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The lattice Boltzmann method often involves small numerical time steps due to the acoustic scaling (i.e.,
scaling between time step and grid size) inherent to the method. In this work, a second-order dual-time-stepping
lattice Boltzmann method is proposed in order to avoid any time-step restriction. The implementation of the dual
time stepping is based on an external source in the lattice Boltzmann equation, related to the time derivatives of
the macroscopic flow quantities. Each time step is treated as a pseudosteady problem. The convergence rate of
the steady lattice Boltzmann solver is improved by implementing a multigrid method. The developed solver is
based on a two-relaxation time model coupled to an immersed-boundary method. The reliability of the method
is demonstrated for steady and unsteady laminar flows past a circular cylinder, either fixed or towed in the
computational domain. In the steady-flow case, the multigrid method drastically increases the convergence rate
of the lattice Boltzmann method. The dual-time-stepping method is able to accurately reproduce the unsteady
flows. The physical time step can be freely adjusted; its effect on the simulation cost is linear, while its impact
on the accuracy follows a second-order trend. Two major advantages arise from this feature. (i) Simulation
speed-up can be achieved by increasing the time step while conserving a reasonable accuracy. A speed-up of
4 is achieved for the unsteady flow past a fixed cylinder, and higher speed-ups are expected for configurations
involving slower flow variations. Significant additional speed-up can also be achieved by accelerating transients.
(ii) The choice of the time step allows us to alter the range of simulated timescales. In particular, increasing
the time step results in the filtering of undesired pressure waves induced by sharp geometries or rapid temporal
variations, without altering the main flow dynamics. These features may be critical to improve the efficiency and
range of applicability of the lattice Boltzmann method.

DOI: 10.1103/PhysRevE.101.023309

I. INTRODUCTION

The lattice Boltzmann method, issued from the discretiza-
tion of the Boltzmann equation, has become a popular ap-
proach to simulate fluid flows [1,2]. In contrast to the Navier-
Stokes equations, the Boltzmann equation statistically de-
scribes the dynamics of microscopic fluid particles. It is said
that the flow is described at the mesoscopic scale. In the lattice
Boltzmann method, fluid particle distribution functions, also
called particle populations, are transported on a spatial lattice
composed of nodes connected by a discretized velocity space.
Despite the differences between the Navier-Stokes and lattice
Boltzmann approaches, they have proved to similarly predict
the flow behavior at the macroscopic scale [3–5]. In addition,
the analogy between the discretized Boltzmann and Navier-
Stokes equations can be formally shown by a multiscale
Chapman-Enskog analysis [6].

As any explicit method, the lattice Boltzmann method
involves restrictions on the numerical time step. These re-
strictions may, however, be more important than for other
methods. In the case of explicit Navier-Stokes solvers, the
time step is often set according to a Courant-Friedrichs-Lewy
(CFL) stability condition, which can be expressed as [7]

�tNS = C�n/U, (1)

*simon.gsell@univ-amu.fr

where �tNS is the time step, �n is the grid size, U is the
typical flow velocity, and C is the CFL number that must sat-
isfy C � 1. In constrast, the lattice Boltzmann time step �tLB

must scale with the grid size through the acoustic scaling,
namely �n/�tLB = c, where c is the lattice speed. In addition,
the method relies on a low-velocity assumption, which can
be expressed as U/c = κ , where κ is a small parameter.
Substituting c by �n/�tLB, this condition is equivalent to a
time-step restriction,

�tLB = κ�n/U . (2)

As κ � 1, it appears that the lattice Boltzmann time step is
generally smaller than a Navier-Stokes time step for a given
grid size and a given flow velocity. In practice, the value
κ = 0.05 is expected to be small enough to ensure numerical
accuracy [2]. In this case, the lattice Boltzmann time step is
20 times smaller than a Navier-Stokes time step with C = 1.

Time-step restrictions of explicit solvers can lead to sig-
nificant computational costs when simulating flows involving
small length scales (i.e., small value of �n) and relatively
large timescales, as in large-eddy simulations of wall-bounded
turbulent flows or in many multiscale problems (e.g., porous
media, bubble flows, flow over canopies, etc.). Moreover, due
to the scaling between the time step and other numerical
parameters, as in expressions (1) and (2), it is often difficult
to vary physical parameters as the Reynolds number without
altering the computational performance. Finally, time-step
restrictions prevent the free control of the numerical time
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accuracy and generally limit the degrees of freedom of the
numerical setup. The present work aims at avoiding these
restrictions through a dual-time-stepping (DTS) procedure.

Dual-time-stepping methods, first introduced for Navier-
Stokes solvers [8,9], are implicit time-integration methods
that avoid any time-step restriction. At each time step, the
flow solution is computed by solving a pseudosteady problem,
where the flow unsteadiness is taken into account as an exter-
nal forcing in the steady flow equations. The pseudosteady
solution is obtained by integrating the solution over a pseudo-
time. While the pseudo time step may be subjected to stability
restriction, the physical one is only determined by the desired
time accuracy of numerical simulations. It allows us to set
the time step as a function of the expected flow timescale,
regardless of the spatial discretization. This method remains
to be extended to lattice Boltzmann solvers; this is addressed
in this work.

The efficiency of a dual-time-stepping method is closely
related to the performance of the pseudosteady flow solver.
Therefore, Navier-Stokes dual-time-stepping methods are of-
ten coupled to convergence acceleration techniques as precon-
ditionning [10–12] and multigrid [13,14]. Similar techniques
have been developed for lattice Boltzmann methods [15–20].
In the present algorithm, a multigrid technique similar to that
proposed by Mavriplis [19] for steady flows is employed to
improve the efficiency of the dual-time-stepping algorithm.
It is extended to a very generic numerical framework, built
using a two-relaxation-time lattice Botzmann method coupled
to an immersed-boundary method [21], thus allowing the sim-
ulation of a large variety of physical configurations involving
moving and/or deformable solid bodies immersed in a fluid.

The present paper is organized as follows. The proposed
numerical method is presented in Sec. II. The reliability of the
method is analyzed in the cases of the steady and unsteady
flows past a circular cylinder, either fixed or towed in the
computational domain; these results are presented in Sec. III.
The main conclusions of this work are summarized in Sec. IV.

II. NUMERICAL METHOD

The numerical method is described in the following. First,
the pseudosteady formulation of the physical problem, based
on the Navier-Stokes equations, is presented in Sec. II A. The
resulting steady problem is solved using a lattice Boltzmann
method, described in Sec. II B, coupled to an immersed-
boundary method detailed in Sec. II C. In Sec. II D, the
multigrid method employed to accelerate the steady solver
is introduced. Finally, the overall algorithm is summarized in
Sec. II E.

