the corresponding vector of degrees
of freedom, partitioned as follows:

VT =



VG,T

V⊥G,T
VF1
...

VFN∂T


∈ RN k

div,T .

Above, letting Nk
P,F

B dim
(
Pk(F)

)
=

(k+2
2

)
, we have set Nk

div,T B dim
(
Xk

div,T
)
= Nk−1

G,T + Nk ,⊥
G,T +

card(FT )Nk
P,F

and the subvectors VG,T ∈ R
N k−1
G ,T , V⊥G,T ∈ R

N k ,⊥
G ,T , and VF ∈ R

N k
P ,F , F ∈ FT , collect the

coefficients of the expansions of vG,T , v⊥G,T and vF inGk−1
T ,Gk ,⊥

T , and Pk
F , respectively.

Denoting by DT ∈ R
N k
P ,T the vector collecting the coefficients of the expansions of Dk

T vT in Pk
T , the

algebraic realisation of (14) is

MD,TDT = −BD,TVG,T +
∑
F ∈FT

ωTFBD,FVF, (37)

with
MD,T B

[∫
T
ϕi
P,T

ϕ
j
P,T

]
(i, j)∈n0,N k

P ,T
n2
,

BD,T B
[∫

T
grad ϕi

P,T
· ϕ j

G,T

]
(i, j)∈n0,N k

P ,T
n×n0,N k

G ,T n
,

BD,F B
[∫

F
ϕi
P,T

ϕ
j
P,F

]
(i, j)∈n0,N k

P ,T
n×n0,N k

P ,F
n
.

The linear operator Dk
T : Xk

div,T → P
k(T) is thus represented, in the selected bases for Xk

div,T and Pk(T),

by the matrix DT ∈ R
N k
P ,T
×N k

div,T whose ith column is the solution of the algebraic problem (37) for
VT = ei, with ei denoting the ith vector of the canonical basis of RN k

div,T . In the spirit of [16, Appendix
B], these conditions can be translated into an explicit single equation on DT .

The computation of the vector potential on Xk
div,T follows similar principles. With the same notations

as above, and additionally denoting by Pdiv,T ∈ R
N k

div,T the vector collecting the coefficients of the
expansion of Pk

div,T vT in Pk
T , the algebraic realisation of (26) reads[

MP,T

M⊥P,T

]
Pdiv,T =

[
−BP,TDTVT +

∑
F ∈FT ωTFBP,FVF

B⊥P,TV⊥G,T

]
, (38)
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where Pdiv,T ∈ R
3N k
P ,T contains the coefficients of the expansion of Pk

div,T vT in Pk
T , while

MP,T B
[∫

T
grad ϕi

P,T
· ϕ j

P,T

]
(i, j)∈n1,N k+1

P ,T
n×n0,3N k

P ,T
n
,

M⊥P,T B
[∫

T
ϕi,⊥
G,T · ϕ

j
P,T

]
(i, j)∈n0,N k ,⊥

G ,T n×n0,3N k
P ,T

n
,

BP,T B
[∫

T
ϕi
P,T

ϕ
j
P,T

]
(i, j)∈n1,N k+1

P ,T
n×n0,N k

P ,T
n
,

B⊥P,T B
[∫

T
ϕi,⊥
G,T · ϕ

j ,⊥
G,T

]
(i, j)∈n0,N k ,⊥

G ,T n2
,

BF B
[∫

F
ϕi
P,T

ϕ
j
P,F

]
(i, j)∈n1,N k+1

P ,T
n×n0,N k

P ,F
n

∀F ∈ FT .

Hence, Pk
div,T : Xk

div,T → P
k(T)3 is represented by the matrix Pdiv,T ∈ R

3N k
P ,T
×N k

div,T whose ith column
is the solution of the algebraic problem (38) for VT = ei, i ∈ n0,Nk

div,Tn.
5.3 Discrete L2-products and bilinear forms

The last ingredient for the implementation of the DDR-based scheme (30) are the discrete L2-products
in Xk

curl,h and Xk
div,h. For the sake of simplicity, we will focus here on the local L2-product in Xk

div,T
defined by (27b). The corresponding global L2-product is obtained assembling the local contributions
element by element in the usual (Finite Element) way. The L2-product in Xk

curl,T is constructed following
the same general ideas.

The matrix representing (·, ·)div,T in the basis (36) for Xk
div,T is

Ldiv,T B Pᵀdiv,TMdiv,TPdiv,T + Sdiv,T ∈ R
N k

div,T×N
k
div,T ,

where Mdiv,T ∈ R
3N k+1
P ,T
×3N k+1

P ,T is the mass matrix of Pk(T)3, while Sdiv,T is the matrix counterpart of
the stabilisation bilinear form sdiv,T defined by (28). This stabilisation bilinear form penalises in a least-
square sense the difference between (projections of) the potential reconstruction and the corresponding
components of the vector of polynomials in Xk

