Use of random forest methodology to link aroma profiles to volatile compounds: Application to enzymatic hydrolysis of Atlantic salmon (Salmo salar) by-products combined with Maillard reactions Mireille Cardinal, Marianne Chaussy, Claire Donnay-Moreno, Josiane Cornet, Cécile Rannou, Catherine Fillonneau, Carole Prost, Régis Baron, Philippe Courcoux #### ▶ To cite this version: Mireille Cardinal, Marianne Chaussy, Claire Donnay-Moreno, Josiane Cornet, Cécile Rannou, et al.. Use of random forest methodology to link aroma profiles to volatile compounds: Application to enzymatic hydrolysis of Atlantic salmon (Salmo salar) by-products combined with Maillard reactions. Food Research International, 2020, 134, pp.109254. 10.1016/j.foodres.2020.109254. hal-02572999 HAL Id: hal-02572999 https://hal.science/hal-02572999 Submitted on 22 Aug 2022 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. - 1 Use of random forest methodology to link aroma profiles to volatile compounds: - 2 application to enzymatic hydrolysis of Atlantic salmon (Salmo salar) by-products - 3 combined with Maillard reactions - 5 Mireille CARDINAL^{1*}, Marianne CHAUSSY¹, Claire DONNAY-MORENO¹, Josiane CORNET¹ - 6 Cécile RANNOU², Catherine FILLONNEAU², Carole PROST², Régis BARON¹, Philippe - 7 COURCOUX^{3, 4} 4 13 16 19 - 8 9 1 : Ifremer, laboratoire EM³B, rue de l'île d'Yeu, 44311Nantes Cedex, France - 10 2. Oniris, UMR CNRS 6144 GEPEA, groupe Flaveur, Nantes, France - 3. Oniris, StatSC, rue de la Géraudière 44322 Nantes, France - 12 4. INRA USC 1381, 44322 Nantes, France - *Corresponding author: Tel: +33 (0)2 40 37 40 61; fax: +33(0)2 40 37 40 71. - 15 *E-mail address*: cardinal@ifremer.fr - 17 **Keywords**: sensory characteristics, volatile compounds, HS-SPME/GC-MS, regression tree, - 18 random forest, hydrolysate, Maillard reactions - 21 1. Introduction - 22 Today, using available resources has become a matter of major concern in all the sectors of - 23 activity. This is particularly true in the context of the fishing industry, which produces - 24 considerable quantities of by-products such as heads, viscera, skin, backbones, cutoffs and - 25 blood. The waste may represent 65 % of the initial material in the case of the tuna canning - 26 industry and a similar situation can be observed with farmed salmon. Although using major - waste as fishmeal (Refstie, Olli, & Standal, 2004; Nguyen, Pérez-Gálvez, & Bergé, 2012) is a widespread practice, other applications can play a part in reducing this waste while offering higher added value. Applications include recovery of long-chain polyunsaturated fatty acids (de Oliveira et al. 2017), using bioactive compounds that are beneficial for human health (Charoenphun, Youravong, & Cheirsilp, 2013), and developing cosmetic products (Venkatesan, Anil, Kim, &. Shim, 2017). According to the FAO (2014), the need to gain approval from the regulatory authorities for the specific health claims of nutraceuticals and health supplements may be a serious obstacle to their development and they therefore consider that using the by-products from fish processing directly as food, or indirectly as food by producing feed ingredients, is a more realistic solution. Enzymatic hydrolysis has been studied extensively for over 30 years (Ravallec-Ple, Gilmartin, Van Wormhoudt, & Le Gak, 2001; Halim, Yusof, & Sarbon, 2016) and appears to be an efficient means of recovering valuable components, such as proteins, from marine biomass (Sathivel et al., 2003; Nguyen et al. 2011). In addition, developing cost efficient industrial food grade protease has made it possible to produce new kinds of protein hydrolysate for different applications (Aspevik, Egede-Nissen, &. Oterhals, 2016). In the case of fish protein hydrolysates (FPH), while their functional properties and nutritional value have been recognized as good, their use as food ingredients can be limited by the fish flavor that persists even after processing (Sylla, Bergé, Prost, Musabyemariya, & Seydi, 2009). To reduce or mask the natural fish odor in the products, one of the solutions could be to promote the Maillard reaction (MR) during production of the hydrolysate by adding sugar to the byproduct (Kouakou et al., 2014; Zhao, Shen, Guo, Wu, & Dai, 2016). The MR is a complex series of chemical interactions that occurs during the processing between the lysine amino group in peptides or proteins and the carbonyl group of reducing sugars. This reaction leads to a variety of intermediates and brown products such as melanoidins, which play an important role in the aroma, taste and color of processed foods (Machiels & Istasse, 2002). The MR can 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 add a pleasant flavor to the food through the development of roasted notes and therefore play a role in consumer acceptability. Temperature, time, pH, and water activity are all factors strongly that are involved in MR (Ajandouz, Tchiakpe, Dalle Ore, Benajiba, & Puigserver, 2006), but are also known to influence hydrolysate characteristics (Molla & Hovannisyan, 2011; Prabha, Narikimelli, Infanshia Sajini, & Vincent, 2013). Producing fish hydrolysates with aromatic notes such as a caramelized odor for human food applications is therefore challenging. The main purpose of this work was to better understand the relationships between