
HAL Id: hal-02573165
https://hal.science/hal-02573165

Submitted on 14 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Impact of the gut microbiota on the m 6 A
epitranscriptome of mouse cecum and liver

Sabrina Jabs, Anne Biton, Christophe Bécavin, Marie-Anne Nahori, Amine
Ghozlane, Alessandro Pagliuso, Giulia Spanò, Vincent Guérineau, David

Touboul, Quentin Giai Gianetto, et al.

To cite this version:
Sabrina Jabs, Anne Biton, Christophe Bécavin, Marie-Anne Nahori, Amine Ghozlane, et al.. Impact of
the gut microbiota on the m 6 A epitranscriptome of mouse cecum and liver. Nature Communications,
2020, 11, �10.1038/s41467-020-15126-x�. �hal-02573165�

https://hal.science/hal-02573165
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ARTICLE

Impact of the gut microbiota on the m6A
epitranscriptome of mouse cecum and liver
Sabrina Jabs 1✉, Anne Biton2,5, Christophe Bécavin 2,5, Marie-Anne Nahori1, Amine Ghozlane 2,

Alessandro Pagliuso1, Giulia Spanò1, Vincent Guérineau3, David Touboul 3, Quentin Giai Gianetto2,4,

Thibault Chaze4, Mariette Matondo 4, Marie-Agnès Dillies2 & Pascale Cossart1✉

The intestinal microbiota modulates host physiology and gene expression via mechanisms

that are not fully understood. Here we examine whether host epitranscriptomic marks are

affected by the gut microbiota. We use methylated RNA-immunoprecipitation and sequen-

cing (MeRIP-seq) to identify N6-methyladenosine (m6A) modifications in mRNA of mice

carrying conventional, modified, or no microbiota. We find that variations in the gut micro-

biota correlate with m6A modifications in the cecum, and to a lesser extent in the liver,

affecting pathways related to metabolism, inflammation and antimicrobial responses. We

analyze expression levels of several known writer and eraser enzymes, and find that the

methyltransferase Mettl16 is downregulated in absence of a microbiota, and one of its

target mRNAs, encoding S-adenosylmethionine synthase Mat2a, is less methylated. We

furthermore show that Akkermansia muciniphila and Lactobacillus plantarum affect specific m6A

modifications in mono-associated mice. Our results highlight epitranscriptomic modifications

as an additional level of interaction between commensal bacteria and their host.
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Posttranscriptional mRNA modifications, most notably
m6A1,2, have recently been shown to contribute to the
regulation of mRNA fate by affecting mRNA stability,

splicing events or the initiation of translation3. mRNA can be
methylated by RNA-methyltransferases in specific positions
that are mainly located at the 3′ untranslated regions (UTR)
and the coding sequence (CDS) of the transcript, utilizing
S-adenosylmethionine (SAM) as a methyl donor. Methyl-
transferase like (Mettl) 3 in complex with Mettl14 is the most
important m6A-modifying enzyme4 (‘writer’), but for specific
transcripts, Mettl16 has been proposed to act as an additional
N6-adenosine-methyltransferase5–7. The demethylases Alkbh5
and Fto (‘erasers’) can remove m6A modifications8. Mutations
in Fto have been shown to be associated with obesity in humans
and mice9–11, identifying Fto as an important co-regulator of
host metabolism. m6A modification of mRNA is important in
embryonic stem cell and immune cell differentiation12–14,
neurogenesis and neuronal function15,16, stress responses17, the
circadian rhythm18, and viral infection19–24. A less prevalent
epitranscriptomic modification induced by the recently identi-
fied writer protein Pcif125 is m6Am26. It is mostly found at the
first encoded nucleotide adjacent to the 7-methylguanosine
cap and enhances the stability of mRNAs27. The commonly
used method of mapping m6A modifications, methylated
RNA-immunoprecipitation and sequencing (MeRIP-Seq), also
detects m6Am modifications along with m6A-modifications.
However, m6A is far more abundant than m6Am, and m6Am
only occurs at a very specific position in the 5′ cap, therefore the
majority of modifications detected by MeRIP-Seq are likely to
be m6A.

Commensal bacteria, in particular the gut microbiota, have
profound effects on host physiology, including host metabolism,
intestinal morphology, the development of the immune system,
and even behavior28. Gut microbial metabolites and fermentation
products, e.g. short chain fatty acids (SCFA), sphingolipids,
polyamines, and tryptophan metabolites have been shown to
partially mediate the influence of gut commensals on their host
by modulating transcription and epigenetic modifications29–33.
However, a complete understanding of mechanisms underlying
gut-microbiota-host interactions still remains elusive. Recent
reports have suggested that changes in m6A levels are associated
with inflammatory states14,34 and very recently, the presence of a
microbiota has been suggested to induce changes in epitran-
scriptomic profiles in the brain, and several other tissues35.

By using MeRIP-Seq, we set out to determine if the presence of
the microbiota as a whole, and of specific commensals is associated
with changes in host epitranscriptomic m6A mRNA modification
profiles in mouse cecum and liver. We find m6A modification
profiles in both tissues to be influenced by the presence of a gut
flora. Furthermore, we show that monoassociation of mice with
the commensal bacteria Akkermansia muciniphila and Lactoba-
cillus plantarum influences m6A modification profiles in cecum
and liver.

Results
Expression of m6A ‘writer’ and ‘eraser’ proteins. As a prerequisite
to our analysis of m6A modifications, we analyzed expression levels
of the methyltransferases Mettl3, Mettl14, Mettl16, and Pcif1
(‘writers’) and the demethylases Alkbh5 and Fto, which are known
to be ubiquitously expressed36. mRNA levels determined by qRT-
PCR for Mettl3, Mettl14, the m6Am methyltransferase Pcif1 and
the demethylases Fto and Alkbh5 confirmed a comparable
expression in liver, brain, and different parts of the intestine (small
intestine, cecum, and colon) (Supplementary Fig. 1a). Depending
on the housekeeping gene used for the determination of relative

mRNA expression, Hprt or Gapdh, their expression in the spleen
was two- to six-fold higher than in liver or cecum on mRNA levels
(Supplementary Fig. 1a). Western blotting revealed similar levels of
Mettl3, Mettl14, Mettl16, and Alkbh5 in the liver, small intestine,
colon, and cecum (Supplementary Fig. 1b). In the brain, expression
levels of Mettl3, Mettl14, Mettl16, and Alkbh5 were 3–4-fold higher
than in intestinal tissues and the liver. We chose to analyze the
epitranscriptome in the intestine, and more precisely in the cecum,
which is in close contact with the gut microbiota and undergoes
profound physiological and morphological changes in the absence
of a microbiota37. We further included the liver, whose gene
expression is also known to be influenced by commensal bacteria38.
Although the expression of methyltransferases and demethylases
was high in the spleen at mRNA and protein levels (Supplementary
Fig. 1a, b), we chose not to focus on this organ to study changes in
the m6A epitranscriptome influenced by the microbiota, since it is
known that several populations of immune cells are strongly
reduced in mice without a gut flora37, which would complicate a
quantitative analysis.

As another prerequisite for our study, we verified that the
MeRIP-Seq technique was adequate to perform differential
methylation analysis. To this end, we compared the recovery of
green fluorescent protein (GFP) transcript in vitro transcribed
in the presence of m6A by m6A-immunoprecipitations from
different RNA preparations or buffer alone (Supplementary
Fig. 2a). We were able to recover equal amounts of the GFP-
m6A-transcript from total RNA, ribodepleted RNA, purified
mRNA, and immunoprecipitation (IPP), indicating that a
differential expression analysis from MeRIP-Seq is possible.

m6A modification profiles in cecum and liver. We used a series
of mice with different gut microbiota (see below) and analyzed
methylation profiles using MeRIP-Seq. Overall, using 64 datasets
for cecum and 33 datasets for liver with a median coverage of
8× and 11×, respectively (Supplementary Data 1), we detected
36,935 m6A peaks in the various anti-m6A-immunoprecipitates
from murine cecum and 25,808 m6A peaks in the anti-m6A-
immunoprecipitates from liver (Supplementary Data 2). Fifty-two
percent of m6A peaks detected in the cecum were also found in
the liver, and 74% of m6A peaks detected in the liver were also
found in the cecum. In total, 80 and 84% of the peaks we detected
in the cecum and liver, respectively, are described in the Methyl
Transcriptome Data Base (MeT-DB v2.0)39 (Fig. 1a), indicating
that we identified bona fide methylation peaks. m6A peaks across
different murine and human tissues and cell lines have been
described to be largely conserved1,2, and we found a strong
overlap of the peaks we detected with all the different murine
types of tissues and cell lines present in the MeT-DB v2.0 data-
base, but also a substantial overlap with published m6A peaks
from human tissues and cell lines (Supplementary Fig. 2b).
GUITAR plots summarizing the positions of all the m6A mod-
ifications for the cecum (Fig. 1b) showed that m6A peaks were
mostly present in the CDS and 3′ UTR of mRNA, and at a lesser
extent in the 5′ UTR, in agreement with previous studies1,2. We
performed motif searches on the list of all detected peaks and
assessed presence of known motifs for m6A (RRACH)1,2 and
m6Am (NBCAN)26 separately for the 5′UTR, CDS and 3′UTR
(Fig. 1c). As expected, the RRACH motif was less present in the 5′
UTR of transcripts, where instead the consensus motif for m6Am
modification (NBCAN) was enriched (Fig. 1c).