div,T . In the spirit of [16, Section B.2.2], the difference
operator Xk

div,T 3 vT 7→ πk−1
G,T (P

k
div,T vT )− vG,T ∈ G

k−1(T) is represented, in the selected bases for Xk
div,T

and Gk−1(T), by the matrix

∆div,T B Πk−1
G,TPdiv,T −

[
IN k−1

G ,T
0 · · · 0

]
∈ RN k−1

G ,T×N
k
div,T , (39)

where, denoting by MG,T the mass matrix of Gk−1(T),

Πk−1
G,T B M−1

G,T

[∫
T
ϕi
G,T · ϕ

j
P,T

]
(i, j)∈n0,N k−1

G ,T n×n0,3N k
P ,T

n

is the matrix representing the L2-orthogonal projector πk−1
G,T with domain restricted to Pk(T)3, while the

identity matrix IN k−1
G ,T

in (39) occupies the columns corresponding to the component vG,T . Similarly, for

all F ∈ FT , the face difference operator Xk
div,T 3 vT 7→ Pk

div,T vT · nF − vF ∈ P
k(F) is represented by

the matrix
∆div,F B TFPdiv,T −

[
0 · · · IN k

P ,F
· · · 0

]
, (40)

where the matrix TF representing the normal trace operator applied to functions in Pk(T)3 is such that,
denoting by MP,F the mass matrix of Pk(F),

TF B M−1
P,F

[∫
F
ϕi
P,F
(ϕ j

P,T · nF )

]
(i, j)∈n0,N k

P ,F
n×n0,3N k

P ,T
n
,
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while the identity matrix IN k
P ,F

in (40) occupies the columns corresponding to the component vF . Finally,
denoting, for all F ∈ FT , by MP,F the mass matrix of Pk(F), we set

Sdiv,T B ∆
ᵀ
div,TMG,T∆div,T +

∑
F ∈FT

hF∆
ᵀ
div,FMP,F∆div,F .

A Proof of the inf–sup estimate (Theorem 9)
Throughout this section, it is assumed that the meshMh belongs to a regular sequence in the sense made
precise in Section 4.3. This implies, in particular, that the diameter hT of a mesh element T ∈ Th is
comparable to the diameters hF and hE of any of its faces F ∈ FT or edges E ∈ ET , uniformly for
all meshes in the sequence. Assumption 8, on the other hand, is only useful for Theorem 19 and, as
a consequence, for the proof of the inf–sup estimate. For the sake of conciseness, we write a . b as
a shorthand for a ≤ Cb with C independent of h, of the chosen element/face/edge, and of the chosen
functions involved in the quantities a, b (so C depends only on the mesh regularity parameter, on Ω and,
when appropriate, on α in Assumption 8). The notation a ≈ b means that a . b and b . a.

We first establish a few results on the interpolators, operators, and potentials linked to the portion of
the DDR sequence (18) relevant to our purpose. Similar results can also be proved the remaining portion
of the sequence. The analysis is more easily carried out using L2(Ω)3-like norms on Xk

curl,h and Xk
div,h

that are equivalent to, but not coincident with, ‖·‖curl,h and ‖·‖div,h, respectively. Specifically, we let

|||ζ
h
|||curl,h B

( ∑
T ∈Th

|||ζ
T
|||2curl,T

)1/2

for all ζ
h
∈ Xk

curl,h (41a)

with |||ζ
T
|||curl,T B

(
‖ζR,T + ζ

⊥
R,T ‖

2
T +

∑
F ∈FT

hF |||ζ
F
|||2curl,F

)1/2

for all T ∈ Th and all ζ
T
∈Xk

curl,T (41b)

and |||ζ
F
|||curl,F B

(
‖ζR,F + ζ

⊥
R,F ‖

2
F +

∑
E∈EF

hE ‖ζE ‖
2
E

)1/2

for all F ∈ Fh and all ζ
F
∈ Xk

curl,F , (41c)

and

|||vh |||div,h B

( ∑
T ∈Th

|||vT |||
2
div,T

) 1
2

for all vh ∈ Xk
div,h

with |||vT |||div,T B

(
‖vG,T + v⊥G,T ‖

2
T +

∑
F ∈FT

hF ‖vF ‖2F

)1/2

for all T ∈ Th and all vT ∈ Xk
div,T .

(42)

We note that, by orthogonality, in the expressions above we have ‖ζR,T + ζ⊥R,T ‖
2
T = ‖ζR,T ‖

2
T + ‖ζ

⊥
R,T ‖

2
T ,

‖ζR,F + ζ
⊥
R,F ‖

2
F = ‖ζR,F ‖

2
F + ‖ζ

⊥
R,F ‖

2
F and ‖vG,T + v⊥G,T ‖

2
T = ‖vG,T ‖

2
T + ‖v

⊥
G,T ‖

2
T . The power of

the face and edge diameters in front of the various contributions to the norms |||·|||curl,h and |||·|||div,h are
selected so as to ensure that all the terms have the same scaling.