volatile compounds and the odor properties of hydrolysates in order to identify the main compounds potentially involved in sensory perceptions. To achieve this aim, an experimental design methodology was used to create a range of samples thanks to variation in four factors: enzyme/substrate ratio, hydrolysis time, quantity of sugar and cooking time. These parameters were chosen as being representative of the main parameters involved in hydrolysis conditions and controlled at the industrial scale. Parameter levels were set according to previous results (Kouakou et al., 2014). After an hydrolysis step associated with Maillard reactions, the hydrolysates were submitted to a panel for sensory description and gas chromatography was used to quantify the volatile compounds. In line with the work carried out by Vigneau, Courcoux & Symoneaux (2018), we assumed that the random forest methodology could be applied to both link an entire sensory profile to volatile compounds, and identify the importance of these compounds in sample sensory characteristics. This study was oriented towards the relationships between volatile compounds and sensory profiles and will not include other results on the chemical characteristics of hydrolysates. 74 75 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 - 2. Materials and methods - 76 2.1. Raw material and additives 77 Salmon by-products (backbones from the filleting process) were provided by the company 78 Copalis (Boulogne/Mer, France) from fish processing plants. One hundred and fifty kg of by-79 products were roughly ground and frozen at -20°C by Copalis and transferred to the laboratory by refrigerated transportation. On arrival, the raw material was divided into four kg samples 80 81 and stored in plastic bags at -20°C until hydrolysis processing. 82 The enzymes used for the hydrolysis was provided in liquid form by Novozymes AS (Bagsvaerd, Denmark). Novozym® F.M.2.4 L (EC number: 3.4.21.62) is a bacterial serine 83 84 endopeptidase (subtilisin) prepared from a strain of Bacillus lichenformis. This enzyme was 85 developed to hydrolyze food proteins. It also satisfies the purity requirements for food-grade 86 enzymes, as set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and the Food Chemicals Codex (FCC). The optimal working conditions for Novozym® F.M.2.4 L 87 are reported to be a pH between 7 and 9 and a temperature between 30 and 65°C. Novozym[®] 88 F.M.2.4 L has a declared activity of 2.4 Anson Units (AU) g⁻¹ (Novo Nordisk AS). To protect 89 90 against oxidation of the hydrolysates, a commercial mixture of natural antioxidants, Naturox 91 (tocopherols and rosemary) from the company Jan Dekker International, was used at a level of 92 250 mg per kg of raw material. After preliminary experiments (Kouakou, 2012), this level was 93 chosen as the minimum content needed to significantly reduce lipid oxidation in hydrolysates. 94 Of all the sugars available for promoting flavor generation (Ames, Guy, & Kipping, 2001), D-95 xylose was chosen for the good reactivity of pentose, as well as for economic reasons. Xylose 96 was provided by Danisco (Denmark). 97 The standards used to identify the volatile compounds were purchased on Sigma-Aldrich. The 98 following purity was specified: pentane (≥99.0%), hexane (≥97.0%), dodecane (99.0%), methylbenzene (99.9%), ethylbenzene (\geq 99.0%), styrene (\geq 99.5%), benzaldehyde (\geq 99.0%), 99 100 acetaldehyde (≥99.5%), propanal (97%), 2-methylpropanal (99.0%), butanal (≥99.0%), 2-101 methylbutanal (95.0%), 3-methylbutanal (97.0%), hexanal (98.0%), heptanal (95.0%), ethanol (≥99.8%), 1-propanol (≥99.9%), 1-penten-3-ol (99.0%), (E)-2-penten-1-ol (95.0%), (Z)-2-penten-1-ol (95.0%), 2-butanone (99.0%), 2,3-butanedione (97.0%), 1-hydroxy-2-propanone (90.0%), ethyl acetate (99.5%), acetic acid (≥99.9%), 3-methylbutanoic acid (99.0%), 2-methylfuran (99.0%), furfural (99.0%), 2-methylpyrazine (99.0%), 2,5-dimethylpyrazine (≥99.9%), dimethyl disulfide (98.0%), methional (≥97.0%), 3-methyl-1-butanol (≥99.9%), γ -butyrolactone (99.0%), 2-acetylthiazole (99.0%) and
2-furanmethanol (99.0%). Two other standards were used: 2-methyl-1-propanol (Merck, 99.0%) and 2-propanone (Riedel de Haën, ≥99.9%). ## 2.2. Experimental design Four processing variables were investigated using the response surface methodology (RSM) and a randomized three level-four factor Composite Draper-Lin design (Statgraphics Centurion XV.II, Statpoint, Herndon, USA). The three levels chosen for the selected factors were enzyme/substrate ratio (E/S) (0.1, 0.25, and 0.4 %) (w/w), hydrolysis time (HT) (10, 50, 90 min), sugar (xylose) concentration (X) (2, 6, 10 g.kg⁻¹) and cooking time (CT) (30, 60, 90 min). A total of nineteen experiments was required. Results from a previous study (Kouakou et al., 2014) have shown that adding 10g of sugar to 1 kg of by-product was enough to develop roasted notes during enzymatic hydrolysis. This level was thus set as the high level in the experimental design in order to limit any possible residual sugar in the hydrolysate. A sample produced without added sugar and in hydrolysis conditions set at the highest level for each factor (E/S, 0.4; hydrolysis time, 90 min; cooking time, 90 min) was introduced as a supplementary sample to illustrate a non-Maillard reaction sample (Table 1). Each sample was the result of one production. The central point of the experimental design was repeated three times (samples 5, 10, and 17) in order to test the repeatability of the productions. 