Gut microbiota controls m6A modifications in mouse cecum.
We first compared m6A marks in the cecal transcripts of conven-
tional (CONV) and germ-free (GF) mice and found 440 m6A peaks
on 312 transcripts to be differentially methylated. Multidimensional
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Scaling (MDS) analysis of m6A peaks revealed a clear separation
between methylation peaks of CONV and GF mice in the cecum
(Fig. 1d). Furthermore, the heat map with hierarchical clustering of
IP samples based on the differentially methylated peaks (Fig. 1e)
showed a strong separation of GF and CONV cecal transcripts.
To further investigate whether differential methylation was medi-
ated by the gut microbiota, we colonized GF mice with the intestinal
content of CONV mice (ex-GF). After 4 weeks, these mice exhibited
similar patterns of the most abundant gut bacterial genera (e.g.
Lachnospiraceae, Allistipes, Bacteroides, Prevotellaceae, Akkerman-
sia) as CONV mice (Supplementary Fig. 3a–d). m6A marks in
the ceca of ex-GF mice clustered with the methylation peaks of

CONV mice in hierarchical clustering and multidimensional scaling
(MDS), and no m6A peaks were differentially methylated when
comparing CONV and ex-GF mice (Fig. 2a, Supplementary
Data 2), demonstrating unambiguously that the gut microbiota
mediates differential methylation.

To confirm these results, we analyzed mice treated with a
mixture of several antibiotics (vancomycin, metronidazole, neomy-
cin, ampicillin) and the antifungal amphotericin B for three weeks
(abx mice), which resulted in an efficient depletion of the gut
microbiota (Supplementary Fig. 3e) with very few genera that were
still detectable by 16S rRNA sequencing (Supplementary Fig. 3a–c).
m6A-modified marks in transcripts from abx mice ceca clustered
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Fig. 1 Microbiota influences m6A modification in mouse cecum. a 67% of m6A peaks in the cecum are overlapping with at least one liver peak, and 87%
of detected peaks in the cecum are overlapping a MeT-DB v2.0 reference peak. For the liver tissue, 86% of the methylation peaks are overlapping at least
one peak of the cecal tissue, and 89% are overlapping a MeT-DB v2.0 reference peaks. The reference peaks may be overlapping with several peaks we
detected. b Positions of detected m6A peaks on all methylated transcripts in cecum were determined using the GUITAR package. c Motif enrichment in
m6A modification was determined by calculating total occurrence of motifs in m6A peaks on the 5′UTR, CDS and 3′UTR of transcripts in the cecum.
Consensus motifs for m6A (RRACH) and m6Am (NBCAN) are highlighted in red. d Multi-dimensional scaling (MDS) plot of the peak log2 counts-per-
million IP data of all differentially methylated peaks showing the positions of the samples in the space spanned by the first and second MDS dimensions.
Samples are colored with respect to condition: CONV (n= 15), conventionally raised mouse (black); GF (n= 12), germ-free mouse (cyan); ex-GF (n= 4),
GF mouse colonized with the intestinal content of CONV mice (gray); abx (n= 9), CONV mice whose gut microbiota has been depleted by antibiotics
treatment (magenta); vanco (n= 8), vancomycin/amphotericinB-treated mice (violet); Am (n= 11), A.muciniphila-mono-colonized mice (green), Lp (n=
3), L.plantarum-mono-colonized mice (orange); data were obtained from two independent sequencing experiments using ribodepleted RNA or purified
mRNA from murine cecum. e Heat map of the peak log2 counts-per-million IP data of all differentially methylated peaks. Hierarchical clustering was
performed using euclidean distance and ward.D2 linkage.
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close to those in GF mice (Fig. 1d, e), demonstrating that the impact
of a conventional microbiota on m6A peaks can be suppressed by
antibiotics treatment. A small number of m6A peaks (60) was still
differentially methylated when comparing abx and GF mice (Fig. 2a,
Supplementary Data 2), which might be due to the influence of the
few commensals still present after antibiotics treatment (Supple-
mentary Fig. 3a–c, e), or the antibiotic treatment itself.

To gain further insight into the bacterial species that may be
involved in the regulation of differential m6A modifications, we
treated mice with only vancomycin, to which we equally added
the antifungal amphotericin B (vanco mice). This treatment
resulted in a strong and reproducible enrichment of several
genera (Akkermansia, Escherichia/Shigella, Lactobacillus, Lach-
nospiraceae, Parasutterella; Supplementary Fig. 3a–d). In the
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MDS analysis, m6A peaks in vanco mice formed a cluster that was
distinct from the GF/abx and CONV/ex-GF mouse clusters
(Fig. 1d, e). As expected, vanco mice exhibited less differentially
methylated peaks compared to CONV mice (97) than GF (440) or
abx (374) mice, respectively, compared to CONV mice (Fig. 2a,
Supplementary Data 2). These data suggest that the persisting
commensals in vanco mice are involved in the gut microbiota-
mediated regulation of m6A modification patterns observed in
CONV cecum.

Importantly, 62% of differentially methylated peaks between
GF and CONV, and 83% of all differentially methylated m6A
peaks including all conditions, were not significantly changed in
the expression levels of the corresponding entire transcript
(Fig. 2a, Supplementary Data 2), demonstrating that differential
methylation is not merely a consequence of differences in gene
expression between the biological conditions, as it had been
previously suggested40. Similar to the situation in GF mice
compared to CONV mice, differentially methylated transcripts in
abx mice, were mostly (52%) unchanged at the transcript level
(Fig. 2a).

Since m6A modifications are linked to both stabilization and
destabilization of transcripts27,41, a complete uncoupling of levels
of differential methylation and differential transcript expression,
however, would be very surprising. When we examined levels of
the residual 38% of peaks that were differentially methylated and
at the same time differentially expressed (Supplementary Data 3),
increased methylation correlated with an increased abundance of
the transcript in most cases. This suggests that a minor proportion
of transcripts with m6A peaks that we found to be influenced by
the microbiota are stabilized, as it is also the case in viral
infection42,43. We then performed label-free proteomics analysis to
assess whether differential methylation and transcript levels
correlate with differential protein expression levels in the cecum
of CONV and GF mice. As expected from previous studies trying
to correlate transcriptomic and proteomic data44, the correlation
was weak (Fig. 2b). However, we found several transcripts to be
differentially methylated and differentially expressed at protein
levels, and in most cases, increased methylation levels correlated
with increased transcript levels and increased protein expression
(Fig. 2b). The correlation was the strongest in transcripts involved
in immune responses and inflammatory diseases, such as Isg15,
Oas1a, and Fut2.

m6A-modifications have been reported to influence alternative
splicing and differential exon usage45–47. We therefore performed
a differential transcript isoform usage (DTU) analysis. Applying a
cut-off of 5% on p-values adjusted both at the gene- and isoform-
level, we detected only six genes showing evidence of differential
isoform usage between CONV and GF mice, none of which was
overlapping with a differentially methylated peak (Supplementary
Data 3). Across all biological conditions, only 3% of differentially
methylated peaks were present on genes displaying differential
isoform usage (Supplementary Data 3), suggesting that differential
exon usage is not strongly influenced by microbiota-induced
differential methylation.

Taken together, our results establish that the gut microbiota
regulates posttranscriptional mRNA modifications in the host in
addition to well-known effects on transcription and protein
expression.