A.1 Boundedness of curl operators

Lemma 11 (Isomorphism property of curl on elements). For all ` ≥ 0 and all T ∈ Th, the mapping
curl : G`+1(T)⊥

�
−→ R`(T) is an isomorphism and

‖r ‖T . hT ‖ curl r ‖T ∀r ∈ G`+1(T)⊥. (43)
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Proof. The fact that curl establishes an isomorphism between G`+1(T)⊥ and R`(T) follows from [1,
Corollary 7.3]. We therefore focus on proving (43). Using a scaling argument as in, e.g., [16, Lemma
1.28], we can assume that T has diameter 1, is contained in the unit ball B1 centred at 0, and contains the
ball B% centered at 0 and of size % & 1. Let r ∈ G`+1(T)⊥, which can be considered as a polynomial r̃
on B1. Set q B curl r̃ ∈ R`(B1). The mapping curl : G`+1(B1)

⊥ → R`(B1) is an isomorphism, and its
inverse is therefore continuous with a norm that only depends on these spaces – that is, only on ` and d.
There exists therefore r̂ ∈ G`+1(B1)

⊥ ⊂ P`+1(B1)
3 such that curl r̂ = q = curl r̃ and

‖ r̂ ‖B1 . ‖q‖B1 . (44)

In particular, curl(̂r |T − r) = (curl r̂) |T − curl r = q |T − curl r = 0, and thus r̂ |T − r lies in the kernel
of curl on P`+1(T)3, which is G`+1(T). Taking the projection on G`+1(T)⊥, to which r belongs, we infer
π⊥,`+1
G,T r̂ |T = π

⊥,`+1
G,T r = r . The estimate (44) then yields

‖r ‖T = ‖π
⊥,`+1
G,T r̂ |T ‖T ≤ ‖ r̂ ‖T ≤ ‖ r̂ ‖B1 . ‖q‖B1 . ‖q‖B% ≤ ‖q‖T ,

the second last inequality following from [16, Eq. (1.43)] and the fact that q ∈ P`(T)3. Since we are in
a situation where T has diameter hT = 1, this concludes the proof. �

Proposition 12 (Boundedness of curl operators and vector potentials). It holds

‖Ck
FυF ‖F . h−1

F |||υF |||curl,F and ‖γk
t,FυF ‖F . |||υF |||curl,F ∀F ∈ Fh , ∀υF ∈ Xk

curl,F, (45)

|||Ck
TυT |||div,T . h−1

T |||υT |||curl,T and ‖Pk
curl,TυT ‖T . |||υT |||curl,T ∀T ∈ Th , ∀υT ∈ Xk

curl,T . (46)

Proof. Let q ∈ Pk(F) and apply the Cauchy–Schwarz inequality along with the inverse and discrete trace
inequalities of [16, Sections 1.2.5 and 1.2.6] to (10) to write∫

F

Ck
FυF q . ‖υR,F ‖Fh−1

F ‖q‖F +
∑

E∈EF

‖υE ‖Eh
− 1

2
F ‖q‖F .

Taking the supremumover the set
{
q ∈ Pk(F) : ‖q‖F ≤ 1

}
and recalling that hF ≈ hE bymesh regularity

leads to

‖Ck
FυF ‖F . h−1

F

(
‖υR,F ‖F +

∑
E∈EF

h
1
2
E ‖υE ‖E

)
. h−1

F |||υF |||curl,F . (47)

This proves the estimate on Ck
FυF in (45).

Let σ ∈ Pk(F)2 and let r ∈ P0,k+1(F) be such that rotF r = πk
R,Fσ, that is, gradF r = %π/2(πk

R,Fσ).
The local Poincaré–Wirtinger inequality [16, Remark 1.46] then yields

‖r ‖F . hF ‖πk
R,Fσ‖F ≤ hF ‖σ‖F, (48)

the last inequality being a consequence of the L2(F)2-boundedness of πk
R,F . Applying the definition

(11) of γk
t,FυF to this r and τ = π⊥,kR,Fσ, we obtain, with the help of Cauchy–Schwarz and discrete trace

inequalities ∫
F

γk
t,FυF · σ . ‖C

k
FυF ‖F ‖r ‖F +

∑
E∈EF

‖υE ‖Eh
− 1

2
F ‖r ‖F + ‖υ

⊥
R,F ‖F ‖σ‖F

. |||υF |||curl,F ‖σ‖F +
∑

E∈EF

‖υE ‖Eh
1
2
E ‖σ‖F + ‖υ

⊥
R,F ‖F ‖σ‖F
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where the conclusion follows from (47) along with (48) and hF ≈ hE . The estimate on γk
t,FυF follows

by taking the supremum over σ ∈ Pk(F)2 such that ‖σ‖F ≤ 1.
The estimates (46) are obtained applying the same arguments as above, using the boundedness of

γk
t,F stated in (45) and invoking Lemma 11 in lieu of the Poincaré–Wirtinger inequality to ensure that,

for a given σ ∈ Pk(T)3, the polynomial v ∈ Gk+1(T)⊥ to be used in (24) and such that curl v = πk
R,Tσ

satisfies ‖v‖T . hT ‖σ‖T . �

A.2 Equivalence of norms

Proposition 13 (Equivalence of norms on discrete spaces). For ♣ = T ∈ Th or ♣ = h, it holds

‖υ
♣
‖curl,♣ ≈ |||υ♣ |||curl,♣ ∀υ

♣
∈ Xk

curl,♣, (49)