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2.3 Enzymatic hydrolysis Frozen minced by-products were thawed at 4°C for 15 hours. For each design experiment, 4 kg of salmon by-products were ground with antioxidant at a knife rotation speed of 1000 rpm, in a Roboqbo Qb8-3 reactor (capacity of 8 liters) (Bentivoglio, Italy). The reactor had a double jacket to make thermal exchanges (heating or cooling) possible, and thus reached the optimal temperature of 40°C for the enzyme within 5 minutes. Hydrolysis was started at a speed of 300 rpm by adding the enzyme. pH was not controlled in order to stay close to industrial conditions. Once the hydrolysis time had elapsed, xylose was added just before stopping the hydrolysis reaction by heating the product to 95°C for 30 to 90 min, depending on the experimental design (cooking time factor). The choice of cooking conditions (time and temperature) was defined in order to favor the Maillard reactions while at the same time providing sufficient inactivation time for enzyme activity in agreement with regulatory obligation. Once this step had been completed, the temperature of the reactor was adjusted down to a temperature of 40°C and the hydrolyzed product was removed through a sieve to eliminate the bones. This product was then centrifuged at 8200 g for 30 min at 20°C in a Beckman coulter to separate and collect the aqueous fraction. In this paper, the word hydrolysate will refer to this fraction. All the samples were stored at -80°C for further sensory and biochemical analyses. 145 144 146147 148 149 150 151 2.4. Sensory evaluation The sensory analysis was carried out with sixteen panelists (12 females, 4 males, between 32 and 65 years old) from an internal panel at IFREMER. They already had experience in salmon hydrolysate evaluation and had received training in the quantification of descriptors for 1h twice a week over a three-month period (Cardinal, Baron, Kouakou, Prost, & Courcoux, 2014), but received further training before starting this experiment. During preliminary screening on process parameters, the following steps were proposed: - a sorting task on odor perception with 21 hydrolysates, - a discussion session with the whole panel in order to find a consensus on the main discriminative odors; this discussion was based on the results of the sorting as well as the list of descriptors previously used, -a scoring session where panelists were invited to test 6 samples illustrating the main characteristics of the hydrolysates in order to share a consensual intensity level for each attribute, - two profiling sessions to check the panel's discriminative power and the agreement between panelists and the whole panel. From the initial twenty-one panelists, sixteen were selected for their ability to recognize the selected odors, and for the good correlation between their individual scores and mean panel sensory scores. They were invited then to carry out a quantitative descriptive analysis (Stone & Sidel, 2004) on the sensory characteristics of salmon hydrolysates from the experimental design. The hydrolysates were presented in plastic flasks wrapped in aluminum foil in accordance with the conditions described by Kouakou et al. (2014). Using a continuous scale from 0 to 10, the panelists had to score the six following odor descriptors: fatty fish, pickled (like pickled anchovies), roasted, burnt, rancid and mud (sulfur notes). Twenty samples were scored in two sessions. Sample presentation was balanced according to factor levels in order to have the range of variation for each processing factor within each session. The tests were performed in individual booths equipped with computers using data acquisition software (Fizz, Biosystems, Couternon, France) under white lighting and at ambient temperature (20°C). 173 174 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 #### 2.5. Volatile compounds 175 The procedure for analyzing the volatile compounds was adapted from Kouakou et al. (2014). 2.5.1. Extraction of the volatile compounds by Headspace Solid Phase MicroExtraction(HS-SPME). Five ml of hydrolysate were placed in a 20-mL glass vial closed with a screw top and equipped with a Teflon septum. The sample was equilibrated for 60 min at 40°C. The extraction of the volatile compounds was performed using a Carboxen/PDMS fibre (85 μ m, 1 cm, Carboxen/PDMS StableFlex, Supelco, Sigma-Aldrich Chimie, Lyon, France) for 15 min at 40°C. Analyses were performed in triplicate on each hydrolysate. ## 2.5.2. Gas chromatography / Mass spectrometry / FID 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 The apparatus used was a gas chromatograph (Agilent 7890A, Wilmington, DE, USA) equipped with a flame ionization detector (FID) and coupled to a mass spectrometer (electronic impact source, Agilent 5975CNetwork, Wilmington, DE, USA). The inlet temperature was 260°C, the FID detector temperature 250°C and the MS detector temperature 280°C. The carrier gas was helium and the pressure was 150 kPa. The splitless mode was used for the injection, and the desorption time was 7 min. The capillary column was a DB-WAX (30 m, 0.25 mm, 0.5 