Distinct bacterial species influence m6A-modification profiles.
To test if differential methylation can also be induced by mono-
association of GF mice with single bacterial species, we chose
representatives of two genera (Akkermansia and Lactobacillus)
that were enriched in vancomycin-treated mice (Supplementary
Fig. 3a–c): Akkermansia muciniphila and Lactobacillus plantarum
have both been shown to influence host physiology48,49. We
successfully mono-associated GF mice with A.muciniphila (Am)
and L.plantarum (Lp; Supplementary Fig. 3f). m6A methylation
profiles from mono-associated mice formed clusters distinct from
those found in GF and abx mice in MDS analysis (Fig. 1d, e).
In hierarchical clustering of IP samples based on differentially
methylated peaks Am and Lp even more clearly clustered sepa-
rately from GF and abx mice, indicating a specific influence of
each of these two bacterial species on host methylation profiles
(Fig. 1d). The numbers of differentially methylated peaks between
GF mice and Am- (115) and Lp- (460) mono-associated mice,
respectively, suggested that L.plantarum has a stronger effect on
host RNA-methylation than A.muciniphila. However, it should be
taken to account that the number of samples for Lp mice, which
was lower than for the other conditions, may result in a higher
number of differentially methylated peaks, as it is typically the
case for transcriptomics studies50. Interestingly, 99 and 98% of
differentially methylated transcripts between GF and Lp, and GF
and Am mice, respectively, were not changed at the transcript
levels, which was a far higher percentage than for all peaks (83%)
and peaks differentially methylated between GF and CONV
mice (62%).

Microbiota regulates m6A in metabolic and inflammatory
pathways. To decipher the cellular functions affected by
microbiota-dependent modifications, we performed pathway
analyses on the list of all transcripts differentially methylated
between CONV and GF cecum. Ingenuity pathway analysis
(IPA) for diseases and molecular and cellular function revealed
an enrichment of differentially methylated transcripts involved
in inflammatory and microbial responses, metabolic and gas-
trointestinal diseases. Among molecular and cellular functions,
lipid, vitamin, carbohydrate, and amino acid metabolism were
enriched, as well as posttranslational modifications important
for epithelial integrity. (Fig. 3a–c, Supplementary Data 4). These
processes have been described to be influenced by the
microbiota37,51–53 and our findings suggest that this influence is
in part mediated by modulation of posttranscriptional mRNA
modifications. The differentially methylated transcripts linked to
lipid metabolism (Fig. 3b), were both hyper- and hypomethy-
lated in CONV and ex-GF mice compared to GF mice, whereas
transcripts involved in protein glycosylation and inflammatory

Fig. 2 Differential methylation and protein expression profiles in the cecum. a m6A-peaks found to be differentially methylated compared to differential
expression of the entire transcripts in indicated mice. Differentially methylated peaks that are also differentially expressed on transcript level are displayed
in red, differentially methylated peaks that are unchanged on transcript level, in blue. m6A peaks that were not significantly changed are shown in gray. Cut-
offs for differential expression are log fold change (FC) −1 to 1 and Benjamini–Hochberg-corrected p-values < 0.05. p-values were estimated from
moderated t-statistics with empirical Bayes moderation using limma package, followed by Benjamini-Hochberg correction. b correlation of proteome,
transcriptome and epitranscriptome of CONV and GF mice; log FC of protein levels between CONV and GF mice was compared to log FC of transcript
input levels (left panel) or log FC of differentially methylated peaks (right panel) between CONV and GF mice; CONV n= 7, GF n= 6 for proteome
analysis; CONV n= 15, GF n= 12 for transcriptome and differential methylation analysis. Targets significantly altered between CONV and GF on protein
and transcript and m6A methylation, respectively, are displayed.
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responses, e.g. Fut2, were rather hypomethylated (Fig. 3c–e).
Interestingly, distinct peaks on the same transcripts were not
necessarily all regulated by the microbiota, suggesting that this
influence is peak-specific (Supplementary Data 2). However, we
rarely detected hyper- and hypomethylated peaks on the same
transcripts. More often differentially methylated peaks occurred

on the same transcript with peaks that were not changed
between the different mouse models (Supplementary Data 2).

We next performed IPA pathway analysis for diseases and
disorders and molecular and cellular function between GF mice
and mice mono-associated with A.muciniphila and L.plantarum.
Diseases strongly influenced by both bacteria were gastrointestinal
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diseases and cancer, but also immunological diseases (Fig. 3f, g,
Supplementary Data 4). L.plantarum induces differential methyla-
tion of transcripts involved in cellular function and maintenance,
cellular assembly and gene expression, but also gene expression and
vitamin metabolism. Importantly, cellular growth and proliferation,
and cell death were among the transcripts whose methylation
was influenced by L.plantarum, (Supplementary Data 4), which
correlates well with previously discovered effects on longevity and
growth by this bacterium54,55. Transcripts differentially methylated
between GF and Am mice were equally linked to cell development
and gene expression. Interestingly, we found transcripts involved
in RNA posttranscriptional modifications to be influenced by
A.muciniphila (Fig. 3f, Supplementary Data 4).

Methylation of Mettl16-target Mat2a influenced by the
microbiota. Next, we compared expression levels of Mettl3,
Mettl14, Mettl16, Pcif1, Alkbh5, and Fto in CONV and GF tissues.
Their mRNA levels were mostly unchanged, except for a significant
reduction of Mettl16 mRNA levels in small intestine and colon of
GF mice, Mettl3 in small intestine of GF mice, Mettl16 and Alkbh5
in brains of GF mice, and slightly higher levels of Pcif1 mRNA in
liver of GF mice (Supplementary Fig. 1c). By Western Blotting, we
found Mettl16 slightly, but significantly decreased in the colon of
GF mice (Supplementary Fig. 1d) and in the cecum of GF and abx
mice compared to the other conditions (Fig. 4a, b), whereas Mettl3,
Mettl14, and Alkbh5 were not significantly changed between
CONV and GF mice in the cecum (Supplementary Fig. 4a, b). To
test whether the changed expression of Mettl16 was the reason for
the changes in the epitranscriptome we detected, we compared our
differentially methylated transcripts with published targets of
METTL16 in human cell lines, identified by knock-down of
METTL16 and subsequent MeRIP-Seq5, or by cross-linking and
analysis of cDNA using overexpressed METTL166. Although the
overlap between the two published datasets is low, we found a
small overlap of our differentially methylated transcripts with both
datasets (Supplementary Fig. 5). Interestingly, these transcripts
included that for S-adenosylmethionine synthase isoform type-2
(Mat2a), which we found to be hypermethylated in the 3′UTR of
CONV, ex-GF and vanco mice (Fig. 4c, d). We could confirm this
finding by MeRIP and subsequent quantitative real-time (qRT)
PCR (Fig. 4e) and found that the Mat2a protein expression was
reduced in GF and abx, cecum compared to CONV, ex-GF and
vanco, Am and Lp mice (Fig. 4f, g). Since Mat2a is the enzyme that
produces the methyl donor S-adenosylmethionine (SAM) required
for methyltransferase activity56, a reduced Mat2a expression in GF
and abx may be linked to the altered methylation profiles.

Gut microbiota affects m6A modifications in the liver. To
examine whether the influence of the gut microbiota on m6A

mRNA modifications is affecting other tissues than the cecum,
we performed differential MeRIP-Seq analysis of transcripts
from liver tissue of CONV, GF, Am, and Lp mice, where
Mettl14 and Mettl16 expression might be slightly altered in GF
mice compared to CONV mice (Supplementary Fig. 4c). We
found 527 peaks on 423 transcripts to be differentially methy-
lated across all biological conditions. GUITAR plots revealed
the expected peak distribution on the transcripts primarily in
the 3′ UTR and along the CDS (Fig. 5a). As for the cecum, we
performed motif searches on the list of all detected peaks
separately for the 5′UTR, CDS and 3′UTR, and found several
motifs to be present, among them the consensus motif for m6A
modification (RRACH)1,2 and the motif for m6Am modifica-
tion (NBCAN) (Fig. 5b)26.

The separate clusters of methylation profiles of CONV and
GF mice in MDS and hierarchical clustering analyses revealed
a clear influence of the microbiota on methylation profiles in
the liver (Fig. 5c, d). As in the cecum, the majority (54%) of the
107 differentially methylated peaks when comparing GF and
CONV mice, was not found to be differentially expressed at the
transcript level (Fig. 5e, Supplementary Data 2). Pathway
analyses of Biological Processes and KEGG pathway analysis
revealed that, among others, transcripts associated with lipid,
vitamin, and amino acid metabolism and insulin signaling
were differentially methylated in the liver (Supplementary
Data 5).

Single bacterial species influence m6A modification in the liver.
MDS analysis of GF mice mono-associated with A.muciniphila
and L.plantarum, revealed profiles of modified m6A-peaks in liver
that were clustering with the profiles detected in GF mice
(Fig. 5c), suggesting that the association with a single bacterial
species only has a small effect on m6A modifications in the liver.
However, the heat map with hierarchical clustering based on all
differentially methylated peaks for each comparison, showed
clearly separated methylation profiles in mice associated with
L.plantarum, and to a lesser extent with A.muciniphila- colonized
mice (Fig. 5d). Pathway analysis demonstrated that in GF, Am
and Lp mice, respectively, compared to CONV mice, metabolic
pathways were the most affected by differential methylation
(Supplementary Data 5), some of which have previously been
shown to be influenced by the gut microbiota in the liver51,57,58.
When comparing the methylation profiles in liver of mono-
associated mice (Am, Lp) to GF mice, Lp mice displayed a
stronger effect on host m6A modifications of the two tested
bacterial strains (Supplementary Data 2 and 5), and influenced
pathways in insulin signaling, lipid metabolism and cell differ-
entiation (Supplementary Data 5).