A. Dual-time-stepping method

In the following, the flow is assumed to be two dimensional
and nearly incompressible. It is modeled by the Navier-Stokes
equations,

∂ρ

∂t
+ ∇ · (ρU ) = 0, (3a)

∂ (ρU )

∂t
+ ∇ · (ρUU ) = −∇P + μ∇2U , (3b)

where ρ, U = (u, v)T , P, and μ designate the fluid density,
velocity, pressure, and viscosity, and t is the time. More
generally, Eqs. (3) may be rewritten as

∂q
∂t

+ N(q) = 0, (4)

where q is the solution vector (ρ, ρu, ρv)T and N(q) des-
ignates the steady Navier-Stokes operator. The dual-time-
stepping method is based on a pseudosteady formulation of
(4),

∂q
∂t∗ + N(q) = S(q), (5)

where t∗ is a pseudotime variable and S(q) = −∂q/∂t . The
solution of (4) at time t is found by integrating (5) over the
pseudotime t∗ until a steady solution is reached, i.e., ∂q/∂t∗ =
0. In this steady-state problem, the flow-unsteadiness plays
the role of an external forcing. Time and pseudotime spaces
are discretized as t = n�t and t∗ = l�t∗, where n and l are
integers designating the time and pseudotime iterations and
�t and �t∗ are the associated time steps. The time-discretized
pseudosteady problem reads

∂q
∂t∗

∣∣∣∣l

+ N(ql ) = S(ql ), (6)

where S(ql ) is computed implicitly as a function of time t
through a second-order backward scheme [13,14],

S(ql ) = −3ql − 4qn + qn−1

2�t
. (7)

After convergence, the new time-accurate flow solution is
obtained by qn+1 ← ql .

The pseudotime step �t∗ is only involved in the integration
of (6). Depending on the employed numerical method, it may
be subjected to stability or accuracy restrictions. On the
other hand, the physical time step �t , which only affects the
computation of the time derivative of the solution vector (7),
may be chosen without restrictions. This allows us to set �t in
accordance with the desired time accuracy, regardless of the
spatial discretization. Several approaches may be considered
to integrate (5). In the present work, a steady lattice
Boltzmann solver is employed. It is described in the
following.

B. Lattice Boltzmann method

Equation (5), which is equivalent to the Navier-Stokes
equations with an external forcing, can be numerically solved
using a lattice Boltzmann method [2]. At the mesoscopic
level, the flow is described by the flow particle distribution
function f (x, ξ, t∗), which represents the density of flow
particles with velocity ξ at location x and time t∗. Here only
the pseudotime t∗ is considered, following (5). The velocity
space is discretized on a set of velocity vectors {cα, α =
0, . . . , Q − 1}. In the present work, which only focuses on
two-dimensional physical configurations, a D2Q9 velocity set
is used; the velocity space is discretized by nine velocities,
namely

c0 = 0 c1 = cex,

c2 = cey, c3 = −cex,
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c4 = −cey, c5 = c(ex + ey),

c6 = c(−ex + ey), c7 = c(−ex − ey),

c8 = c(ex − ey), (8)

where c is the lattice speed and ex and ey are unit vectors
in the x and y directions. The particle densities at velocities
{cα} are represented by the discrete-velocity distribution func-
tions { fα (x, t∗)}, also called particle populations. The physical
space is discretized using a uniform and Cartesian grid; the
grid spacing is denoted by �n. The time discretization ensures
that particle populations are transported from a node to a
neighboring one during one time step, namely �n/�t∗ = c.
This is the acoustic scaling mentioned in Sec. I. As commonly
done in lattice Boltzmann formulations, all numerical quan-
tities are normalized by c and �t∗, so that �n = �t∗ = 1.
Using this normalization, the lattice Boltzmann equation reads

f l+1
α (x + cα) − f l

α (x) = �l
α (x) + F l

α (x), (9)

where the superscript l relates to the pseudotime discretiza-
tion, �α designates the collision operator, and Fα accounts for
external forcing, i.e., the mass and momentum sources related
to the dual-time-stepping and immersed-boundary methods.
The left-hand side of (9) describes the streaming step, dur-
ing which the particle populations are transported from one
node to a neighboring one; the right-hand side relates to the
collision step. Equation (9) is explicit, so the streaming and
collision steps can be treated separately.

A simple and commonly used collision model is the
Bhatnagar-Gross-Krook (BGK) model [22]. In the present
work, a two-relaxation-time (TRT) collision model [23,24] is
employed to ensure the viscosity independence of the solver
[21]. This model is based on a decomposition of populations
into symmetric and antisymmetric parts, namely

f +
α = fα + fα

2
, f −

α = fα − fα
2

, (10a)

f (eq)+
α = f (eq)

α + f (eq)
α

2
, f (eq)−

α = f (eq)
α − f (eq)

α

2
, (10b)

where the index α is defined such that cα = −cα and { f (eq)
α }

are the equilibrium functions given by

f (eq)
α = wαρ

[
1 + U · cα

c2
s

+ (U · cα)2

2c4
s

− U · U
2c2

s

]
. (11)

The weights {wα} are specific to the velocity set. In the present
case (D2Q9 velocity set), w0 = 4/9, w1 = w2 = w3 = w4 =
1/9, and w5 = w6 = w7 = w8 = 1/36. The TRT collision is
performed by relaxing symmetric and antisymmetric parts
separately,

�l
α = − 1

τ

[
f l+
α − f l (eq)+

α

] − 1

τ̂

[
f l−
α − f l (eq)−

α

]
, (12)

where τ is the standard relaxation time, which relates to
the fluid kinematic viscosity through ν = c2

s (τ − 1
2 ), with cs

denoting the sound speed equal to 1/
√

3 using the present
normalization. The second relaxation time τ̂ is introduced
to relax antisymmetric populations. In contrast to τ , τ̂ does
not directly relate to macroscopic fluid properties; it is a free
numerical parameter. In practice, τ̂ is often set through the

parameter 
 relating both relaxations times [24],


 = (
τ − 1

2

)(
τ̂ − 1

2

)
. (13)

In the following, 
 is set to 1/4. The source term Fα involved
in the lattice Boltzmann equation (9) is expressed as

F l
α =

(
1 − 1

2τ

)
Sl+

α +
(

1 − 1

2τ̂

)
Sl−

α , (14)

where S+
α = (Sα + Sα )/2 and S−

α = (Sα − Sα )/2 are the sym-
metric and antisymmetric parts of Sα and

Sl
α = wα

{
Sl

ρ +
[

cα − Ul

c2
s

+ (cα · Ul )cα

c4
s

]
· (

Sl
ρU + Bl)}.

(15)
In Eq. (15), Sρ = −∂ρ/∂t and SρU = −∂ (ρU )/∂t are the
mass and momentum sources related to the dual-time-
stepping method, and B is the momentum source issued from
the immersed-boundary method (see Sec. II C). In the absence
of local mass variation (∂ρ/∂t = 0), Eq. (15) reduces to the
forcing scheme proposed by Guo [25]. The additional term
related to Sρ in (15) is a simple local mass source, since∑

α wαSρ = Sρ and
∑

α wαcαSρ = 0.
The macroscopic flow quantities are moments of the par-

ticle populations in the velocity space. In particular, the flow
momentum and density are written as follows [2]:

(ρU )l =
8∑

α=0

f l
αcα + 1

2
(Sl

ρU + Bl ), (16a)

ρ l =
8∑

α=0

f l
α + 1

2
Sl

ρ. (16b)

Expressions (16) are implicit, as the source terms Sl
ρ and

Sl
ρU depend on ρ l and Ul . Following Eq. (7), these terms are

expressed as

Sl
ρU = −3(ρU )l − 4(ρU )n + (ρU )n−1

2�t
, (17a)

Sl
ρ = −3ρ l − 4ρn + ρn−1

2�t
. (17b)

Consequently, the macroscopic quantities can be computed
as follows:

(ρU )l =
∑8

α=0 f l
αcα + 1

2 Bl + (ρU )n

�t − (ρU )n−1

4�t

1 + 3
4�t

, (18)

ρ l =
∑8

α=0 f l
α + ρn

�t − ρn−1

4�t

1 + 3
4�t

. (19)

It should be emphasized that mass conservation is ensured in
expression (19). The computation of the immersed-boundary
forcing B is detailed in the next section.