μm, J&W Scientific, Folsom, CA). The program used was 40°C for 10 min, ramped up to 240°C at 7°C/min then equilibrium at 240°C for 3 min. Effluent from the end of the GC was split 1/1 between the MS and FID. Peaks were integrated with MSD Chemstation software (Agilent Technologies). Mass spectra were recorded in electron impact mode (70 eV) between 33 and 300 m/z mass range at a scan rate of 2.7 scan.s⁻¹. The volatile compounds were identified according to 3 criteria: comparison with the literature of their Kovats retention index, comparison of their mass spectra with those of the Wiley 6 library, and comparison of their retention index with those of the corresponding standards when the standard was available. The semi-quantified results were obtained from the FID chromatogram and expressed as a peak area. The results obtained are only semi-quantitative in order to compare the samples, but do not reflect the exact quantity of each volatile compound present in the hydrolysate. Analyses were performed in triplicate on each hydrolysate which means that for each volatile compound and each hydrolysate, the mean relative peak area is obtained from 3 values. 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 201 202 203 #### 2.6. Statistical analysis A standardized Principal Component Analysis (PCA) was performed on the mean of the panel score for each product and each sensory descriptor to highlight the main odor characteristics of the products. The link between volatile organic compounds and sensory perception of the products was investigated using regression trees and random forest methodologies. Regression trees (RT) belong to recursive partitioning techniques and their aim is to predict a quantitative response from a set of quantitative predictors (Breiman, Friedman, Olshen, & Stone, 1984). In our case, the response was a sensory attribute; the panel mean score and predictors were the volatile compounds. A regression tree can be considered as a set of decision rules created by recursively splitting the whole set of products into subsets by maximizing the homogeneity of the two resulting nodes. Random forests (RF) were introduced by Breiman (2001) and consist in a large number of regression trees, randomly generated by resampling the training dataset in order to improve the predictive accuracy of individual trees. Random forests make it possible to compute the Variable Importance measure (VI) which quantifies the role played by each variable in predicting the response. The confidence intervals of these importance measures were obtained by repeating the RF on the same learning set. This technique is a simple tool for selecting predictors with a significant effect on the response. The regression tree based on this selection of compounds can be considered to be more robust than the one built on the complete set of predictors. Each decision tree for a random forest is created from the training set by a doubly randomized process: the bootstrapping of the individuals (random resampling with replacement of products in our case) and the random selection of variables at each node of the trees (at each node, the best volatile compound is chosen among a third of all the compounds). One single decision tree has a tendency to overfit and the
bagging process leads to an improvement in the predictive performance. The samples that are not selected for a given tree (the Out-of-Bag or OOB samples) may be used as a validation step or the solution. The computation of the Variable Importance is based on the mean decrease in accuracy among all trees for the Out-of-Bag samples when the values of the given variable are randomly permuted. Out-of-Bag samples play the role of validation set without having to divide the data-set into calibration and validation sets. In addition, the length of a decision tree (the number of leaves) is obtained by minimizing the error of prediction generally obtained by LOO (leave one out) cross-validation step. This type of machine learning techniques has recently been used in many fields, including sensory studies (Gomez-Meire, Campos, Falqué, Díaz, & Fdez-Riverola, 2014; Brillante et al., 2015, Vigneau et al. 2018), demonstrating its accuracy and robustness even in the case of nonlinear relationships, interactions between predictors or high correlations among a set of predictors. In addition, regression trees may be considered as a technique for supervised clustering, providing decision rules and giving a simple interpretation of the link between response and predictors. As the sensory profile of products is composed of several sensory attributes, we considered a multivariate generalization of the RT and RF methodologies. Introduced by De'ath (2002) in the field of ecology, multivariate regression trees and random forests have been developed for predicting a multivariate response. In this case, the splitting rule was based on the minimization 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 - of the inertia in the child nodes. In our study, each node in the multivariate regression tree was - described by means of the sensory profile of the individuals belonging to this node. - 252 Multivariate regression trees and random forests were carried out using language R 3.5.1 (R - 253 Core Team, 2018) and the R packages mvpart (De'ath, 