Fig. 3 Differentially methylated transcripts in mouse cecum. a Pathway analysis of “molecular and cellular function” and “diseases and disorders” of
transcripts differentially methylated between GF and CONV mice was performed using Ingenuity pathway analysis (IPA). log -p of the 10 most enriched
pathways are displayed. Lists of genes contained in each category and comparison are given in Supplementary Data 4; b Expression log ratio of transcripts
differentially methylated between GF and CONV mice related to lipid metabolism as defined in IPA. c Expression log ratio of transcripts differentially
methylated between GF and CONV mice related to glycoslylation of proteins as defined in IPA. d Representation of Fut2 m6A peak (mean of read per
million normalized coverage (RPM) in detected methylation peaks) from anti-m6A immunoprecipitates and input in the 3′UTR of the Fut2 transcript in
cecum. Peaks were visualized for the indicated mouse models using IGV; e quantification of m6A peak on the fucosyltransferase 2 transcript (Fut2); CONV
(n= 15), GF, germ-free mouse (n= 12); ex-GF (n= 4); abx (n= 9); vanco (n= 8); Am (n= 11), Lp (n= 3); data were derived from two independent
sequencing experiments; data are presented as mean values ±SEM; **p-value < 0.01; ***p-value < 0.005; p-values (all compared to CONV): ex-GF: 0.8402;
GF: 0.0002; abx: 0.0019; vanco: 0.7800; Am: 0.3569; Lp: 0.0070; details for statistical analysis are given in the source data file associated to this
manuscript. f, g Pathway analysis of “molecular and cellular function” and “diseases and disorders” of transcripts differentially methylated between Am and
GF mice (f), and LP and GF mice (g) was performed using Ingenuity pathway analysis (IPA). log -p of the 10 most enriched pathways are displayed. Lists of
genes contained in each category and comparison are given in Supplementary Data 4.
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Discussion
The microbiome has profound effects on host physiology, and
regulates host gene expression on transcriptome, epigenome, and
proteome level. Although more and more metabolites, such as
short chain fatty acid (SCFA), amino acids, or bile acids are
reported to mediate this influence, many aspects of the intricate
interaction between commensal bacteria and their host remain
elusive.

Here we show in a study of differential methylation of mRNA
across a large number of biological conditions that the microbiota
has a strong influence on epitranscriptomic m6A modifications in
murine cecum. We found that changes in m6A modification
profiles between conventional and germ-free mice can be restored
by colonizing mice with a conventional specific pathogen free gut
flora, and that the epitranscriptome changes could be induced by
depleting the gut flora, or by enriching specific bacterial species

using antibiotics treatment. In their recent study, Wang et al.35

similarly addressed the question if the host m6A epitranscriptome
could be influenced by the microbiota by comparing methyl-
transferase expression and profiling of m6A modifications via
MeRIP-Seq in a restricted number of conventional specific
pathogen-free and germ-free mice35. They also found changes in
the methylation profiles in intestine and liver, which were in a
similar range concerning numbers of differentially methylated
peaks as in the present study. However, Wang et al.35 focused their
study on the brain, since they detected strong changes in the
expression of the methyltransferase Mettl3 in this organ, along
with higher amounts of m6A nucleosides. In their study, Mettl3
expression was also slightly increased in the liver, and m6A
nucleoside levels were higher in the intestine of GF mice. In our
study we did not detect significant changes in Mettl3 protein levels
in the brain or any other organ we analyzed (Supplementary
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Fig. 1d, Supplementary Fig. 4b, c), and its mRNA levels were only
changed in the small intestine (Supplementary Fig. 1b). Consistent
with the lack of Mettl3 expression changes, we did not detect
higher amounts m6A by LC-HRMS (Supplementary Fig. 6) in
cecum or liver. This is not surprising, considering the rather low
number of differentially methylated peaks compared to the total
number of peaks detected. It is unclear, if changes in mouse age,
sex, or the composition of the conventional gut flora can explain
the minor differences between the two studies. Nevertheless, the
presence of a microbiota clearly affected the host m6A epitran-
scriptome in both studies to a similar extent, confirming the
robustness of this finding.

Interestingly, we detected small changes in the protein expres-
sion of the methyltransferase Mettl16 in the cecum (Fig. 4a). By
comparing our list of peaks differentially methylated between GF
and CONV mice to known targets of METTL16 (Supplementary
Fig. 5), we identified the S-adenosylmethionine synthase Mat2a to
be among our differentially methylated transcripts. Mat2a was
hypomethylated in GF mice, and, in a different affected peak, also
in Am and Lp mice, whereas m6A peaks were similar to CONV in
ex-GF, and vanco mouse cecum (Fig. 4b, c). Although the exact
role of Mat2a m6A modification is under debate5–7, the reduced
protein levels of Mat2a that we detected in the cecum of GF and
abx mice (Fig. 4e), might be linked to changed methylation pat-
terns. S-adenosylmethionine (SAM) is the universal methyl donor
used not only for RNA-methylation, but also for methylation of
proteins, lipids, or DNA59. Changes of SAM levels that are
influenced by nutrition, but also the microbiota, have been shown
to influence DNA-methyltransferase activity, leading to changes in
epigenetic marks60. Our study suggests that a similar regulation
could be also the case for RNA-modifications.

We furthermore identified two commensal bacteria, Akker-
mansia muciniphila and Lactobacillus plantarum to influence
host m6A modifications in the cecum and liver, both affecting
cellular growth and proliferation, as well as cell death (Fig. 3e).
Interestingly, L.plantarum has been previously shown to influence
longevity and growth54,55. In the liver, metabolic pathways were
most affected by L.plantarum. Considering the number of dif-
ferentially methylated peaks in both liver and cecum, the influ-
ence of L.plantarum on host m6A modifications seems to be
stronger than the influence of A.muciniphila. L.plantarum might
influence SAM levels by providing the host with folate, which is

required for SAM synthesis61,62. However, it should be kept in
mind, that the lower number of samples for Lp mice may lead to a
higher number of detected differentially methylated peaks, as it is
typically the case for transcriptomic studies50. Since the residual
bacterial species persisting in the intestinal content in vanco mice
seemed to be able to maintain a methylation profiles for many
m6A peaks that was similar to CONV mice (Figs. 3d, e and
Fig. 4b, c), we focused on two bacteria enriched in vanco mice for
our monocolonisation experiments to test if these could restore
methylation patterns similar to CONV mice. In addition, it would
have been very interesting to monocolonize GF mice with bac-
teria, that were depleted in vanco mice to test whether these have
less pronounced effects on methylation profiles than A.mucini-
phila and L.plantarum. Unfortunately, it is very difficult or even
impossible to retrospectively include additional conditions in
MeRIP-Seq experiments, as it is the case for other high
throughput techniques such as RNA-sequencing or epigenetic
analyses63, which is a limitation of this study. Along this line, it
would have been interesting to see if treatment of GF mice with
antibiotics could explain the few differentially methylated peaks
between GF and abx mice in the cecum, or if it is rather the few
residual bacterial species surviving after antibiotics treatment that
are responsible for this effect. We performed this experiment, but
were not able to include this condition due to strong batch effects.

Differentially methylated peaks between GF and CONV mice
in the cecum were mainly linked to metabolism and immuno-
logical and inflammatory responses, functions known to be
influenced by the microbiota. Additionally, changes in m6A
modifications of specific transcripts have been linked to inflam-
matory intestinal disease in humans34, and also a T-cell specific
conditional knock-out of Mettl3 led to intestinal inflammation in
a mouse model14. Interestingly, we identified several risk genes
for inflammatory bowel disease to be differentially methylated
when comparing CONV and GF mice64,65, suggesting that
microbiota-induced changes in m6A modifications might thus be
linked to inflammatory conditions.