C. Immersed-boundary method

The present numerical method is coupled to an immersed-
boundary method that allows us to simulate the flow around
arbitrary-shaped and moving solid bodies. The principle of
the method is schematized in Fig. 1. A solid boundary �,
discretized by a set of Lagrangian markers {X k} = {(Xk,Yk )},
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x

y

Γ

Xk

xi

Ψ

FIG. 1. Schematic view of the immersed-boundary method. A
boundary �, discretized by Lagrangian markers {X k}, is immersed in
the fluid domain �, discretized by the lattice nodes {xi}. The shaded
blue area represents the region where the immersed-boundary forcing
is applied, determined by the radius of the employed kernel function
(24). Reproduced from Ref. [21].

is immersed in the flow domain � discretized by the Eulerian
lattice nodes {xi} = {(xi, yi )}. The no-slip condition on the
solid boundary is enforced through a body force B applied on
the neighboring lattice nodes. The computation of B is based
on a correction of the flow momentum interpolated on the
solid boundary. This correction is expressed as a body force
B∗ on the Lagrangian markers. Based on expression (16), the
relation between the body force B∗ and the prescribed wall
velocity Ub on a boundary marker X k is expressed as

I[ρ](X k)Ub(X k) = I
[

8∑
α=0

fαcα + 1

2
SρU

]
(X k) + 1

2
B∗(X k),

(20)
where I denotes the interpolation operator, detailed hereafter.
Consequently, a direct computation of the momentum correc-
tion B may be expressed as

B∗ = 2

(
I[ρ]Ub − I

[
8∑

α=0

fαcα + 1

2
SρU

])
. (21)

However, as analyzed in Ref. [21], expression (21) does not al-
low to ensure the viscosity independence of the computations,
resulting in velocity-slip errors [26] or spurious oscillations
when the relaxation time is varied. To avoid these effects, the
IB force should be rescaled according to the relaxation time,
namely

B∗ = 2λ

1 + κ (λ − 1)

(
I[ρ]Ub − I

[
8∑

α=0

fαcα + 1

2
SρU

])
,

(22)
where κ is an analytically derived quantity that depends on
the interpolation kernel function and λ = 2τ − 1. It should be
emphasized that expression (22) reduces to expression (21)
when τ = 1.

The interpolation of a physical quantity φ is performed
using a discrete Dirac function δ, namely

I[φ](X k ) =
∑
xi∈�

φ(xi )δ(xi − Xk)�Si, (23)

where �Si = �x�y = 1 is the cell surface. The kernel func-
tion is expressed as δ(x) = δ̂(x)δ̂(y), with [27]

δ̂(r) =
{

1
2d

[
1 + cos

(
πr
d

)]
, |r| � d,

0, |r| > d,
(24)

and d the radius of the kernel function, set to 3/2 in the
following. The quantity κ , involved in expression (22), is
equal to κ = 3/(4d ) using the present kernel function [21].

At each time step, the body force on the immersed bound-
ary is computed on the basis of expression (22). The force is
then spread to the lattice nodes, using the same kernel function
as that employed for the interpolation. The spread force on a
lattice node xi reads

B(xi ) = S[B∗](xi ) =
∑

X k∈�

B∗(X k)δ(xi − X k)�Sk, (25)

where S is the spreading operator and �Sk is a local surface
element; it is often expressed as �Sk = �lkε, with �lk the
local distance between two neighboring boundary markers
and ε a boundary width generally set to unity—as done in
the present work—or in some cases computed explicitly [28].

D. Multigrid method

The efficiency of the above-described lattice Boltzmann
dual-time-stepping method is closely related to the conver-
gence rate of the lattice Boltzmann method for steady-state
problems. However, as discussed in Sec. III B, the explicit
lattice Boltzmann scheme (9) may be poorly efficient for this
type of problem. Therefore, a multigrid strategy, similar to that
proposed by Mavriplis [19] but coupled for the first time to an
immersed-boundary method, is employed in the following to
accelerate the steady solver.

The multigrid method consists in computing corrections
of the flow solution on coarse grids in order to accelerate
the smoothing of low-frequency errors [29]. The numerical
domain is discretized on a series of recursively coarsening
grids. The finest grid corresponds to the lattice of reference.
Consecutive grids are constructed so that the scale ratio
between grids is equal to two, with the coarse-grid nodes
coinciding with the fine-grid ones, as schematized in Fig. 2.
Considering the populations f i

α on the ith grid, the steady
lattice Boltzmann operator Li

α[ f i
α (x)] can be expressed as

Li
α

[
f i
α (x)

] = f i
α (x) − f i

α

(
x − ci

α

) − �i
α

(
x − ci

α

)
− F i

α

(
x − ci

α

)
. (26)

Note that in the following the exponent i will be generally
used to designate variables and operators on the ith grid level.
Using this operator, the steady-state problem on each grid
reads

Li
α

[
f i
α (x)

] = Di
α. (27)

The right-hand-side term in (27) is called the defect correc-
tion. It vanishes on the first grid, D1

α = 0, i.e., the solution of
(27) is the steady solution of the original physical problem (9).
In contrast, grid levels i �= 1 operate on a correction equation
(see Ref. [19]) determined by the defect correction, which
is computed during the transfer of the solution from a fine
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Grid i

Grid i + 1

Grid i + 2

Grid i + 3

FIG. 2. Schematic view of three consecutive grid levels with a
scale factor equal to two and coarse-grid nodes coinciding with the
fine-grid ones.

grid to a coarser one, as detailed hereafter. Considering an
approximate solution f̃ i

α (x), the residual is defined as

Ri
α

(
f̃ i
α

) = Li
α

(
f̃ i
α

) − Di
α. (28)

The residual tends to zero as f̃ i
α (x) converges to the exact

solution of (27). The iteration procedure on the ith grid is
composed of three steps:

(i) collision step:

f̃ i
α (x)|∗ = f̃ i

α (x)|l + �̃i
α (x)|l + F̃ i

α (x)|l , (29)

(ii) propagation or streaming step:

f̃ i
α (x)|∗∗ = f̃ i

α

(
x − ci

α)
∣∣∗, (30)

(iii) relaxation step:

f̃ i
α (x)|l+1 = γ

[
f̃ i
α (x)|∗∗ + Di

α

] + (1 − γ ) f̃ i
α (x)|l , (31)

where �̃i
α and F̃ i

α are the collision and source terms associ-
ated with the approximate solution f̃ i

α and γ is a relaxation
parameter, set to 0.6 in the following. The collision and
streaming steps are similar to those performed in a standard
lattice Boltzmann method. In addition to expression (30), the
streaming step is accompanied by the treatment of boundary
conditions, which is not altered by the multigrid method. This
iteration procedure, called smoothing sweep, is repeated until
the problem is transferred to a coarser grid level i + 1. The
transfer consists in the computation of the defect correction

[19],

Di+1
α = Li+1

α

(
Î i+1
i f̃ i

α

) − 2I i+1
i Ri

α

(
f̃ i
α

)
, (32)

where Î i+1
i and I i+1

i denote the restriction operators, which
respectively transfer solution variables and residuals from
the fine grid to the coarse one. In this work, Î i+1

i is defined
as a pointwise injection and I i+1

i is a bilinear interpolation
operator [19]. After several sweeps on grid i + 1, the coarse-
grid solution f i+1

α may be used to compute the coarse-grid
correction on the finer grid,

Ci
α = I i

i+1

(
f i+1
α − Î i+1

i f i
α

)
, (33)

where I i
i+1 denotes the prolongation operator, which is a

bilinear interpolation from the coarse grid to the fine grid. The
fine-grid solution is updated accordingly, f i

α ← f i
α + Ci

α , and
additional fine-grid sweeps may be performed to smooth the
solution.