‖w
♣
‖div,♣ ≈ |||w♣ |||div,♣ ∀w

♣
∈ Xk

div,♣. (50)

Proof. We only prove (49), the equivalence (50) being obtained similarly. The case ♣ = h follows
summing over T the squares of the cases ♣ = T , so we focus on this latter situation. Let T ∈ Th
and υT ∈ Xk

curl,T . The definition (25) of the inner product to which ‖·‖curl,T corresponds and the
L2(F)2-orthogonality of πk−1

R,F (P
k
curl,TυT ) − υR,F ∈ Rk−1(F) and π⊥,kR,F (P

k
curl,TυT ) − υ

⊥
R,F ∈ Rk(F)⊥

give

‖υT ‖
2
curl,T = ‖P

k
curl,TυT ‖

2
T +

∑
F ∈FT

hF ‖(πk−1
R,F + π

⊥,k
R,F )P

k
curl,TυT − (υR,F + υ

⊥
R,F )‖

2
F

+
∑
E∈ET

h2
E ‖P

k
curl,TυT · tE − υE ‖

2
E . (51)

Applying (24) with v = 0 yields π⊥,kR,T (P̂
k
curl,TυT ) = υ⊥R,T . Taking the projection π⊥,kR,T of (23),

we infer that π⊥,kR,T (P
k
curl,TυT ) = υ⊥R,T . By (23), we also have πk−1

R,T (P
k
curl,TυT ) = υR,T . Hence,

υR,T + υ⊥R,T = (π
k−1
R,T + π

⊥,k
R,T )P

k
curl,TυT . Using hF ≈ hE for all E ∈ EF , we infer

|||υT |||
2
curl,T ≈ ‖υR,T + υ

⊥
R,T ‖

2
T +

∑
F ∈FT

hF ‖υR,F + υ
⊥
R,F ‖

2
F +

∑
E∈ET

h2
E ‖υE ‖

2
E

. ‖(πk−1
R,T + π

⊥,k
R,T )P

k
curl,TυT ‖

2
T +

∑
F ∈FT

hF ‖υR,F + υ
⊥
R,F − (π

k−1
R,F + π

⊥,k
R,F )P

k
curl,TυT ‖

2
F

+
∑
E∈ET

h2
E ‖υE − Pk

curl,TυT · tE ‖
2
E +

∑
F ∈FT

hF ‖(πk−1
R,F + π

⊥,k
R,F )P

k
curl,TυT ‖

2
F

+
∑
E∈ET

h2
E ‖P

k
curl,TυT · tE ‖

2
E

. ‖Pk
curl,TυT ‖

2
T +

∑
F ∈FT

hF ‖υR,F + υ
⊥
R,F − (π

k−1
R,F + π

⊥,k
R,F )P

k
curl,TυT ‖

2
F

+
∑
E∈ET

h2
E ‖υE − Pk

curl,TυT · tE ‖
2
E,

where the first inequality follows introducing (πk−1
R,F + π

⊥,k
R,F )P

k
curl,TυT in the face terms, Pk

curl,TυT · tE
in the edge terms, and using triangle inequalities, while the second inequality is obtained invoking the
boundedness of the L2-projectors (πk−1

R,T + π
⊥,k
R,T ) and (π

k−1
R,F + π

⊥,k
R,F ), and discrete trace inequalities on

each face F ∈ FT and edge E ∈ ET . Recalling (51), we infer |||υT |||
2
curl,T . ‖υT ‖

2
curl,T .
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To establish the converse estimate, we start from (51) and use triangle inequalities to write

‖υT ‖
2
curl,T . ‖P

k
curl,TυT ‖

2
T +

∑
F ∈FT

hF ‖(πk−1
R,F + π

⊥,k
R,F )P

k
curl,TυT ‖

2
F +

∑
E∈ET

h2
E ‖P

k
curl,TυT · tE ‖

2
E

+
∑
F ∈FT

hF ‖υR,F + υ
⊥
R,F ‖

2
F +

∑
E∈ET

h2
E ‖υE ‖

2
E

. ‖Pk
curl,TυT ‖

2
T + |||υT |||

2
curl,T . |||υT |||

2
curl,T ,

where the second inequality follows from the boundedness of L2-projectors (πk−1
R,F + π

⊥,k
R,F ) together with

discrete trace inequalities, while the conclusion is obtained invoking (46). �

A.3 Preliminaries to the Poincaré inequalities for Ck
h

Lemma 14 (Poincaré inequality for Ck
h with averages of edge unknowns). Let (KerCk

h)
⊥ be the ortho-

gonal complement of KerCk
h in Xk

curl,h for an inner product whose norm is, uniformly in h, equivalent to
‖·‖curl,h. For υh ∈ Xk

curl,h and any E ∈ Eh, denote by υE the average value of υE on E . Then, it holds,

‖υh ‖curl,h . |||C
k
hυh |||div,h +

( ∑
E∈Eh

h2
E |E |(υE )

2

) 1
2

∀υh ∈ (KerCk
h)
⊥. (52)