Since the expression of m6A writer and eraser enzymes is very
high in the spleen and presumably in immune cells in general
(Supplementary Fig. 1a, b)14, it will be very interesting to further
study the role of microbiota-induced differential methylation of
transcripts in these cell types. For the present study, however, we
chose to investigate tissues in which, although affected by the

Fig. 4 Differential expression of Mettl16 and Mat2a in mouse cecum. a Western blot analysis of Mettl16 expression from ceca of CONV, GF, ex-GF, abx,
vanco, Am, and Lp mice. Actin served as loading control. The membrane and thus the actin loading control for the blot displaying samples from ex-GF, Am,
and Lp mice is identical to the western blot in Supplementary Fig. 4a. b Quantification using six different western blots; CONV n= 20, ex-GF n= 6; GF n=
13; abx n= 9; vanco n= 8; Am n= 9; Lp n= 9; Mettl16/Actin ratio was normalized to ratio in CONV mice in order to compare protein expression across
multiple Western Blots. Ordinary one-way ANOVA was performed. *p-value < 0.05; p-values (compared to CONV): ex-GF: 0.9518; GF: 0.0255; abx:
0.0431; vanco: 0.1750; Am: 0.1783; Lp: 0.2728) (Holm–Sidak’s multiple comparisons test). c Representation of two m6A peaks (mean of read per million
normalized coverage (RPM) in detected methylation peaks) from anti-m6A immunoprecipitates and input in the 3′UTR of the Mat2a transcript in cecum.
The peaks designated a and b were visualized for the indicated mouse models using IGV; d Quantification of indicated Mat2a peaks (a, b from b) as -log2
normalized read counts. Ordinary one-way ANOVA for multiple comparisons was performed. CONV (n= 15), GF (n= 12); ex-GF (n= 4); abx (n= 9);
vanco (n= 8); Am (n= 11), Lp (n= 3); two independent sequencing experiments; a p-values (all compared to CONV): ex-GF: 0.6458; GF: 0.0039; abx:
0.0572; vanco: 0.6458; Am: 0.6458; Lp: 0.4695; b p-values (all compared to CONV): ex-GF: 0.889955; GF: 0.000323; abx: 0.003604; vanco: 0.889955;
Am: 0.00000000000028; Lp: 0.018424; e anti-m6A-IP and qRT for Mat2a transcript in CONV (n= 11), ex-GF(n= 5) and GF (n= 8) cecal RNA; IgG-IP
(n= 4) served as control for unspecific binding; ordinary one-way ANOVA was performed; *p-value < 0.05; ***p-value < 0.005; p-values (compared to
CONV): ex-GF: 0.6897; GF: 0.0127; IgG: 0.0029; f Western Blot analysis of Mat2a expression in CONV, GF, ex-GF, abx, vanco, Am, and Lp cecum. Actin
served as loading control. Asterisk marks an unspecific band. g Quantification of Mat2a expression in CONV, GF, ex-GF, abx, vanco, Am, and Lp cecum.
Quantification was performed using at least three different western blots for each condition; CONV n= 15, ex-GF n= 6; GF n= 12; abx n= 12; vanco n= 12;
Am n= 9; Lp n= 9; Mat2a/Actin ratio was normalized to ratio in CONV mice in order to compare protein expression across multiple western blots;
ordinary one-way ANOVA was performed. ***<0.0001, **p-value < 0.005 (Holm–Sidak’s multiple comparisons test); p-values (all compared to CONV):
ex-GF: 0.157; GF: 0.00000019; abx: 0.0002; vanco: 0.0019; Am: 0.1111; Lp: 0.154; data are presented as mean values ±SEM throughout the figure; details
for statistical analysis and original data for a, b, d–g are given in the source data file.
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microbiota, numbers of cell types are not significantly changed in
the absence of a microbiota, which is the case for many immune
cells37.

Taken together, epitranscriptomic modifications represent a
novel mechanism of commensal-host-interaction in the intestine,

but also in the liver and other tissues35, setting the ground for future
studies on the regulation of a microbiota-directed methylation
machinery and the translational consequences of this regulatory
process as well as the effect of pathogens in the epitranscriptomic
regulation.
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Methods
Bacterial strains and culture conditions. Akkermansia muciniphila (ATCC
BA-835), obtained from the Biological Resource Center of Institut Pasteur
(CRBIP), was cultured in Brain Heart Infusion (BHI) supplemented with 8mM
L-Cysteine hydrochloride, 0.2% NaHCO3, and 0.025% Hemin in an anaerobic
atmosphere using Oxoid™ AnaeroGen™ 2.5L gas packs (Thermo Fisher) at 37 °C.
Lactobacillus plantarum (BAA-793) was obtained from ATCC and cultured in
MRS broth (Thermo Fisher) at 37 °C and 5% CO2.

Animal experiments. All animal experiments were approved by the committee on
animal experimentation of the Institut Pasteur and by the French Ministry of
Agriculture.

Mice. C57BL/6J mice were purchased from Charles River. Germ-free mice gen-
erated from C57BL/6J mice were obtained either from CNRS TAAM UPS44
Orléans, France, or from the Gnotobiology Platform of the Institut Pasteur and
kept in isolators. Conventional mice were kept in specific pathogen- free conditions
and all the mice used were female. Mice were housed in 10 h (dark)/ 14 h (light)
cycles.

Colonization of germ-free mice. For generating ex-GF mice, 10–12 fecal pellets
were collected from 4 CONV mice housed in the same cage for 2 weeks, resus-
pended, and added to the drinking water of GF mice. This procedure was repeated
on 3 consecutive days. On Day 4, cecal content of the 4 CONV mice was collected,
resuspended in 10 mL of PBS, of which 0.2 mL was administered to the pre-
colonized mice by oral gavage. Colonization efficiency was determined in the cecal
content of mice after 4 weeks. For mono-colonization experiments, germ-free mice
were inoculated once with 109 colony-forming units (CFU) of A. muciniphila or
L.plantarum and maintained for four weeks. Mono-colonization was monitored by
A.muciniphila-66 or L.plantarum-67 specific PCR using the following primers:

AM1 (for) 5′ CAGCACGTGAAGGTGGGGAC 3′
AM2 (rev) 5′ CCTTGCGGTTGGCTTCAGAT 3′
Lp (for) 5′ AAT TGA GGC AGC TGG CCA 3′
Lp (rev) 5′ GAT TAC GGG AGT CCA AGC GG 3′

and controlled by 16S rRNA sequencing in cecal content.

Antibiotic treatment of mice. For depletion of the gut microbiota, conventional
C57BL/6J mice were treated with antibiotics as described previously68. In brief,
after oral treatment with amphotericin B (0.1 mg/mL; Sigma Aldrich) for 2–3 days,
mice were treated with a solution consisting of 10 mg/mL ampicillin, 5 mg/mL
vancomycin 10 mg/mL neomycin, 10 mg/mL metronidazol, and 0.1 mg/ml
amphotericin-B (all Sigma Aldrich) per os every 12 h using a gavage volume of
~10 mL/kg body weight for 21 days. The depletion was controlled for by quanti-
tative PCR as detailed below and the identity of residual bacterial genera deter-
mined by 16S rRNA sequencing. For enrichment of a small number of genera, mice
were treated as above with only 5 mg/mL vancomycin and 0.1 mg/ml
amphotericin-B. Tissues used for the analysis were derived from 3–4 independent
experiments.

RNA preparation, ribodepletion, and mRNA purification. Total RNAs were
prepared using the RNeasy maxi kit (Qiagen) and quality-controlled using RNA
6000 Nano assay (Agilent). Ribodepletion was performed using RiboMinus
Transcriptome Isolation Kit (Human/Mouse; Thermo Fisher). mRNA purification
was performed using Dynabeads® mRNA Purification Kit for mRNA Purification
from Total RNA preps (Thermo Fisher). Absence of ribosomal RNA contamina-
tions was controlled using RNA 6000 Pico assay (Agilent).

LC-HRMS. Ribodepleted RNAs were desalted using Microcon YM10 columns
(Millipore) and subjected to Nuclease P1 digestion in 50 mM ammonium acetate
(pH 7) in the presence of Antarctic phosphatase (New England Biolabs) as

described previously69. Nucleoside composition was analyzed by narrow bore
HPLC using a U-3000 HPLC system (Thermo-Fisher). An Accucore RP-MS
(2.1 mm × 100 mm, 2.6 µm particle) column (Thermo-Fisher) was used at a flow
rate of 200 µl/min at a temperature of 30 °C. Mobile phases used were 5 mM
ammonium acetate, pH 5.3 (Buffer A) and 40% aqueous acetonitrile (Buffer B). A
multilinear gradient was used with only minor modifications (5 min plateau at
100% instead of 3 min) from that described previously70.