The convergence of the coarse grid problem can also be
improved by performing coarse-grid corrections on an addi-
tional coarse-grid level. This nested procedure is the main
principle of the multigrid method. Several approaches may
be considered to perform a multigrid cycle, i.e., a series of
sweeps on different grid levels leading to the computation
of the coarse-grid correction of the finest grid. A simple
multigrid cycle, called the V cycle, is described in Fig. 3(a).
A four-grid method is considered in this example. Steps 1
to 3 are restriction steps. On each grid level, a number of
smoothing sweeps are performed and the resulting defect
correction Di

α is transferred to the coarser grid level. At
steps 2, 3, and 4, the flow solution f i

α is initialized by a
restriction of the finer-grid solution, namely f i

α = Î i
i−1 f i−1

α .
At step 4, a series of sweeps is performed on the coarsest
grid level. Then the coarse-grid corrections are recursively
transferred up to the finest grid level (steps 4 to 6). A series
of final sweeps is performed on each grid level to smooth the
solution after correction. Finally, final sweeps are performed
on grid 1 before updating the flow solution (step 7). It should
be noted that the defect corrections, computed during the
restriction steps, remain unchanged during the prolongation
steps. Other multigrid cycles have been proposed in prior
works; they are based on the same principle as the V cycle
but involve additional transfers between coarse-grid levels in
order to improve the convergence of the correction problem.
In particular, a W cycle is employed in the present work; it is
schematized in Fig. 3(b).

On each grid level, the steady-state problem (27) is con-
nected to the forcing term F i

α , which is composed of two

(a) (b)

D2
α

D3
α

D4
α C3

α

C2
α

C1
α

Grid 1

Grid 2

Grid 3

Grid 4

1

2

3

4

5

6

7

FIG. 3. Schematic view of four-grid (a) V and (b) W cycles. Dashed and solid arrows indicate restriction and prolongation steps.
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TABLE I. Summary of the multigrid dual-time-stepping algorithm.

1. Fine-grid solution f 1
α |n and associated macroscopic quantities are know at time step n

2. Update position and velocity of the immersed-boundary markers
3. Initialize f 1

α |l=0 = f 1
α |n, compute macroscopic quantities (16)

4. Loop on pseudo time steps l
4.1. Loop on grid levels i (multigrid cycle)
4.1.1. Loop on grid sweeps
4.1.1.1. Collision (29), streaming (30), and boundary conditions
4.1.1.2. Relaxation (31)
4.1.1.3. If i = 1, update the IB forcing (25)
4.1.1.4. Compute macroscopic quantities (18) and (19)
4.1.1.5. Update dual-time-stepping source terms (17)

4.1.2. If necessary, perform restriction (32) or prolongation (33)
4.3. New f 1

α |l+1

4.4. Compute the fine-grid residual R (34)
4.5. Exit if R < Rc or if l > lc

5. New fine-grid time-accurate solution f 1
α |n+1 = f 1

α |l

contributions [see Eq. (15)]: the dual-time-stepping source
term and the immersed-boundary source term. The dual-time-
stepping forcing is updated at each smoothing sweep, follow-
ing expressions (18) and (19), on every grid levels. During the
restriction steps, it is initialized on coarse-grid levels through a
restriction of the finer-grid solution. In contrast, the IB forcing
is only updated during the finest-grid sweeps, and it is trans-
ferred to the coarse grids through simple pointwise injections.
As shown in the following, this procedure is suitable for the
coupling of the immersed-boundary and multigrid methods.

Setting the number of grids as well as the number of
sweeps performed on each level of the multigrid cycle may be
the object of a detailed parametric study in order to optimize
the convergence rate of the method. Such optimization, which
may depend on the considered physical configuration, is left
for future works. These parameters are thus fixed in the
following. First, the number of grid levels is set to four. It
is generally recommended to perform more sweeps on the
coarse grid levels than on the fine ones. Here the number of
sweeps performed on grids 1, 2, 3, and 4 are equal to 1, 2,
3, and 4, respectively. It should be noted that these sweeps
are performed during the restriction and prolongations phases.
Therefore, the total number of sweeps performed on grids 1,
2, 3, and 4, using the V cycle described in Fig. 3(a), is equal
to 2, 4, 6, and 8, respectively.

E. Algorithm and implementation

The time-marching algorithm is summarized in Table I.
Compared to a standard lattice Boltzmann solver, the new
steps are mainly the relaxation steps, the restriction and pro-
longation steps, and the steps related to the update of the dual-
time-stepping source terms. Otherwise, collision, streaming,
and immersed boundary steps are very similar to those per-
formed in an explicit lattice Boltzmann solver, allowing us to
integrate routines issued from an existing code. In practice, the
pseudotime loop can be controlled by setting the maximum
number of inner iterations lc or using a convergence threshold
based on the L2 norm of the fine-grid residuals,

R = 1

N

√√√√ N∑
i=1

8∑
α=0

R1
α,i, (34)

where N is the number of lattice nodes and R1
α,i is the fine-grid

residual (28) on the ith node.
It should be mentioned that the immersed-boundary up-

date, corresponding to step 2 in Table I, may be performed
at different instants, depending on body motion features. The
algorithm proposed in the table corresponds to a forced body
motion, as considered in the present paper, i.e., the body
position and velocity are known at each physical time step.
In flow-structure interaction problems, where body motion is
fully coupled to the flow dynamics, the immersed-boundary
update may be performed iteratively during the pseudotime
loop (step 4), so that both flow and body dynamics are treated
implicitly [30]. This aspect, which is beyond the scope of the
present study, will be addressed in future works.

D

Lx/3 2Lx/3

Ly/2

Ly/2

Uin

x

y

(a)

D

Lx

Ly

Uc

x

y

(b)

FIG. 4. Schematic view of the considered test cases: (a) Flow
past a fixed circular cylinder immersed in a cross flow, and (b) cylin-
der towed in still fluid. Boundaries of the computational domain are
represented by a black rectangle and the dashed line indicates the
immersed boundary.
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FIG. 5. Simulation of the steady flow past a circular cylinder at Re = 40: Evolution of the residual as a function of (a) fine-grid iterations
and (b) CPU time for the single- and multigrid solvers.

III. RESULTS

The above-described method is applied to the simulation
of the laminar flow past a circular cylinder. The physical
configuration is described in Sec. III A. The accuracy of the
immersed-boundary lattice Boltzmann method in this config-
uration has already been thoroughly examined in previous
works [27,31], including Ref. [21], where the same explicit
LB solver was employed.