2014) and randomForestSRC (Ishwaran - 254 & Kogalur, 2019). - 256 3. Results and discussion - 257 3.1. Odor characteristics of the hydrolysates - The first plane of the principal component analysis (PCA) with standardization performed on the means of the sensory scores of each hydrolysate and each descriptor, accounted for 73.2% of the total variance (Fig. 1a). The first axis (54.9% of total variance) was mainly created by the roasted, pickled, rancid and fat criteria (Fig. 1b) and made a clear separation possible - between one group of samples associated with a roasted and pickled odor and three samples: 15, 20 and 16. These samples were distributed according to their main odor characteristic, mud - for sample 15, fat fish and rancid for numbers 16 and 20. The medium position of samples 8 - and 12 on this first axis reflected intermediate sensory characteristics. The second axis (18.3%) - of total variance) added specific information through the 'burnt' descriptor that particularly - differentiated samples 4 and 11. The three replicated samples, 5, 10 and 17, presented similar - 268 profiles and were close on this sensory map; a clustering analysis performed on the principal - 269 components of PCA confirmed that these samples were grouped in the same class of products - 270 (not shown). - A first general approach suggested that the sample separation could not be explained only by - the level of sugar added to the by-product, but also by the specific process conditions associated. - 273 While most hydrolysates on the right side of the sensory map were produced with the lowest - level of sugar or without sugar, an exception can be seen with sample 16. In this case, all the factor conditions, including the sugar factor, were set at the high level except the cooking time (CT) set at the lowest level. Sample 20, the only sample with no sugar added, presented similar characteristics to sample 16, the highest scores for fatty fish and rancid odors. Although hydrolysis conditions, such as a long hydrolysis time associated with a high enzyme/substrate ratio, seemed favorable for producing small peptides and therefore for making reactions possible between amino groups in peptides or proteins and reducing sugar, the results showed that the hydrolysates were mainly characterized by odors illustrating an oxidation reaction. The absence of sugar (sample 20) or a too short cooking time (sample 16) could explain these results. Sample 15, characterized by a mud odor, was processed at the lowest level for each of the four factors. Samples 8 and 12 had similar characteristics but at a lower intensity than sample 15. The same level of xylose (2 g.kg⁻¹) in the three samples could suggest either the need to add a sufficient quantity of sugar in the reaction mixture to favor a roasted aroma, and/or the importance of combining other factors such as E/S, HT and CT at a required level for each of them to prevent or mask the formation of sulfur notes (Farmer, Mottram & Whitfield, 1989). It was likely that these hydrolysis conditions were not conducive to developing Maillard reactions and their related aroma. In the case of the two samples separated on the second axis, samples 4 and 11, the only common processing condition for these two samples produced with medium or high levels of sugar was the low level of E/S (0.1%). This low level could result in lower enzyme activity and therefore a lower production of peptides with different sizes. Li, Zhong, Yokoyama, Shoemaker, Zhu, & Xia (2013) mentioned in their study that rice protein hydrolysates with a higher degree of hydrolysis were found to have more pyrazines such as 2,5dimethyl-pyrazine or methyl-pyrazine. The formation of these compounds from α -amino acids, along with reducing sugars such as xylose could therefore be reduced as the hydrolysis conditions were not favorable for small peptide production. 299 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 ## 3.2. Volatile compounds in the hydrolysates • Identification of volatile compounds A total of 44 volatile compounds was identified in the hydrolysates (Table 2). The chemical compounds belonged to various chemical classes such as aldehydes (7), ketones (7), alcohols (6), benzene compounds (4), alkanes (3), sulfur compounds (3) and others (14). Most of the compounds were identified in the 20 hydrolysates, with variation only in their quantity (Table 3). Carbonyl compounds, aldehydes and ketones were the most abundant volatile compounds in the hydrolysates. Aldehydes are generated via two main formation pathways: lipid oxidation and Maillard reaction. Aliphatic aldehydes, such as hexanal, heptanal or nonanal, are mainly derived from the lipid oxidation occurring in fish flesh (Varlet, Prost, & Sérot, 2007).. The second pathway for producing aldehydes is through Strecker degradation, which occurs during the Maillard reaction (Varlet et al., 2007; Xu et al., 2018).. Aldehydes are one of the most important odor-active compounds because of their low odor threshold values (Peinado, Koutsidis & Ames, 2016a). They may produce desirable aromas (roasty, malty, cocoa, nutty) and undesirable aromas (green, rancid, oxidized) (Giri, Osako, Okamoto, & Ohshima, 2010). Like aldehydes, ketones can be formed through lipid oxidation and the Maillard reaction (Peinado, Miles, & Koutsidis, 2016b). Most of the ketones identified are associated with buttery or creamy aromas on the one hand or ethereal, solvent aromas on the other. 