An LTQ OrbitrapTM mass spectrometer (Thermo Fisher Scientific) equipped
with an electrospray ion source was used for the LC/MS identification and
quantification of nucleosides. Mass spectra were recorded in the positive ion mode
over an m/z range of 100–1000 with a capillary temperature of 300 °C, spray voltage
of 4.5 kV and sheath gas, auxiliary gas and sweep gas of 40, 12, and 7 arbitrary units,
respectively. Calibration curves were generated using a mixture of synthetic
standards of Adenosine (A) and Cytidine (C) (Sigma-Aldrich), m6A, and m1A, m5C
(TCI Europe), and N6, 2′-O-dimethyladenosine (m6Am) (Berry & Associates) in the
ranges of 20–625 injected fmol for m1A, m6A, m6Am, and m5C and 5–250 injected
pmol for A and C. Each calibration point was injected in triplicate. Extracted Ion
Chromatograms (EIC) of base peaks of the following masses: A (m/z 268.08-
268.12), C (m/z 244.08-244.11), m1A and m6A (m/z 282.10-282.13), m6Am (m/z
296.12-296.15), and m5C (m/z 258.09-258.12), were used for quantification. In all
cases, coefficients of variations for peak areas were always below 15%. Experimental
data (peak area versus injected quantity) were fitted with a linear regression model
for each compound leading to coefficient of determination (R2) values better than
0.997. Accuracies were calculated for each calibration point and were always better
than 15%.

Western blotting. For Western blotting, we performed acetone precipitation of
the flow-through of the tissue lysate from RNA preparation according to the
manufacturer’s instructions. Samples were solubilized, separated on NuPAGE
(Thermo Fisher) or criterion (Bio-Rad) 4–12% Bis-Tris Protein Gels and trans-
ferred to PVDF membranes using iBlot (Thermo Fisher). Antibody dilutions were:
rabbit anti Mettl3 (abcam ab195352), rabbit anti Mettl16 (abcam ab186012), rabbit
anti Alkbh5 (abcam ab195377) and rabbit anti Mat2a (abcam ab154343): 1:1000;
mouse anti β-actin (Sigma-Aldrich A1978): 1:2000; rabbit anti Mettl14 (Sigma
Aldrich HPA038002): 1:500.

Proteomics analysis. Protein digestion: precipitated proteins were solubilized with
8 M urea in Tris HCl 50 mM pH 8.5. Proteins disulfide bonds were reduced with
5 mM tris (2-carboxyethyl)phosphine (TCEP) for 20 min at 23 °C and further
alkylated with 20 mM iodoacetamide for 30 min at room temperature in the dark.
Subsequently, LysC (Promega) was added for the first digestion step (protein to
Lys-C ratio = 80:1) for 3 h at 30 °C. Then the sample was diluted to 1 M urea with
100 mM Tris pH 8.0, and trypsin (Promega) was added to the sample at a ratio of
50:1(w/w) of protein to enzyme for 8 h at 37 °C. Proteolysis was stopped by adding
1% formic acid (FA). Resulting peptides were desalted using Sep-Pak SPE cartridge
(Waters) according to manufacturer’s instructions. Peptides elution was done using
a 50% acetonitrile (ACN), 0.1% FA buffer. Eluted peptides were stored until use.

Mass spectrometry analysis: peptides were analyzed on a Q Exactive Plus
instrument (Thermo Scientific) coupled with an EASY nLC 1000 chromatography
system (Thermo Scientific). Samples were loaded on an in-house packed 50 cm
nano-HPLC column (75 μm inner diameter) with C18 resin (1.5 μm particles,
100 Å pore size, Reprosil-Pur Basic C18-HD resin, Dr. Maisch GmbH) and
equilibrated in 98% solvent A (H2O, 0.1% formic acid) and 2% solvent B
(acetonitrile, 0.1% formic acid). Peptides were eluted using a gradient of solvent B
(ACN, 0.1% FA) from 3 to 6% in 5 min, 6 to 29% in 130 min, 29 to 56% in 26 min,
and 56 to 90% in 5 min (total length of the chromatographic run was 180 min
including high ACN level steps and column regeneration). The instrument method
for the Q Exactive Plus was set up in the data dependent acquisition mode. MS
spectra were acquired at a resolution of 70,000 (at m/z 400) with a target value of
3 × 106 ions. The scan range was limited from 300 to 1700 m/z. Peptide
fragmentation was performed using higher-energy collision dissociation (HCD)
with the energy set at 27 NCE. Intensity threshold for ions selection was set at

Fig. 5 m6A modifications in the liver. a Positions of detected m6A peaks on all methylated transcripts in liver were determined and visualized using the
GUITAR package. b Motif enrichment in m6A modification was determined by calculating total occurrence of motifs in m6A peaks on the 5′UTR, CDS and
3′UTR of in the liver. Consensus motifs for m6A (RRACH) and m6Am (NBCAN) are highlighted in red. c Multidimensional scaling (MDS) plot of the peak
log counts-per-million IP data of all differentially methylated peaks showing the positions of the samples in the space spanned by the first and second MDS
dimensions. Samples are colored with respect to condition. CONV (n= 10), conventionally raised mouse (black); GF (n= 10), germ-free mouse (cyan);
Am (n= 10), A.muciniphila- monocolonized mice (green), Lp (n= 3), L.plantarum-monocolonized mice (orange). d Heat map of the peak log counts-per-
million IP data based on all differentially methylated peaks, hierarchical clustering was performed using euclidean distance and ward.D2 linkage. e m6A-
peaks found to be differentially methylated compared to differential expression of transcripts in indicated mouse models. Differentially methylated peaks
that are also differentially expressed on transcript level are in red, differentially methylated peaks that are unchanged on transcript level, are in blue.
Methylation peaks that were not significantly changed are shown in gray. p-values were estimated from moderated t-statistics with empirical Bayes
moderation using limma package, followed by Benjamini-Hochberg correction. Cut-offs for differential expression are log fold change (FC) −1 to 1 and
Benjamini–Hochberg- corrected p-values < 0.05.
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1 × 106 ions with charge exclusion of z= 1 and z > 7. The MS/MS spectra were
acquired at a resolution of 17,500 (at m/z 400). Isolation window was set at 1.6 Th.
Dynamic exclusion was employed within 45 s.

Data processing and analysis: all data were searched using Andromeda71 with
the MaxQuant software version 1.5.3.872,73 against Uniprot proteome database of
mouse. Usual known mass spectrometry contaminants and reversed sequences
were also searched. Andromeda searches were performed choosing trypsin as
specific enzyme with a maximum number of two missed cleavages. Possible
modifications included carbamidomethylation (Cys, fixed), oxidation (Met,
variable), N-terminal acetylation (variable), and ubiquitin (variable). The mass
tolerance in MS was set to 20 parts per million (ppm) for the first search then
6 ppm for the main search and 10 ppm for the MS/MS. Maximum peptide charge
was set to 7 and 5 amino acids were required as minimum peptide length. The
“match between runs” feature was used between condition with a maximal
retention time window of 1 min. One unique peptide to the protein group was
required for the protein identification. A false discovery rate (FDR) cutoff of 1%
was applied at the peptide and protein levels. The MaxLFQ, Maxquant’s label-free
quantification (LFQ) algorithm was used to calculate protein intensity profiles
across samples71. Data were filtered by requiring a minimum peptide ratio count of
2 in MaxLFQ. The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the dataset
identifier PXD016099.

Statistical analysis: for the statistical analysis of one condition versus another,
proteins identified in the reverse and contaminant databases and proteins only
identified by site were first discarded from the list. Then, proteins exhibiting fewer
than 2 LFQ intensities in at least one condition were discarded from the list to
avoid misidentified proteins. After log2 transformation of the residual proteins,
summed intensities were normalized by median centering within conditions
(normalizeD function of the R package DAPAR74). Remaining proteins without
any LFQ intensities in one of the two conditions have been considered as proteins
present in one condition and absent in another. They have therefore been set aside
and considered as differentially abundant proteins. Next, missing values were
imputed using the impute.MLE function of the R package imp4p. Proteins with a
log2 (fold-change) inferior to 1 have been considered as proteins which are not
significantly differentially abundant. Statistical testing of the remaining proteins
(having a log2 (fold-change) superior to 1) was performed using the limma t-test
within the R package limma75. An adaptive Benjamini–Hochberg procedure was
applied on the resulting p-values using the function adjust.p of R package cp4p to
estimate the proportion of true null hypotheses among the set of statistical tests76.
The proteins associated to an adjusted p-value inferior to an FDR level of 1% have
been considered as significantly differentially abundant proteins. Finally, the
proteins of interest are therefore those emerging from this statistical analysis in
addition to those which are considered to be absent from one condition and
present in another.