Additional validation results are also provided in Ap-
pendix. In the following, the focus is placed on the speedup
and possible alteration of the flow solution when using the
multigrid and dual-time-stepping techniques, compared to the
standard lattice Boltzmann method. Three cases are consid-
ered, namely the steady and unsteady flows past a fixed
cylinder immersed in a cross flow, and the flow past an
impulsively started cylinder in still fluid. The steady flow past
a fixed cylinder, addressed in Sec. III B, is simulated using
the steady flow solver (multigrid lattice Boltzmann) described
in Sec. II D. The reliability of the multigrid solution as well
as the associated speedup, compared to an explicit lattice
Boltzmann solver, are analyzed. The unsteady cylinder wake
is considered in Sec. III C; it is simulated using the unsteady
flow solver (multigrid dual-time-stepping lattice Boltzmann,
see Sec. II A and Sec. II D). The accuracy of the predicted flow

solution is examined in comparison with the solution issued
from a standard explicit solver. The influence of the time step,
which is not restricted by any stability or accuracy condition,
on the flow solution is analyzed. Finally, the ability of the
dual-time-stepping method to simulate flows past moving
geometries is illustrated in Sec. III D for an impulsively started
cylinder.

A. Description of the test cases

Schematic views of the physical configurations are pre-
sented in Fig. 4. In the first set-up [Fig. 4(a)], a circular
boundary of diameter D, modeled by the immersed-boundary
method, is immersed in an oncoming flow Uin. A velocity
Dirichlet condition Uin is set at the left boundary of the do-
main, using a bounce-back method [32,33]. Periodic boundary
conditions are set on the upper and lower boundaries. A pres-
sure Dirichlet condition, ensured by a nonequilibrium bounce-
back method [34], is set on the right boundary to model
an outflow condition. The flow is initialized with a uniform
flow velocity equal to Uin. In the second case [Fig. 4(b)], the
cylinder is towed in the x direction at velocity Uc. Periodic
boundary conditions are set on all boundaries of the compu-
tational domain. The flow is initialized with a uniform flow
velocity equal to zero, and the body is impulsively started at
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the first time step of the computation. The streamwise and
cross-flow lengths of the computational domain are denoted
by Lx and Ly. In the following, Lx and Ly are set to Lx/D = 64
and Ly/D = 32, in both configurations.

The Reynolds number, based on the cylinder diameter and
a typical flow velocity U0, is Re = U0D/ν, where ν is the kine-
matic viscosity of the fluid. In the fixed cylinder case, U0 =
Uin; in the case of the towed cylinder, the typical velocity is
the towing velocity, U0 = Uc. The streamwise and cross-flow
fluid force coefficients are defined as Cx = 2Fx/(ρ0U0

2D) and
Cy = 2Fy/(ρ0U 2

0 D), where ρ0 is the reference fluid density
and Fx and Fy are the sectional fluid forces in the x and y
directions computed on the basis of the immersed-boundary
forcing on the Lagrangian markers, namely

Cx =
∑

Xk∈�

B∗(X k) · ex�Sk, (35a)

Cy =
∑

Xk∈�

B∗(X k) · ey�Sk . (35b)

The flow is expected to remain steady for low values of the
Reynolds number. In contrast, an unsteady wake associated
with vortex shedding is generally observed for Re > 48, ap-
proximately. Both steady (Re = 40) and unsteady (Re = 100)
regimes are considered in the following.

B. Steady flow past a fixed cylinder

The steady flow over a circular cylinder is computed for
Re = 40, D/�n = 10, U0/c = 0.05, and τ = 0.5375. The
evolution of the residual (34) during the computation is plot-
ted in Fig. 5(a), for the single- and multigrid solvers. The two
multigrid cycles introduced in Sec. II D, namely the V and
W cycles, are considered. Moreover, in order to emphasize
the effect of the multigrid method on the convergence, the
employed single-grid solver follows the same iterative proce-
dure as that described by (29)–(31); in particular, it involves
the same relaxation step as that performed in the multigrid
solver. In all cases, the residual decreases monotonically until
it reaches a plateau associated with round-off errors. Using
the single-grid solver, complete convergence is achieved after
4 × 105 iterations, approximately. A reasonably converged
state can be obtained before complete convergence; here the
entire convergence history is shown for illustrative purpose.
Nevertheless, the convergence rate of the single-grid lattice
Boltzmann solver remains too small to allow the efficient
implementation of a dual-time-stepping method. The effect of
coarse-grid corrections on the convergence is well illustrated,
since the convergence of the multigrid solvers is drastically
faster than that of the single-grid one, in terms of fine-grid
iterations. In addition, it is clearly noted that the W cycle
performs better than the V cycle. However, the computational
cost of the coarse-grid sweeps, even though smaller than fine-
grid iterations, is not negligible. The real computational time
required to achieve convergence is thus depicted in Fig. 5(b),
which represents the evolution of the residual as a function
of the CPU time. It is confirmed that the multigrid solvers
converge faster than the single-grid one. The convergence
acceleration is measured by the speedup S = tmg/tsg, where
tsg and tmg are the CPU times required to decrease the residual
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FIG. 6. Simulation of the steady flow past a circular cylinder at
Re = 40: Cross-flow evolution of the (a) streamwise and (b) cross-
flow flow velocities at x/D = 1, predicted by the single- and multi-
grid solvers.

from 10−10 to 10−14 for the single- and multigrid algorithms.
In the present case [Fig. 5(b)], the speedup obtained for the V
and W cycles are equal to S ≈ 7 and S ≈ 35.

After convergence, the flow solution predicted by the
single- and multigrid solvers are identical. This is illustrated
in Fig. 6, which shows the cross-flow evolution of the stream-
wise and cross-flow flow velocities in the cylinder wake after
convergence. In this plot, and in the following, the (x, y)
frame has been centered on the cylinder axis. It is noted
that single- and multigrid solutions are superimposed. The
computed streamwise fluid force Cx is also the same in all
cases.

C. Unsteady flow past a fixed cylinder

The unsteady flow past a circular cylinder is simulated for
Re = 100, D/�n = 20, U0/c = 0.05, and τ = 0.53. As the
flow is initialized with a uniform velocity, all computations
exhibit a transient associated with the development of the
unsteady flow. This transient is not addressed here, and the
focus is placed on the flow after statistical convergence of
the solution, when the unsteady wake is fully developed. Two
algorithms are considered in the following: a standard ex-
plicit lattice Boltzmann method and the multigrid dual-time-
stepping lattice Boltzmann method described in Sec. II. Two
approaches may be considered to control the inner iterations
of the dual-time-stepping method: setting the number of inner
iterations lc performed at each time step or fixing a minimum
global residual R that must be reached before updating the
physical solution. As done in Ref. [8], the first approach is
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FIG. 7. Overview of the unsteady flow past a circular cylinder at
Re = 100 simulated by the standard and dual-time-stepping lattice
Boltzmann methods: (a) Time histories of the fluid force coefficients
in both cases and [(b) and (c)] instantaneous isocontours of the
nondimensional flow vorticity issued from the (b) standard and
(c) dual-time-stepping simulations.

employed in the present computations, allowing us to easily
control the cost of the simulations. It is recommended that lc
is adjusted as a numerical parameter, according to the desired
numerical accuracy, as the time step and mesh size. The effect
of lc will be addressed hereafter.