Proof. Let us construct a vector ζ
h
=

(
(ζR,T ,0)T ∈Th , (ζR,F,0)F ∈Fh , (ζE )E∈Eh

)
∈ Xk

curl,h such that
υh + ζh

∈ KerCk
h. We first set ζE = −υE for all E ∈ Eh. This readily gives, denoting by Sh(υh) the

right-hand side of (52), ∑
E∈Eh

h2
E ‖ζE ‖

2
E ≤ Sh(υh)

2. (53)

Recalling (10) and enforcing, for all F ∈ Fh, Ck
F (υF + ζF

) = 0, we obtain∫
F

(υR,F + ζR,F ) · rotF q −
∑

E∈EF

ωFE

∫
E

(υE + ζE )q = 0 ∀q ∈ Pk(F). (54)

For all E ∈ Eh, by construction of ζE ,
∫
E
(υE + ζE ) = 0. Hence, the above equation is automatically

satisfied if q is constant, and we only have to impose it for q ∈ P0,k(F). Since rotF : P0,k(F)
�
−→ Rk−1(F)

is an isomorphism, this defines ζR,F ∈ Rk−1(F) uniquely. Moreover, by definition (10) of Ck
FυF , the

terms involving υR,F and υE can be replaced in (54) and we have∫
F

ζR,F · rotF q =
∑

E∈EF

ωFE

∫
E

ζEq −
∫
F

Ck
FυFq ∀q ∈ Pk(F). (55)

Working as around (48) with σ = ζR,F , which satisfies πk
R,Fσ = ζR,F , we find q ∈ Pk(F) such that

rotF q = ζR,F and ‖q‖F . hF ‖ζR,F ‖F . Plugging this q into (55) and using Cauchy–Schwarz and
discrete trace inequalities leads to

‖ζR,F ‖F .

( ∑
E∈EF

h2
E ‖ζE ‖

2
E

) 1
2

h
− 1

2
F + hF ‖Ck

FυF ‖F .

Squaring this inequality, multiplying by hF , summing over F ∈ Fh, and using card {F ∈ Fh : E ∈ EF } .
1 and hF . 1, we infer that∑

F ∈Fh

hF ‖ζR,F ‖
2
F .

∑
F ∈Fh

hF ‖Ck
FυF ‖

2
F +

∑
E∈Eh

h2
E ‖ζE ‖

2
E . Sh(υh)

2, (56)
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where the conclusion follows from (53) and the definition of |||Ck
hυh |||div,h.

By [17, Eq. (5.22)], and recalling that Ck
F (υF + ζF

) = 0 for all F ∈ Fh, we have, for all T ∈ Th,∫
T

πk−1
G,T

•

Ck
T (υT + ζT

) · grad r =
∑
F ∈FT

ωTF

∫
F

Ck
F (υF + ζF

)r = 0 ∀r ∈ Pk(T).

This shows that, whatever the choice of (ζR,T )T ∈Th , we have πk−1
G,T

•

Ck
T (υT + ζT

) = 0 for all T ∈ Th. To

ensure that Ck
h(υh + ζh

) = 0 we therefore only have to show that π⊥,kG,T
•

Ck
T (υT + ζT

) = 0 for all T ∈ Th,

which reduces to, recalling the definition (12) of
•

Ck
T ,∫

T

(υR,T + ζR,T ) · curl τ +
∑
F ∈FT

ωTF

∫
F

γk
t,F (υF + ζF

) · (τ × nF ) = 0 ∀τ ∈ Gk(T)⊥.

Since curl : Gk(T)⊥
�
−→ Rk−1(T) is an isomorphism, this equation defines a unique ζR,T ∈ Rk−1(T).

Moreover, using the definition (12) of
•

Ck
TυT to replace the terms involving υR,T and (γk

t,FυF )F ∈FT , we
have ∫

T

ζR,T · curl τ = −
∑
F ∈FT

ωTF

∫
F

γk
t,FζF

· (τ × nF ) −

∫
T

π⊥,kG,T
•

Ck
TυT · τ ∀τ ∈ Gk(T)⊥.

Invoking Lemma 11, we select τ ∈ Gk(T)⊥ such that curl τ = ζR,T and ‖τ‖T . hT ‖ζR,T ‖T . Using
Cauchy–Schwarz and discrete trace inequalities, we obtain

‖ζR,T ‖T .

( ∑
F ∈FT

hF ‖γk
t,FζF

‖2F

) 1
2

+ hT ‖π
⊥,k
G,T

•

Ck
TυT ‖T .

Squaring, summing over T ∈ Th, using hT . 1, the definition of Ck
h, the boundedness of γ

k
t,F stated in

(45), and recalling (56) and (53), we infer∑
T ∈Th

‖ζR,T ‖
2
T . Sh(υh)

2. (57)

We have therefore found ζ
h
∈ Xk

curl,h such that υh + ζh ∈ KerCk
h and, gathering (53), (56) and (57),

|||ζ
h
|||curl,h . Sh(υh). Let N(·) be the norm associated to the inner product for which υh ⊥ KerCk

h, and
P⊥ : Xk

curl,h → (KerCk
h)
⊥ be the orthogonal projector for this inner product. We have P⊥(υh + ζh) = 0

which gives υh = −P⊥ζ
h
, since υh ∈ (KerCk

h)
⊥. Hence, N(υh) ≤ N(ζ

h
) and thus, by the assumed

equivalence of N(·) and ‖·‖curl,h ≈ |||·|||curl,h (see (49)), we infer ‖υh ‖curl,h . |||ζ
h
|||curl,h ≤ Sh(υh). �

Lemma 14 highlights the interest of Assumption 8 when establishing a Poincaré inequality for Ck
h.