319 320 321 322 323 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 **Alcohols** were the second most abundant compounds. Alcohols can be formed by secondary decomposition of the hydroperoxides in fatty acids, or by enzymatic peroxidation of the n-3 and n-6 polyunsaturated fatty acids present in fish flesh (Peinado et al., 2016b). Alcohols have various odor thresholds, meaning that they contribute in different ways to the overall aroma. Alcohols are associated with alcoholic and green odors. The amount of 1-penten-3-ol seems to be related to the amount of oil in the product (Peinado et al., 2016a, 2016b). Benzene compounds. Benzene compounds are not significant potent odorants. Only benzaldehyde has a relatively low odor threshold (350-3500ppb in water, (Leffingwell, 2019). Most probably, benzaldehyde could be produced through the Maillard reaction, but it could also be generated by oxidation or photochemical degradation of toluene, or other hydrocarbons (Varlet et al., 2007). **Sulfur compounds,** such as dimethyl disulfide and dimethyl trisulfide, are generally associated with a deterioration of the material because of their strong unpleasant odor and low detection threshold (Peinado et al., 2016a). These compounds may originate in the raw material or be generated during the fermentation process from the free, peptidic and proteinic sulfur amino acids in fish flesh (Peinado et al., 2016a). **Furans and pyrazines** are generated through the Maillard reaction. Their odor is associated with empyreumatic aromas such as toasty, cocoa, nutty, chocolate and caramel. These compounds are formed mainly when hydrolysates are heated. • Semi-quantification of the volatile compounds Quantitatively, significant amounts of carbonyl compounds (aldehydes and ketones) and alcohols were present (expressed in relative peak area/g of product). Carbonyl compounds are generally odor-active compounds contributing to the overall odor of the food product (Varlet et al., 2007). Alcohols have slightly lower odor thresholds than carbonyl compounds, depending on their nature and quantity. In comparison, furans, pyrazines and sulfur compounds are present in relatively low quantities, but generally have low odor thresholds. These compounds are thus particularly important for the overall aroma of the product. The hydrolysate
containing the highest quantity of volatile compounds was sample 18. This hydrolysate was obtained by applying the highest level of xylose concentration, hydrolysis time and cooking time. These parameters seemed to have a particular impact on the production of volatile compounds, especially those generated during the Maillard reaction. Sample 18 contained the highest quantity of furans and pyrazines. In the literature, these compounds are known to be odor-active and responsible for roasted and burnt odors. On the contrary, sample 15 was the one with the lowest total quantity of volatile compounds. This sample was obtained with the lowest level of all the parameters involving the production of few volatile compounds. A direct relationship between the nature and quantity of volatile compounds produced, and the process parameters applied was observed. In more detail, the most represented volatile compounds in all the hydrolysates were 3methylbutanal, ethanol, 2-propanone + 2-methylpropanal and 1-penten-3-ol. 3-methylbutanal with ethereal, chocolate is associated malty, aldehydic, and fatty odors (www.thegoodscentscompany.com). 2-propanone + 2-methylpropanal are described respectively as ethereal, solvent, apple and aldehydic, floral, and green (www.thegoodscentscompany.com). Considering the two alcohols, 1-penten-3-ol is described as green, vegetable, tropical and fruity whereas ethanol is perceived as alcoholic, ethereal and medical (www.thegoodscentscompany.com). 365 366 367 368 369 370 371 372 373 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 3.3. Predicting sensory characteristics from volatile compounds The importance of volatile compounds as predictors of the main odor characteristics of enzymatic hydrolysates is presented in Fig.2. The importance measure quantifies the contribution of each volatile compound to the prediction of the sensory profile. The confidence interval for each importance value was obtained by repeating 50 random forests. A compound was therefore significantly more important if the lower limit of its confidence interval was greater than zero. Of all the volatile compounds identified, eleven contributed significantly to the sensory profile prediction: methanethiol, 2,5-dimethylpyrazine, 1-hydroxy-2-propanone, propanone, 2-methyl-1-propanol, furfural, 2-methylfuran, 2,3-pentanedione, hexanal, dodecane and 3-hydroxy-2-pentanone. The odor description of these compounds ranged from cabbage and garlic for methanethiol, to green, herbal and fatty for hexanal and included roasted, caramel, butter, wood, truffle or ethereal notes for the other compounds. These eleven compounds were selected to build the optimal regression tree for predicting hydrolysate sensory profiles (Fig. 3). A regression tree is built by recursively splitting the set of products into two groups by choosing, at