An overview of the flow predicted by both methods is
presented in Fig. 7. In this example, the time step of the
dual-time-stepping algorithm is set to �t/�t∗ = 50, and 10
multigrid W cycles are performed at each time step to solve
the pseudosteady problem. It is recalled that �t∗ corresponds
to the lattice Boltzmann time step and equals 1 using the
present normalization (lattice units). Figure 7(a) shows time
histories of the fluid force coefficients in the streamwise and
cross-flow directions. The results issued from both methods
are very similar. In particular, force magnitudes and fre-
quencies are in agreement, even though a small difference

10−11

10−10

10−09

10−08

10−07

20000 20500 21000

(a)

vortex-shedding
period

10−11

10−10

10−09
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20100 20150 20200

(b)

physical
time step

R

Iterations

R

Iterations

FIG. 8. Dual-time-stepping simulation of the unsteady flow past
a circular cylinder at Re = 100: Evolution of the residual (34) as
inner iterations are performed. A typical history is presented in (a),
and a blue dashed rectangle indicates the region magnified in (b).

between force frequencies may be noted in the time history
of Cy. The fluid force fluctuations are mainly sinusoidal. The
Strouhal frequency fst = fyD/U , where fy is the cross-flow
force frequency, is computed on the basis of a fast-Fourier
transform of the Cy signal; it corresponds to the vortex-
shedding frequency. In both cases, fst is close to 0.16. This
frequency corresponds to a time discretization of 2500 and
50 time steps per vortex-shedding period for the standard and
dual-time-stepping (�t/�t∗ = 50) methods. Instantaneous
visualizations of the flow are presented in Figs. 7(b) and 7(c).
The visualizations are based on instantaneous contours of the
nondimensional flow vorticity, ω = (∂u/∂y − ∂v/∂x)D/Uin.
Overall, the qualitative aspect of the flow is very similar in
both cases. The main differences are noted in the far wake
(x/D > 10), where some variations can be noted in partic-
ular in the region of vorticity trails connected to the wake
vortices.

The evolution of the solution residual during the computa-
tion, for the dual-time-stepping algorithm, is plotted in Fig. 8.
The x axis indicates the number of performed inner iterations
(i.e., multigrid cycles). The residual exhibits a periodic evolu-
tion. Two periods can be noted; the smaller one, equals to 10
iterations, is associated with the inner loop performed at each
physical time step. During a physical time step, the residual
decreases by approximately two orders of magnitude. The sec-
ond identified period is associated with the vortex-shedding
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FIG. 9. Dual-time-stepping simulation of the unsteady flow past a circular cylinder at Re = 100: Influence of multigrid cycle and number
of inner iterations lc on (a) the normalized CPU time t∗ and on the computed fluid forces, quantified by (b) the Strouhal frequency, (c) the
time-averaged streamwise force coefficient, and (d) the amplitude of the cross-flow force coefficient. In all plots, a solid line indicates the value
issued from standard explicit method. The computation using a W cycle and lc = 2 is unstable; therefore, the data are not reported for this
case. In all cases, the time step is �t/�t∗ = 50.

frequency, indicating that the mininum residual may vary
from one time step to the other. The convergence achieved
during each physical time step depends on the multigrid
cycle. In this example, the W cycle described in Sec. II D is
employed. As expected from the steady analysis performed
in Sec. III B, a lower convergence rate is achieved when a
V cycle is employed (not shown here). For a given number
of inner iterations, this affects the accuracy of the computed
flow. The effect of the multigrid cycle on the computational
cost and accuracy is examined hereafter.

The numerical cost of the simulations is quantified using
the normalized CPU time t∗ = tdts/texp, where texp and tdts are
the computational times required to advance the flow solution
over one convective timescale D/Uin for the explicit and
dual-time-stepping solvers. For the case presented in Fig. 7
and Fig. 8 (�t/�t∗ = 50, W cycle, lc = 10), t∗ ≈ 1.15, i.e.,
the dual-time-stepping simulation is slightly more expensive
than the explicit simulation. However, the simulation cost is
closely related to the employed multigrid cycle and to the
number of inner iterations lc. This is depicted in Fig. 9(a).
The increase of the computational time as a function of lc
is close to linear. In addition, it is noted that simulations
employing a W cycle are significantly more expensive than
the V-cycle simulations, as expected since the W cycle in-

volves more sweeps of coarse-grid levels as well as more
restriction and prolongation operations. The number of inner
iterations also affects the accuracy of the computations, as
depicted in Figs. 9(b)–9(d), which show the evolutions of the
vortex-shedding frequency and fluid force statistics, namely
the time-averaged streamwise force coefficient Cx and the
amplitude of the cross-flow force coefficient C̃y. All quan-
tities exhibit converging evolutions: They tend to a plateau
value as lc increases. These plateau values are close to the
physical quantities issued from the standard explicit method,
supporting the reliability of the dual-time-stepping method.
Using the V cycle, it is noted that a reasonable convergence of
the physical quantities is obtained for lc = 10; this set-up may
thus be employed to perform accurate simulations. However,
a lower number of inner iterations is needed if the W cycle
is employed, as suggested by the higher convergence rates
observed in the steady-flow analysis performed in Sec. III B.
In this case, a reasonable convergence is obtained for lc = 5.
Based on Fig. 9(a), it can be noted that the normalized CPU
time associated with this set-up is t∗ ≈ 0.58, corresponding to
a 40% speed-up compared to the explicit method.

A major advantage of the dual-time-stepping method is
that it allows us to freely vary the physical time step �t .
As expected, variations of �t impact the computational cost
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FIG. 10. Dual-time-stepping simulation of the unsteady flow past a circular cylinder at Re = 100, using a multigrid W cycle: Influence
of the normalized time step �t/�t∗ on (a) the normalized CPU time, (b) the time-averaged streamwise force coefficient, (c) the cross-flow
force coefficient amplitude, and (d) the cross-flow force frequency for lc = 5 and lc = 10. In (d), the inset shows the evolution of the frequency
relative error, defined by (36).

of the simulations; this is illustrated in Fig. 10(a), which
shows the important decrease of t∗ as the time step increases.
Figures 10(b) and 10(c) show the influence of the time step
on the fluid force statistics. Variations of the time-averaged
streamwise force remain limited, as its relative difference with
the value issued from the explicit computation does not exceed
2% over the considered range of normalized time steps. Yet a
converging trend is clearly noted: As the time step decreases,
the time-averaged drag tends to a plateau value independent
to the number of inner iterations and close to the value issued
from the explicit computation. A similar trend is noted in the
evolution of C̃y, which exhibits larger variations than Cx. The
effect of the number of inner iterations is also clearly noted,
as the variation of the error as a function of the time step
is less pronounced for lc = 10 than for lc = 5. Finally, the
evolution of the wake frequency fst is examined in Fig. 10(d).
The observed trend is consistent with the above analysis.
In addition, the figure shows the evolution of the relative
frequency error,

E fst = fst − fst,ref

fst,ref
, (36)

where fst,ref is the frequency issued from the explicit compu-
tation. As E fst relates to the temporal variation of the flow,
it is expected to be connected to the accuracy of the dual-
time-stepping integration, described by expression (7). The
nominal second-order accuracy of the method is supported by
the evolution noted in Fig. 10(d): For both lc = 5 and lc = 10,
the relative error exhibits a trend E fst ∼ (�t/�t∗)2.