The following proposition gives a situation when this assumption is satisfied.

Proposition 15 (Assumption 8 on simply connected domains). IfΩ is simply connected, then Assumption
8 holds with α not depending on h.

Proof. We have to prove (32). To this end, we leverage the discrete Poincaré inequality proved in [9,
Lemma 2.2] in the context of Compatible Discrete Operators, which are linked to the DDR sequence for
k = 0. We next recall this result. Let

Eh B
{
(µE )E∈Eh : µE ∈ R ∀E ∈ Eh

}
and F

h
B

{
(rF )F ∈Fh : rF ∈ R ∀F ∈ Fh

}
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be the spaces of edge and face constant values, respectively. These spaces correspond to X0
curl,h and

X0
div,h, respectively, but are expressed in a notation more similar to [9] to help the reader navigate this

reference. We define the projectors Π0
curl,h : Xk

curl,h → Eh and Π0
div,h : Xk

div,h → F h
such that

Π
0
curl,hυh B (υE )E∈Eh ∀υh ∈ Xk

curl,h and Π
0
div,hwh B (wF )F ∈Fh ∀wh ∈ Xk

div,h,

where wF is the average of wF on F. Let CURL : Eh → F h
be the discrete curl defined by

CURL µ
h
B

(
−

1
|F |

∑
E∈EF

ωFE |E |µE
)
F ∈Fh

∀µ
h
= (µE )E∈Eh ∈ Eh, (58)

with |F | denoting the area of F ∈ Fh. Making q = 1 in (10) shows that the following commutation
property holds:

Π
0
div,h

(
Ck

hυh
)
= CURL

(
Π

0
curl,hυh

)
∀υh ∈ Xk

curl,h . (59)

It is inferred from [9, Lemma 2.2] that

|||µ
h
|||2Eh :=

∑
E∈Eh

h2
E |E |µ

2
E .

∑
F ∈Fh

hF |F |(CURL µ
h
)2F ∀µ

h
∈ (Ker CURL)⊥Eh , (60)

where the orthogonal complement (Ker CURL)⊥Eh is taken for a certain inner product 〈·, ·〉Eh on Eh
whose norm is equivalent (uniformly in h) to |||·|||Eh defined above. Notice that the norms appearing in
(60) use a slightly different local length scale with respect to the ones defined in [9, Eq. (2.15)]. By
mesh regularity, these choices are equivalent up to a constant that depends only on the mesh regularity
parameter. Our approach to leverage this lowest-order Poincaré inequality in order to prove (32) consists in
defining on Xk

curl,h an inner product, whose norm is equivalent to |||·|||curl,h, such that Π0
curl,h(KerCk

h)
⊥ ⊂

(Ker CURL)⊥Eh . A preliminary step consists in constructing an extension operator from ET to Xk
curl,h

that sends Ker CURL into KerCk
h.

1. Extension operator. The extension operatorEh : Eh → Xk
curl,h is constructed following similar ideas

as in the proof of Lemma 14: For all µ
h
∈ Eh, setEhµh

B ζ
h
= ((ζR,T ,0)T ∈Th , (ζR,F,0)F ∈Fh , (µE )E∈Eh )

such that

∀F ∈ Fh

∫
F

ζR,F · rotF q −
∑

E∈FE

ωFE

∫
E

µEq = 0 ∀q ∈ P0,k(F), (61)

∀T ∈ Th

∫
T

ζR,T · curl τ +
∑
F ∈FT

ωTF

∫
F

γk
t,FζF

· (τ × nF ) = 0 ∀τ ∈ Gk(T)⊥. (62)

Reasoning as in the proof of Lemma 14, these equations uniquely define (ζR,F )F ∈Fh and (ζR,T )T ∈Th ,
which satisfy ∑

T ∈Th

‖ζR,T ‖
2
T +

∑
F ∈Fh

hF ‖ζR,F ‖
2
F . |||µh

|||Eh . (63)

We obviously have
Π

0
curl,h

(
Ehµh

)
= µ

h
∀µ

h
∈ Eh (64)

since the edge components of Ehµh
= ζ

h
are (µE )E∈Eh . Combining this remark with (63), we infer

|||Ehµh
|||curl,h ≈ |||µ

h
|||Eh ∀µ

h
∈ Eh . (65)

Let us prove that
Ehµh

∈ KerCk
h ∀µ

h
∈ Ker CURL . (66)
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Let µ
h
∈ Ker CURL. By definition (58) of CURL, it holds

∑
E∈EF ωFE |E |µE = 0 for all F ∈ Fh, and thus

(61) is actually satisfied for all q ∈ Pk(F). This shows that Ck
F

(
Ehµh

)
= 0 for all F ∈ Fh. Using again

the argument, based on [17, Eq. (5.22)], in the proof of Lemma 14, we infer from (62) that Ck
T

(
Ehµh

)
= 0

for all T ∈ Th. This proves (66).