each node, the most discriminant predictor (a volatile compound) and the appropriate threshold. This technique leads to a supervised clustering of the whole set of products. Therefore, the optimal tree is the best clustering of samples for predicting the sensory profile from the volatile composition. Specific odors produced during Maillard reactions, and especially roasted odors, have been identified as potentially interesting notes for food applications. The first compound which played a part in splitting the initial 20 samples into 2 groups was 2,5- dimethylpyrazine at a threshold value of $56x10^3$ peak area/g of product. Five hydrolysates with a 2,5dimethylpyrazine value below this threshold were grouped together. A mud odor was the characteristic for three of them when methanethiol level was higher than 29.9x10³ peak area/g of product, and the two samples left had fat and rancid notes for a level of methanethiol below this threshold. Methanethiol was not identified among the highly abundant volatile compounds, but was selected in the random forest procedure as a discriminative compound for sensory prediction. The low odor threshold (0.02 ppb) of this compound originated from the breakdown of sulfur-containing amino acids such as cysteine or methionine (Varlet & Fernandez, 2010), which could explain its importance on the sensory characteristics of the hydrolysates. 2,5dimethylpyrazine was described as cocoa, roasted nuts, roast beef, woody, grass, medical. This compound was known to be produced through the Maillard reaction. Its odor threshold is 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 398 relatively high (800-1 800 ppb). Both these compounds were identified as odor-active 399 compounds possibly impacting the roasted odor of a food product. 400 The fifteen remaining samples, with a level of 2, 5- dimethylpyrazine higher than the 56.2×10^3 401 peak area/g of product, were first separated according to the level of the compound 1-hydroxy-402 2-propanone. One sub-set of seven samples with no specific characteristics was identified when 403 the level of this compound was less than 494×10^3 peak area/g of product, and a group of eight 404 samples when the level was greater. This latter group was finally divided into two sub-sets 405 depending on their 3-hydroxy-2-pentanone content. A group of three samples, with a burnt odor, appeared when the level of this compound was higher than $60x10^3$ peak area/g of product. 406 When the level of 3-hydroxy-2-pentanone was below 60x10³, the five samples left presented 407 408 specific roasted and pickled notes. 409 Three compounds: 2,5-dimethylpyrazine, 1-hydroxy-2-propanone and 3-hydroxy-2-pentanone 410 were identified as playing a part in empyreumatic aromas. Considering the formation pathway 411 of 2,5-dimethylpyrazine, as well as its odor description, it is hardly surprising that a higher 412 amount of this compound will enhance the Maillard notes. But the relative ratio between the 413 three compounds may have an influence on the nature of the sensory characteristics, either 414 roasted, burnt or neutral. The main groups of products identified through the regression tree 415 were in line with previous sensory results with a few slight variations. The two groups with 416 specific notes, either mud or fatty and rancid were clearly separate from the others. The odor 417 activity of the volatile compounds selected in the regression tree was confirmed in a second 418 step through olfactometry measurements. Regarding the three replicated samples (5, 10 and 419 17), they were distributed into three different groups. All these groups had a common threshold for 2,5-dimethylpyrazine, greater than 56.2x10³ and only small level differences on 1-hydroxy-420 421 2-propanone and 3-hydroxy-2-pentanone were detected. It is therefore likely that the variability 422 in sensory measurements, and especially the pickle odor, could explain this result. To mask potential fishy odors through the production of roasted notes, the results suggest finding processing conditions that make it possible to combine the presence of 2,5dimethylpyrazine and 1-hydroxy-2-propanone, while limiting the level of 3-hydroxy-2pentanone to avoid the burnt characteristic. Sensory results have shown that perception of roasted notes increased with the cooking time and sugar level, thus confirming that the Maillard reaction setting was driven by sugar content and a sufficient period at high temperature. However, controlling these factors did not seem to be enough. The low level of the E/S ratio (0.1), combined with a too short hydrolysis time, could lead to burnt or mud odors, depending on the cooking time used rather than a roasted odor, even when there was a high sugar content. A low E/S ratio or a short hydrolysis time may affect the hydrolysis reaction by reducing the number of peptide bonds broken and by therefore reducing the potential generation of certain Maillard reaction compounds. We can suppose that the cooking time used can then control the nature of the compounds formed, either for caramelization products with a long cooking time, or sulfur compounds with a short cooking time. Moreover, for further application of these results, a complementary study will be needed to investigate taste perception and the possible effects on