Based on Fig. 10, an optimal numerical set-up can be
identified. Indeed, using �t/�t∗ = 100 and lc = 5, the rel-
ative errors on Cx, C̃y, and fst are respectively equal to 0.003,
0.017, and 0.030, while the normalized CPU time is equal
to 0.23. In summary, the relative variation of the physical
quantities is less than 5% while the computation is 4 times
faster, compared to the explicit solver, confirming the practical
interest of the method. This value of the speed-up is indicative;
it corresponds to a straightforward implementation of the pro-
posed method, tested on a standard unsteady test case. Higher
speed-up may be achieved by optimizing the convergence
rate of the multigrid method as well as its implementation.
High speed-up is also expected in configurations involving
low-frequency fluctuations, since the physical time step might
be further increased in theses cases. In addition to the direct
speed-up commented above, a major extra speed-up can be
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obtained by increasing the time step during flow transitions
(e.g., initial development of an unsteady wake) if temporal
accuracy is only required during the fully developed state.
Detailed examination of these aspects, which is beyond the
scope of the present paper, will be developed in future works.

In this section, the analysis of the dual-time-stepping
method has allowed us to emphasize two important points: (i)
the DTS method is able to accurately predict the unsteady flow
and (ii) it can significantly speed up the computations. The
free setting of the time step provides other beneficial features.
In particular, using a large time step allows the damping
of undesired high-frequency fluctuations, often observed in
lattice Boltzmann simulations for configurations involving
sharp temporal variations. This important feature is addressed
in the next section.

D. Flow past an impulsively started cylinder

So far, simulations have been performed considering fixed
geometries. Nevertheless, the extension of the present method
to moving geometries is straightforward, since the proposed
algorithm (see Table I) involves the update of the position
and velocity of the immersed-boundary markers. This is illus-
trated in the following by considering the flow past a cylinder
towed in still fluid. The configuration is similar to that em-
ployed in Sec. III B, i.e., Re = 40, D/�n = 10, U0/c = 0.05,
and τ = 0.5375. Even though the cylinder wake is expected
to remain steady for this value of the Reynolds number, this
set-up is considered to be unsteady, since the cylinder is
moving in the computational frame and attention will be paid
to the transient response of the fluid. Therefore, the dual-time-
stepping method is employed and compared to the solution
predicted by a standard explicit lattice Boltzmann method.
The DTS computations are run using a multigrid W cycle,
with �t/�t∗ = 40 and lc = 5. Using this set-up, the DTS
and explicit computations have a comparable computational
cost. Besides its illustrative purpose concerning simulations of
flows around moving bodies, this set-up is chosen to address
a common problem in lattice Boltzmann simulations: the
emergence of undesired acoustic waves due to sharp variations
of the flow solution. Indeed, in this test case, the cylinder
is impulsively started, i.e., its velocity instantaneously in-
creases from zero to Uc during the first time step of the
simulation. As the simulated flow is weakly compressible,
this may generate sound waves that can deteriorate the global
solution.

Similar rapid variation of body momentum is expected in
other flow-body interaction problems, as in systems involving
collision between solid particles, for instance.

The time histories of the streamwise fluid force coefficient,
simulated using the explicit and dual-time-stepping methods,
are plotted in Fig. 11(a). During the first time steps of the
computation, a very large drag is exerted on the cylinder. This
can be attributed to the major added mass effect resulting from
the impulsive start of the body. Afterward, the streamwise
force rapidly converges to a steady value close to Cx ≈ −1.5.
This global evolution is very similar for both methods. How-
ever, the drag issued from the explicit simulation also exhibits
high-frequency oscillations; these fluctuations relate to unde-
sired pressure waves, as discussed afterward. Even tough the

fluctuation amplitude tends to decrease as a function of time,
they deteriorate the drag-force signal over large time periods,
as their effect remain significant after 60 convective periods in
Fig. 11(a). These spurious oscillations are suppressed by the
dual-time-stepping method.

Figure 11(b) shows the temporal evolution of the stream-
wise flow velocity at (x/D, y/D) = (0, 0). Since this point
corresponds to the initial position of the cylinder, the flow
velocity rapidly increases after the impulsive start of the body.
Afterward, the velocity decreases as the cylinder moves away,
until it almost vanishes for tU0/D > 20, and it increases
again when the cylinder gets back to its initial position due
to the periodicity of the computational domain. This global
evolution is identical for both methods, supporting that the
dual-time-stepping method can accurately describe the flow
unsteadiness. It is noted that the high-frequency fluctuations
observed in the drag-force signal also alter the flow velocity,
especially when using the explicit method. These fluctuations
are mostly damped by the dual-time-stepping method. Some
residual oscillations, of lower amplitude and lower frequency,
are, however, still visible in the velocity signal, as emphasized
by the inset in Fig. 11(b).

The high-frequency fluctuations noted in Figs. 11(a) and
11(b) are related to the propagation of pressure waves in
the computational domain. This is examined in Figs. 11(c)
and 11(h), which show the spatial evolution of the nondi-
mensional fluid density, ρ∗ = (ρ − ρ0)/ρ0, at different times
indicated in Figs. 11(a) and 11(b). The explicit simulation is
considered first. At the initialization of the computation, a
well-defined pressure wave is generated by the impulsive start
of the cylinder and propagates toward the boundaries of the
computational domain [Fig. 11(c)].

A similar phenomenon has been reported in prior works
on lattice Boltzmann simulations of an impulsively started
cylinder [35].

At this time, no high-frequency fluctuations are noted
in the drag-force signal, since the pressure wave does not
interact directly with the body. After some time, the pressure
fluctuations cross the periodic boundaries of the domain and
propagates toward the body [Fig. 11(e)]. At time t2, the first in-
teractions between the body and the pressure perturbations is
accompanied by the emergence of the high-frequency fluctua-
tions in the drag force signal. Even though the pressure waves
tend to dissipate with time, they still alter the global pressure
filed in the computation domain after 60 convective periods
[Fig. 11(g)]. The solution issued from the dual-time-stepping
method exhibits a different behavior. At the initialization of
the computation, no clear pressure wave can be identified;
instead, a long-range pressure perturbation appears to prop-
agate in the domain [Fig. 11(d)]. Consequently, the solution
rapidly tends to a smooth pressure distribution [Fig. 11(f)]. At
time t3, the solution is not altered by any pressure perturbation
[Fig. 11(h)].

The damping of the high-frequency pressure waves using
the DTS method can be attributed to a filtering effect due to
the large value of the time step. An additional computation
has been performed, using the DTS method with a time step
�t/�t∗ = 1. The resulting time history of Cx is very close to
that issued from the explicit computation (not shown here). In
particular, the fluid force exhibits high-frequency fluctuations.
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FIG. 11. Flow past an impulsively started cylinder in a periodic domain: [(a) and (b)] Time histories of the (a) streamwise fluid force
coefficient and (b) streamwise flow velocity at (x/D, y/D) = (0, 0), and (c)–(h) isocontours of the nondimensional fluid density at times
[(c) and (d)] t1, [(e) and (f)] t2, and [(g) and (h)] t3, computed using the [(c), (e), and (g)] explicit and [(d), (f), and (h)] dual-time-stepping
methods. The initial position of the cylinder is (x/D, y/D) = (0, 0), and it is moving from left to right. In [(c)–(h)], the body is indicated by
a gray circle, and the isocontours are linearly distributed in the range [−0.004, 0.004]. Time histories end at tU0/D = 64, when the body has
been towed over one domain length.

This supports that the low-pass filtering relates to the time step
and that it is not a multigrid effect.