2. Construction of the inner product on Xk
curl,h. Let us now define the inner product [·, ·] on Xk

curl,h
such that, for all ∀(υh,σh) ∈ Xk

curl,h × Xk
curl,h,

[υh,σh] = 〈Π
0
curl,hυh,Π

0
curl,hσh〉Eh + ((Id −EhΠ

0
curl,h)υh, (Id −EhΠ

0
curl,h)σh)curl,h .

Letting N(·) be the norm associated with [·, ·] and recalling that the norm associated with 〈·, ·〉Eh is
equivalent to |||·|||Eh , we have, for all υh ∈ Xk

curl,h,

N(υh)
2 = |||Π0

curl,hυh |||
2
Eh
+ ‖(Id−EhΠ

0
curl,h)υh ‖

2
curl,h ≈ ‖EhΠ

0
curl,hυh ‖

2
curl,h+ ‖(Id−EhΠ

0
curl,h)υh ‖

2
curl,h,

where the equivalence follows from (65) and (49). Triangle inequalities combined with (65) and the
straightforward estimate |||Π0

curlυh |||Eh . |||υh |||curl,h ≈ ‖υh ‖curl,h then show that N(·) is equivalent to
‖·‖curl,h, as required.

3. Conclusion. Take υh ∈ (KerCk
h)
⊥, where the orthogonal is taken for the inner product [·, ·]. Let µ

h
∈

Ker CURL. Then, Ehµh
∈ KerCk

h (see (66)) and (Id − EhΠ
0
curl,h)Ehµh

= Ehµh
− EhΠ

0
curl,h(Ehµh

) = 0
(see (64)). Hence,

0 = [υh,Ehµh
] = 〈Π0

curl,hυh,Π
0
curl,hEhµh

〉Eh = 〈Π
0
curl,hυh, µh

〉Eh .

In other words, Π0
curl,hυh ∈ (Ker CURL)⊥Eh . Invoking then (60) on µ

h
= Π0

curl,hυh, recalling the
definition of Π0

curl,h, and using the commutation property (59), we infer∑
E∈Eh

h2
E |E |(υE )

2 .
∑
F ∈Fh

hF |F |
(
Ck
FυF

)2

F
≤

∑
F ∈Fh

hF ‖Ck
FυF ‖

2
F,

the second estimate following by Jensen’s inequality since
(
Ck
FυF

)
F
is the average of Ck

FυF on F. The
proof of (32) is completed recalling the definition (42) of |||·|||div,h and the norm equivalence (50). �

A.4 Boundedness of interpolator

The global interpolator on Xk
div,h is given by: For all v ∈ H1(Ω)3,

Ikdiv,hv B
(
(πk−1

G,T v,π
⊥,k
G,T v)T ∈Th , (π

k
P,F (v · nF )

)
F ∈Fh
) ∈ Xk

div,h .

Lemma 16 (Boundedness of Ikdiv,h). It holds

|||Ikdiv,hv |||div,h . ‖v‖H1(Ω)3 ∀v ∈ H1(Ω)3. (67)

Proof. By L2(T)3-boundedness of the orthogonal projector πk−1
G,T + π

⊥,k
G,T , we have

‖πk−1
G,T v + π

⊥,k
G,T v‖T ≤ ‖v‖T . (68)

The L2(F)-boundedness of πk
P,F

and the local continuous trace inequality [16, Lemma 1.31] yield

h
1
2
F ‖π

k
P,F (v · nF )‖F ≤ h

1
2
F ‖v‖F ≤ ‖v‖T + hT ‖ grad v‖T . ‖v‖H1(T )3 . (69)

Estimate (67) follows raising (68) and (69) to the square and summing, respectively, over T ∈ Th and
F ∈ Fh. �
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A.5 Poincaré inequalities

Theorem 17 (Isomorphism property and Poincaré inequality for Dk
h
). Let (Ker Dk

h
)⊥ be the orthogonal

of Ker Dk
h
in Xk

div,h for an inner product whose norm is (uniformly in h) equivalent to ‖·‖div,h. Then,
Dk
h

: (Ker Dk
h
)⊥ → Pk(Th) is an isomorphism and

‖wh ‖div,h . ‖Dk
hwh ‖Ω ∀wh ∈ (Ker Dk

h)
⊥. (70)

Remark 18 (Topology of Ω). As for the exactness of Dk
h
stated in Theorem 2, Theorem 17 is valid for

any polyhedral domain (even if its second Betti number is not zero).

Proof. The fact that Dk
h

: (Ker Dk
h
)⊥ → Pk(Th) is an isomorphism follows directly from the exactness

relation (19) and the decomposition Xk
div,h = Ker Dk

h
⊕ (Ker Dk

h
)⊥.