Immunoprecipitation of m6A-methylated mRNA. Immunoprecipitation was
performed as previously described77. Briefly, 3 μg of rabbit anti m6A antibody
(Synaptic Systems) were bound to 25 μl washed Protein G Dynabeads (Thermo
Fisher) in immunoprecipitation buffer (1x IPP; 150 mM NaCl, 0.1% NP-40, 10 mM
Tris-Cl, pH 7.4) for 30 min at room temperature (RT) and washed twice in 1x IPP.
Total (liver), ribodepleted (cecum) or polyA-selected (cecum & liver) RNA was
fragmented using the NEBNext Magnesium RNA fragmentation module (New
England Biolabs), purified by ethanol precipitation and quality-controlled using the
RNA 6000 pico assay (Agilent). Equal amounts of RNA (5 μg for ribodepleted and
polyA-selected RNA and 200 μg for total RNA) were denatured for 2 min at 70 °C
and adjusted to 1x IPP concentration using 2x IPP. RNA was added to the
antibody-bound beads and incubated for 2 h at 4 °C in the presence of murine
RNase inhibitor (New England Biolabs). The bound RNA was washed twice with
1x IPP, twice with low salt IPP buffer (50 mM NaCl, 0.1% NP40, 10 mM Tris-Cl
pH 7.4), twice with high salt IPP buffer (500 mM NaCl, 0.1% NP40, 10 mM Tris-Cl
pH 7.4) and once more in 1x IPP. RNA was eluted using 30 μl of buffer RLT
(Qiagen). In all, 20 μl of MyOne Silane Dynabeads (Thermo Fisher) were washed
with RLT and resuspended in 30 μl of RLT. Eluted RNA was bound to the beads in
the presence of 35 μl of absolute ethanol, washed twice in 70% ethanol and eluted
in 100 μl of H2O. RNA was purified and concentrated using RNA clean & con-
centrator (Zymo research) before proceeding to library preparation. If subsequent
qRT PCR analysis was performed, RNA fragmentation was omitted and the cDNA
synthesis performed using the Quantitect reverse transcription kit (Qiagen). For
Mat2a qRT PCR, TaqMan® Universal Master Mix II, with UNG (Thermo Fisher)
was used. The qPCR probe for Mat2a (Mm.PT.58.8961804) was obtained from
IDT. For GFP qRT-PCR, Evagreen SsoFast and the following primers were used:

GFP (for): 5′ ATGGTGAGCAAGGGCGAGGAG 3′;
GFP (rev): 5′ TTGTACAGCTCGTCCATGCCG 3′.

qRT PCR. For qRT PCR, 1 μg of RNA was retrotranscribed using the Quantitect
cDNA reverse transcription kit (Qiagen). Quantitative real-time PCR was per-
formed using PrimeTime® Gene Expression Master Mix and the following probes
(all IDT): Mettl3 (Mm.PT.58.10309074), Mettl14 (Mm.PT.58.33500780), Mettl16
(Mm.PT.58.9941116), Alkbh5 (Mm.PT.58.6928987), Fto (Mm.PT.58.32888407),

and Pcif1 (Mm.PT.58.9572065). TaqMan probes for housekeeping genes Gapdh
(Mm99999915_g1) and Hprt (Mm03024075_m1), were from Thermo Fisher.

In vitro transcription of GFP RNA. GFP coding sequence was cloned into pCRII
and the plasmid linearized using BamHI. In vitro transcription was performed
using the Maxiscript T7 kit (Thermo Fisher) according to the manufacturer’s
instructions, but replacing ATP with N6-Methyl-ATP (Trilink). The template was
digested using Turbo DNase and RNA purified using RNA clean & concentrator-5
(Zymo).

Library preparation and sequencing. In all, 150 ng of input RNA and the
immunoprecipitated RNAs were dephosphorylated using Antarctic phosphatase
and subjected to T4 PNK treatment (both New England Biolabs). Directional
RNA-seq libraries were prepared using NEBNext Multiplex Small RNA Library
Prep Set for Illumina (New England Biolabs) according to the manufacturer’s
instructions. Libraries were sequenced on an Illumina HiSeq 2500 platform gen-
erating single end reads (65 bp).

MeRIP-Seq processing. The mouse mm10 genome and list of transcripts were
downloaded from Gencode (Mus Musculus VM1378). Only the 21968 ‘pro-
tein_coding’ genes were kept for the analysis. After the sequencing of every MeRIP-
Seq (IP dataset) and RNASeq (Input dataset) the resulting reads were trimmed
(AlienTrimmer 0.4.079, default parameters). They were mapped on mouse mm10
genome using STAR mapper 2.5.0a (–sjdbOverhang 100 parameter)80. Mapping
files were filtered to keep uniquely mapped reads using SAMtools 0.1.19 (samtools
view -b –q 1 parameters)81, and saved to BAM files after indexation. The quality of
the sequencing and mapping was assessed using FastQC 0.10.1 and MultiQC
0.782,83. Gene expression was calculated with HTSeq 0.9.1(-s no -m union
--nonunique all parameters)84.

m6A peak detection. The original three reference papers on MeRIP-Seq analysis
have used three different workflows for m6A modification peak detection (Fisher
test2, MACS2 software85, and Peak Over Input technique77). Each of these tech-
niques has a certain bias and identifies different types of methylation peaks. We
implemented all of them https://gitlab.pasteur.fr/hub/MeRIPSeq and developed our
own technique using the fold of Reads Per Million (RPMF). We prepared the peak
detection by first generating windows of 100 bp overlapping in their middle using
all 21,968 ‘protein_coding’ genes. Windows of 100 bp overlapping in their middle
were generated. The total number of reads per window was calculated for each
dataset. The number of reads for each window in IP and Input was determined
using HTSeq 0.9.184(-s no -m union --nonunique all parameters). Only the win-
dows with coverage higher than 10 reads in IP datasets were kept. Fisher, POI, and
RPMF techniques were then run on these windows to assess for the presence of
methylation peaks.

The Fisher exact rank test was applied on each of the 100-bp windows. The
p-values were corrected with Benjamini-Hochberg multiple testing correction86.
Only peaks with a corrected p-value < 0.001 were kept for Fisher analysis. The
reads per million (RPM) for each window in IP and Input was calculated. The
reads per million-fold (RPMF) was determined by subtraction of RPM of each
window in the IP dataset and RPM in the Input. Only the peaks with RPMF
> 10 were kept. We prepared the POI peak detection by first calculating the raw
coverage on each dataset, IP and Input, using BEDTools 2.17.087 (genomcov -d
-split -ibam) and removing all positions with null coverage. Following the
workflow described in Schwartz et al.77, the Peak over median (POM) was
calculated by dividing median expression in the window by median expression of
the gene, only considering exonic regions of genes. The peaks with a POM score
<4 in the IP dataset were removed. The Peak Over Input (POI) score was then
calculated by dividing POM score in the IP dataset by POM score in the Input
dataset. Only the peak with POI >2 were kept. MACS2 methylation sites detection
was run (-g 282000000 –nomodel parameters) on bam files of IP datasets with the
Input datasets serving for assessing the whole RNA distribution. Each of the four
methods of peak detection was detecting small windows with potential
methylation sites in very few datasets. To keep only robust methylation sites, the
occurrence of each peak was assessed by counting in how many IP samples a
specific window was detected as a methylation site. Only windows found in three
or more IP samples were kept. BEDtools merge software87 was run to regroup all
overlapping windows. A Median coverage across all IP samples was calculated
using WiggleTools88. With an in-house python script, the maximum coverage
position of every peak for every technique was computed and the peak region was
redefined as the 150 bp region centered at the position of maximum coverage.
Methylation sites found in at least three of the four techniques were combined
using BEDTools merge function, followed by another search for maximum
coverage for each site. Finally, a general list of 150-bp-long peaks centered at the
maximum coverage in every IP dataset was extracted. The overlapping region on
their corresponding gene was searched: 5′UTR, 3′UTR, CDS, intron. The presence
of the m6A consensus sequence RGACW in the sequence of the peak was assessed
by calculating a motif score by adding score presence when one of this sequence
was found: ‘GAACA’: 2, ‘GGACA’: 3, ‘GAACT’: 5,‘GGACT’: 8. The union of all
the methylation sites found by each of the four techniques was determined using
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BEDTools merge function. Two lists of potential methylation sites were then
extracted: 37,796 methylation peaks for the cecum and 31,394 peaks for the liver
tissue. We determined the overlap of these peaks with the m6A modification peaks
previously detected by MeRIP-Seq stored in the MeT-DB v2.0 database39 using the
Bioconductor R package GenomicFeatures89.