The results depicted in Fig. 11 illustrate several beneficial
features of the dual-time-stepping method. Based on the tem-
poral evolution of Cx in Fig. 11, two regimes may be iden-
tified: the transient regime, for tU0/D < 20, and the steady
regime, for tU0/D > 20. In order to analyze the flow during
the steady regime, the computation has to be continued until
the pressure waves caused by the initialization are damped.
As these pressure waves are suppressed when using a large
time step, the dual-time-stepping method is therefore more

efficient in this context. This is the extra speed-up related to
flow transitions, as already mentioned in Sec. III C. On the
other hand, the explicit method does not allow to analyze
the transient regime, as high-amplitude pressure waves are
propagating in the flow domain, affecting the flow velocity
and the fluid forces. This illustrates that the standard lattice
Boltzmann method may be poorly suited for the study of
incompressible flows involving sharp temporal variations. In
contrast, the transient regime can be accurately analyzed using
the DTS method, without any additional computational cost (it
is recalled that the direct speed-up is close to one in this case).
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Indeed, if timescales associated with the main flow dynamics
are large compared to those related to pressure waves, as
expected for low-Mach-number configurations, the time step
can be set according to the expected dominant timescales, thus
filtering undesired high-frequency fluctuations. As the gener-
ation of pressure waves is a critical issue in many simulations,
this feature may be useful for future developments, improving
the robustness and reliability of the lattice Boltzmann method.

IV. CONCLUSION

A multigrid dual-time-stepping approach has been pro-
posed to avoid time-step restrictions in the lattice Boltzmann
method. The multigrid procedure is based on the method
proposed by Mavriplis [19], extended here to take into account
the presence of immersed boundaries in the flow. The coupling
between the dual-time-stepping and lattice Boltzmann meth-
ods is ensured by an external forcing in the lattice Boltzmann
equation, related to the time derivatives of the macroscopic
flow quantities.

In the case of the steady flow past a fixed cylinder
(Re = 40), the proposed multigrid lattice Boltzmann solver
drastically accelerates the convergence of the flow solution,
confirming the efficiency of the multigrid approach and its
suitable coupling with the immersed-boundary method. The
unsteady flow characterized by the alternate shedding of
vortices and developing for a higher value of the Reynolds
number (Re = 100) has been simulated using the dual-time-
stepping method. The proposed approach is able to accurately
simulate the unsteady solution, as supported by the compari-
son with the solution issued from an standard explicit solver.
The effect of the time step and number of inner iterations on
the numerical cost and accuracy has been analyzed in detail,
and the nominal second-order temporal accuracy of the dual
time stepping is supported by the evolution of the simulated
vortex-shedding frequency. Finally, the analysis of the flow
around an impulsively started cylinder has shown that using
a larger time step allows us to efficiently suppress undesired
high-frequency pressure waves arising from sharp temporal
variations in the system.

In summary, the proposed dual-time-stepping approach is a
robust and accurate method allowing to vary the physical time
step. Two major advantages resulting from this feature have
been identified.

a. Speed-up of the computations. Direct speed-up is
achieved by increasing the physical time step. The potential
speed-up depends on the physical configuration and on the
desired numerical accuracy. In this paper, a direct speed-up
equal to 4 has been obtained for the unsteady flow past a
cylinder, while keeping the error on fluid forces below 5%.
Higher speed-up may be achieved in configurations involving
slow flow variations, since larger time steps may be employed
in these cases. Major indirect speed-up may also be achieved
by accelerating initial flow developments through the increase
of the time step. Finally, the computation of fully developed
flow regime is drastically accelerated through the damping of
high-frequency pressure waves that may arise from initializa-
tion.

b. Damping of high-frequency fluctuations. Lattice Boltz-
mann simulations often involve undesired pressure waves

1.5
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1.7

1.8

1.9

2

0 10 20 30 40 50 60 70 80 90

Cx

D/Δn

FIG. 12. Mesh convergence analysis for the steady flow past a
circular cylinder at Re = 40: Evolution of the drag coefficient Cx as
a function of the mesh resolution D/�.

related to sharp geometries or rapid temporal variations. This
effect limits the range of application of the lattice Boltzmann
method or implies the implementation of artificial damp-
ing. In low-Mach-number computations, main flow-dynamics
timescales are expected to be large compared to timescales
related to pressure waves. By setting the physical time step
according to the main flow timescales, pressure waves tend
to be naturally damped by the computations. This feature is
essential for the future development of robust and reliable
lattice Boltzmann solvers.
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APPENDIX : ADDITIONAL VALIDATION RESULTS ON
THE FLOW PAST A CYLINDER AT Re = 40 AND Re = 100

Additional results are provided in the following concerning
simulations of the flow past a circular cylinder. First, a focus is
placed on simulations performed at Re = 40 with the present
multigrid immersed-boundary lattice Boltzmann method. A

TABLE II. Drag coefficient on a cylinder immersed in a flow at
Re = 40 from previous works and in the present simulations.

Study Method Cx

Tritton [36] Expt. 1.58
Niu et al. [37] Num. 1.59
Sen et al. [38] Num. 1.51
Bharti et al. [39] Num. 1.53
Posdziech and Grundmann [40] Num. 1.49
Present Num. 1.55
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FIG. 13. Streamlines of the flow past a circular cylinder at
Re = 40.

mesh convergence analysis is reported in Fig. 12, which shows
the evolution of the drag coefficient Cx as a function of D/�n.
In these simulations, the size of the numerical domain is set
to Lx/D = Ly/D = 64. The multigrid setup is the same as that
employed in Sec. III B: Computations are performed using W
cycles on four grids, and the number of sweeps is equal to 1,
2, 3, and 4 on grids 1, 2, 3, and 4, respectively. Figure 12
indicates that the drag coefficient converges to Cx = 1.55.
This value is in agreement with previous experimental and
numerical works, as detailed in Table II.

The flow solution issued from the case D/�n = 40 is
visualized using streamlines in Fig. 13. The flow pattern is
very similar to that issued from the high-resolution finite-
element simulations reported by Sen et al. [38]. In particular,
no flow penetration is observed across the body and well-
defined streamlines are computed along the cylinder surface.

TABLE III. Fluid forces on a cylinder immersed in a flow
at Re = 100 from previous numerical works and in the present
simulations.

Study Cx Cm
y fst

Braza et al. [41] 1.28 0.29 0.16
Saiki and Biringen [42] 1.26 — 0.17
Zhang et al. [43] 1.43 — 0.17
Zhou et al. [44] 1.48 0.31 0.16
Lai and Peskin [45] 1.45 0.33 0.16
Talley et al. [46] 1.34 0.33 0.16
Stansby and Rainey [47] 1.32 0.35 0.17
Kim et al. [48] 1.33 0.32 0.16
Le et al. [49] 1.37 0.32 —
Shen et al. [50] 1.38 0.33 0.17
Present 1.41 0.34 0.17

Then the accuracy of the dual-time-stepping algorithm is
illustrated for the unsteady flow past a cylinder at Re = 100.
In accordance with the analysis carried out in Sec. III C,
the simulation is performed using �t/�t∗ = 100 and lc = 5,
ensuring both time accuracy and computational efficiency.
A reasonably fine numerical mesh is employed, corresponding
to D/�n = 80, in order to achieve high spatial accuracy. The
size of the computational domain is set to Lx/D = 64 and
Ly/D = 32, as in Sec. III C. The predicted fluid force statistics
are reported in Table III and compared to data reported in
prior works. In this table, Cx designates the time-averaged
drag force coefficient, Cm

y is the amplitude of the fluctuating
lift coefficient, and fst is the nondimensional vortex-shedding
frequency. Overall, the present results are in agreement with
previous studies.
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