Let wh ∈ (Ker Dk
h
)⊥ and set qh = Dk

h
wh. As seen in the proof of (19), if v ∈ H1(Ω)3 is such that

div v = qh, then the global interpolate vh B Ikdiv,hv ∈ Xk
div,h of v satisfies Dk

h
vh = qh. We can take v

such that ‖v‖H1(Ω)3 . ‖qh ‖Ω (see [16, Lemma 8.3]), and Lemma 16 then shows that

|||vh |||div,h . ‖v‖H1(Ω)3 . ‖qh ‖Ω. (71)

We have Dk
h
(vh − wh) = qh − qh = 0 so vh − wh ∈ Ker Dk

h
and wh is the orthogonal projection, for the

inner product in the theorem, of vh on (Ker Dk
h
)⊥. The norm, for this inner product, of wh is therefore less

than the norm of vh. The norm equivalence stated in the theorem, (50) (with ♣ = h) and (71) conclude
the proof of (70). �

Theorem 19 (Isomorphism property and Poincaré inequality for Ck
h). Let (KerCk

h)
⊥ be the orthogonal

of KerCk
h in Xk

curl,h for an inner product whose norm is (uniformly in h) equivalent to ‖·‖curl,h. Then,
Ck

h : (KerCk
h)
⊥ → Ker Dk

h
is an isomorphism. Moreover, under Assumption 8 and choosing the inner

product above as the one provided by this assumption, it holds

‖υh ‖curl,h . ‖C
k
hυh ‖div,h ∀υh ∈ (KerCk

h)
⊥. (72)

Proof. The isomorphism property follows from the exactness property (20) and the orthogonal decom-
position Xk

curl,h = KerCk
h ⊕ (KerCk

h)
⊥. The Poincaré inequality (72) is a consequence of Lemma 14,

Assumption 8, and the equivalence of norms (50). �

A.6 Proof of Theorem 9

We follow the arguments in the proof of [17, Lemma 1]. Let S denote the left-hand side of (33) and let
us start by choosing (ζ

h
, vh) = (υh,wh) in (31). This readily gives

S ≥
‖υh ‖

2
curl,h + ‖D

k
h
wh ‖

2
Ω

‖υh ‖curl,1,h + ‖wh ‖div,1,h
. (73)

We then select (ζ
h
, vh) = (0,C

k
hυh) in (31) and use Dk

h
vh = 0 (by the exactness (20)) to obtain S ≥

‖Ck
hυh ‖div,h which, combined with (73), yields

S &
‖υh ‖

2
curl,1,h + ‖D

k
h
wh ‖

2
Ω

‖υh ‖curl,1,h + ‖wh ‖div,1,h
. (74)

To conclude the proof of (33), it remains to estimate ‖wh ‖div,h. We split wh into

wh = w?h + w⊥h ∈ Ker Dk
h ⊕ (Ker Dk

h)
⊥ = Xk

div,h,
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where the orthogonal is taken with respect to the (·, ·)div,h-inner product. Invoking Theorem 17, we have

‖w⊥h ‖
2
div,h . ‖D

k
hw
⊥
h ‖

2
Ω
= ‖Dk

hwh ‖
2
Ω
. S

(
‖υh ‖curl,1,h + ‖wh ‖div,1,h

)
, (75)

where the equality follows from Dk
h
wh = Dk

h
(w?

h
+ w⊥

h
) = Dk

h
w⊥
h
and (74) was used in the last inequality.

To estimate ‖w?
h
‖div,h, we use Theorem 19 to find ζ

h
∈ (KerCk

h)
⊥ (the orthogonal being taken for the

inner product in Assumption 8) such that Ck
hζh
= −w?

h
and ‖ζ

h
‖curl,h . ‖w

?
h
‖div,h. This immediately

yields ‖ζ
h
‖curl,1,h . ‖w

?
h
‖div,h and, using this ζ

h
together with vh = 0 in the definition (31) of Ah, we

obtain
‖w?h ‖div,hS & ‖ζ

h
‖curl,1,hS ≥ (υh, ζh

)curl,h + (w
?
h,w

?
h + w⊥h )div,h .

Cauchy–Schwarz inequalities and ‖ζ
h
‖curl,h . ‖w

?
h
‖div,h, (74), and (75) lead to

‖w?h ‖
2
div,h . ‖w

?
h ‖div,h ‖w

⊥
h ‖div,h + ‖υh ‖curl,h ‖ζ

h
‖curl,h + ‖w

?
h ‖div,hS

. ‖w?h ‖div,h

[ [
S(‖υh ‖curl,1,h + ‖wh ‖div,1,h)

] 1
2 + S

]
.

Simplifying and using again (75) we infer ‖wh ‖
2
div,h . S

(
‖υh ‖curl,1,h + ‖wh ‖div,1,h

)
+ S2 which, com-

bined with (74), leads to ‖υh ‖
2
curl,1,h + ‖wh ‖

2
div,1,h . S

(
‖υh ‖curl,1,h + ‖wh ‖div,1,h

)
+ S2. A Young

inequality then concludes the proof of the inf–sup estimate (33).
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