Differential methylation and expression analysis. Statistical analyses were
performed using the R package limma75. https://gitlab.pasteur.fr/hub/MeRIPSeq.
Read count data were first normalized with the trimmed mean of M-values
normalization method90 (edgeR package) and transformed with the voom91

function (limma package). Limma was then used to assess the statistical sig-
nificance of observed differences in read counts. Two different linear models
were derived to address two different questions. Differentially expressed genes
between all pairs of the four conditions were first detected with y ~ BioCond +
Sequencing + Library_batch + IP_procedure, where y is the normalized and
transformed Input read counts (expression data), BioCond refers to the seven
(CONV, GF, ex-GF, abx, vanco, Am, Lp) biological conditions under study for
cecum, or 4 (CONV, GF, Am, Lp) biological conditions under study for liver.
Batches associated with sequencing, library preparation, and IP procedure were
also accounted for through the Sequencing, Library_batch, and IP_procedure
variables. Differentially expressed methylation peaks were derived using a model
on IP read counts to detect differential methylation (y ~ BioCond + Sequencing
+ Library_batch + IP_procedure). Only genes and peaks with at least 5 counts
per million (CPM) in at least three samples were included in the differential
analyses. In addition, to avoid biases caused by the two different IP procedures,
only peaks with at least 5 CPM in at least two IP and input samples of each
sequencing procedure per condition were included in the differential analysis
(19,061 peaks for the cecum and 10,383 peaks for the liver). p-values resulting
from the two models were adjusted for multiple comparisons using the BH
procedure86. Genes or methylation peaks were considered statistically different
when their adjusted p-value was lower than 0.05 and the absolute log-fold
change was >1. The batch effects were removed from the data for plotting the
multidimensional scaling (MDS) and heat maps plots using the removeBatch-
Effect function of the limma package. The MDS plots were done with the
function plotMDS. The GUITAR plot was generated using the GUITAR pack-
age39. Pathway analysis was performed using the Ingenuity Pathway analysis
software (IPA; Qiagen) using the Diseases & Functions tool after performing
expression analysis of differentially methylated peaks with the same parameters
as above (absolute log-fold change >1, p-value < 0.5). For pathways analysis of
differentially methylated transcripts in liver, KEGG mouse 2019 and GO Bio-
logical Process analyses in Enrichr were used92,93.

Differential transcript usage analysis. Using the input samples, we performed a
differential transcript usage (DTU) analysis by following the workflow described
in Love et al.94. Isoform abundance estimates were computed with salmon
v0.13.195 and scaled transcript-per-million estimates were imported with
tximport v1.10.196. We performed a differential isoform usage analysis, using the
same covariables as in the differential expression analysis, computed a per-gene
adjusted p-value using DEXSeq v1.28.397 and used stageR v1.5.198 to compute
overall false discovery rate per transcript. Isoforms were considered to be dif-
ferentially used between two conditions if their overall FDR was smaller than 5%
and their change in isoform fraction between the two conditions was larger
than 0.1.

Motif presence. MEME-ChiP software99 was used to search for motif in different
lists of m6A peaks. For each tissue we used: List of all m6A peaks (e.g. Liver), list of
non-differentially methylated peaks (e.g. Liver_NoMeth), list of differentially
methylated peaks (e.g. Liver_Meth), list of differentially methylated peaks with
corresponding gene differentially expressed (e.g. Liver_MethGene), list of differ-
entially methylated peaks overlapping a gene which is not differentially expressed
(e.g. Liver_MethNoGene). MEME-ChiP runs different motif search software from
the MEME-Suite, such as DREME100 and CentriMo101, and centralizes the results
in one folder. Using in-house python scripts, all motifs fund by DREME were
combined. Only motifs with DREME e-value <0.00001 and found centrally enri-
ched by CentriMo were kept. Previously described motifs were added in the motif
list: RRACH, NGGACN, and NBCAN1,2,26. To avoid motif presence list size effect
induced by small list of peaks, only lists of peaks with >50 m6A peaks were kept in
the motif presence analysis. For motif presence we added the list of all peaks sorted
by their overlapping region on a transcript (e.g. Liver_CDS, Liver_3UTR,
Liver_5UTR). The cumulative occurrence of each motif was calculated for each list
and divided by the number of m6A peaks per list. Each row of the final table
obtained was then reduced and centered to perform clustering of the motif pre-
sence with in-house R scripts.

qPCR from cecal content. gDNA was prepared from cecal content using the
Power Soil DNA isolation kit (MoBio) following the manufacturer’s instructions.

qPCR was performed as described68 using EvaGreen Sso Fast Master Mix (Biorad),
500 nM primers and 50 ng input gDNA. Primer sequences were:

16S V2 (for) 5′AGYGGCGIACGGGTGAGTAA 3′
16S-V2 (rev) 5′CYIACTGCTGCCTCCCGTAG 3′
mpIgRgenomic (for) 5′ TTTGCTCCTGGG CCTCCAAGTT 3′
mpIgRgenomic (rev) 5′AGCCCGTGACTGCCACAAATCA3′.

Relative expression was determined by amplification of the 16S rRNA V2 region
using the ΔΔCT method with mpI genomic region as a reference68.

16S rRNA sequencing. 16S rRNA sequencing was performed as described pre-
viously102. Briefly, the 16S rRNA gene amplification was performed by using the
Nextflex 16s v1-v3 amplicon-seq kit. gDNA isolated from cecal content DNA was
sequenced by using Illumina Miseq. Library adapters, primer sequences, and base
pairs occurring at 5′ and 3′ends with a Phred quality score <20 were trimmed off by
using Alientrimmer (v0.4.0). Reads with a positive match against mouse genome
(mm10) were removed. Filtered high-quality reads were merged into amplicons
with Flash (v1.2.11). Resulting amplicons were clustered into operational taxo-
nomic units (OTU) with VSEARCH (v2.3.4)103. The process includes several steps
for de-replication, singletons removal, and chimera detection. The clustering was
performed at 97% sequence identity threshold, producing 1110 OTUs. The OTU
taxonomic annotation was performed with the SILVA SSU (v132) database104

using VSEARCH103 and filtered according to their identity with the reference105.
Annotations were kept when the identity between the OTU sequence and reference
sequence was ≥78.5% for taxonomic Classes, ≥82% for Orders, ≥86.5% for
Families, ≥94.5% for Genera and ≥98% for species. In total, 56% of the OTUs were
assigned a genus level annotation following these criteria. The input amplicons
were then aligned against the OTU to get a contingency matrix giving the number
of amplicons associated with each OTU using VSEARCH global alignment103. On
average 91.5% of amplicons were aligned against the OTUs.

The contingency matrix normalization was performed at OTU level using the
weighted non-null normalization, described in detail by Volant et al.106.
Normalized counts were then summed within the genera. The generalized linear
model (GLM) implemented in the DESeq2 R package107 was then applied to detect
differences in abundance of genera between each group. We defined a GLM that
included the treatment (condition) and the time (variable) as main effects and an
interaction between the treatment and the time. Resulting P values were adjusted
according to the Benjamini and Hochberg procedure86. The results of the OTU
picking process is available on shaman.pasteur.fr106 with the key ff9551570bf15.
The statistical analysis can be reproduced on SHAMAN by loading the datasets
available on figshare: https://doi.org/10.6084/m9.figshare.8321165.v5. The
bioinformatic workflow implemented in SHAMAN is available at github.com/
aghozlane/masque. Normalized OTU tables are provided as Supplementary Data 6.

Quantification and statistical analysis. All data are expressed as mean and
standard error of the mean. The number of animals or replicates (n) for each group
is indicated in the figure legends. Either student’s t-test or Ordinary one-way or
two-way ANOVA for multiple comparisons were used for statistical analysis. This
information is provided in the figure legends. For differential expression analysis
p-values were adjusted using the Benjamini–Hochberg procedure as indicated in
the figure legends. p-values < 0.05 were considered significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
MeRIP-Seq and RNA-seq data have been deposited in the ArrayExpress database at
EMBL-EBI under accession number E-MTAB-6560. 16S rRNA sequencing data have
been deposited in the European Nucleotide Archive database at EMBL-EBI under
accession number PRJEB25147. 16S data are also available in SHAMAN106 (shaman.
pasteur.fr; key ff9551570bf15) and Figshare (https://doi.org/10.6084/m9.
figshare.8321165.v5). The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE108 partner repository with the dataset
identifier PXD016099. Proteomic data were searched against a uniprot database
containing Mus musculus proteins (downloaded 03/2016; https://www.uniprot.org/
proteomes/); public databases used were: MeT-DB v2.0 database (http://180.208.58.19/
metdb_v2/html/index.php), SILVA SSU (v128) (https://www.arb-silva.de/
documentation/release-128/), Gencode (mouse mm10 genome and list of transcripts;
Mus Musculus VM13; https://www.gencodegenes.org/mouse_releases/).

Source data for Fig. 4a, b, d–g, and Supplementary Figs. 1a–d, 2a, 3e, 4a–c, and 6 are
given in the Source data file associated to this manuscript.

Code availability
All the scripts used for m6A peak detection and methylation peak analysis have been
deposited on Institut Pasteur GitLab (https://gitlab.pasteur.fr/hub/MeRIPSeq). The
bioinformatic workflow for 16S sequencing analysis is available at github (https://github.
com/aghozlane/masque).
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