bitterness or other characteristics of process parameters such as a long heating time at 95°C. 440 441 442 443 444 445 446 447 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 ## Conclusion This study based on experimental design methodology confirmed previous results on the advantages of coupling Maillard reactions and enzymatic hydrolysis as a way of producing hydrolysates with a range of aromatic properties making it possible to mask initial fish odors. Results suggest some appropriate process conditions such as level of sugar, E/S ratio combined with hydrolysis time for obtaining a typical roasted note. One of the main conclusions of the study concerns the use of RT and RF methodologies to predict, for one of a first times, a whole odor profile from volatile compounds. The results show that four main volatile compounds contribute to separate hydrolysates into five groups according to their specific sensory characteristics. Three of them, 2,5-dimethylpyrazine, 1-hydroxy-2-propanone and 3-hydroxy-2-pentanone are mainly involved in the perception of roasted notes while methanethiol is associated with a mud odor. The distribution of the three replicates in different sensory groups in the final regression tree probably reflects higher variability in sensory measurements compared to instrumental analysis, and reminds us of the importance of the choice of sensory descriptors used in profiling. In order to consolidate the results obtained, it may be necessary to add to the RF analysis replicated samples obtained from the same production batch, as well as new samples produced from salmon by-products of other origin (plant, country), or samples hydrolyzed with different enzymes that have an
influence on the volatile compounds of the hydrolysates. However, once these considerations have been integrated, the results obtained in this study, which follow up on the works of Vigneau et al. (2018), suggest that a multivariate version of regression trees and random forest methodologies may be a useful tool in practice for establishing the main relationships between sensory perception and major volatile compounds. 464 463 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 - 465 Acknowledgements - The authors are grateful for the financial support from FUI 18 (Fonds Unique Interministériel). - We would also like to warmly thank all the panelists from the trained sensory panel at Ifremer. - 469 References - 470 Ames, J. M., Guy, R. C. E., & Kipping, G. J. (2001). Effect of pH, temperature, and moisture - on the formation of volatile compounds in glycine/glucose model systems. J. Agri. - 472 Food Chem. 49 (9): 4315–4323 473 Ajandouz, E.H., Tchiakpe, 1.S., Dalle Ore, F., Benajiba, A., & Puigserver, A. (2006) Effects 474 of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model 475 Systems. Journal of Food Science, 66 (7), 926-931. 476 Aspevik, T., Egede-Nissen, H., & Oterhals, A. (2016). A Systematic Approach to the 477 Comparison of Cost Efficiency of Endopeptidases for the Hydrolysis of Atlantic 478 Salmon (Salmo salar) By-Products. Food Technology and Biotechnology, 479 54(4), 421-431. 480 Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and 481 Regression Trees. New-York, Chapman & Hall. 482 Breiman, L. (2001). Random Forests. *Machine Learning*, 45, 5-32. 483 Brillante, L., Gaiotti, F., Lovat, L., Vincenzi, S., Giacosa, S., Torchio, F., Segade, S. R., 484 Rolle, L., & Tomasi, D. (2015). Investigating the use of gradient boosting machine, 485 random forest and their ensemble to predict skin flavonoid content from berry 486 physical-mecahnical characteristics in wine grapes. Computers and Electronics in 487 Agriculture, 117, 186-193. 488 Cardinal, M., Baron, R., Kouakou, C., Prost, C., & Courcoux, P. (2014). Comparative value 489 of a sorting procedure and quantitative descriptive analysis to investigate the influence 490 of processing parameters: case study of hydrolysate production from salmon by-491 products. Journal of Sensory Studies, 29(2), 159-170. 492 Charoenphun, N., Youravong, W. & Cheirsilp, B. (2013). Determination of reaction kinetics 493 of hydrolysis of tilapia (*Oreochromis niloticus*) protein for manipulating production of 494 bioactive peptides with antioxidant activity, angiotensin-I-converting enzyme 495 inhibitory activity and Ca-binding properties. *International Journal of Food Science &* 496 *Technology*, 48(2), 419-428. - 497 De'ath G. (2002). Multivariate regression trees: a new technique for modelling species- - 498 environment relationships. *Ecology*, 83(4), 1105-1117. - 499 De'ath, G. (2014). mvpart: Multivariate partitioning. Version 1. 6-2. R package. - 500 FAO (2014). The state of World Fisheries and Aquaculture. Opportunities and Challenges, - 501 169-172. - Farmer, L. J., Mottram, D. S., & Whitfield, F. B. (1989). Volatile compounds produced in - maillard reactions involving cysteine, ribose and phospholipid. *Journal of the Science* - *of Food and Agriculture*, 49(3), 347-368. - 505 Giri, A., Osako, K., Okamoto, A. & Ohshima, T. (2010) Olfactometric characterization of - aroma active compounds in fermented fish paste in comparison with fish sauce, - fermented soy paste and sauce products. *Food Research International*, 43, 1027-1040 - 508 Gómez-Meire, S., Campos, C., Falqué, E., Díaz, F. & Fdez-Riverola, F. (2014). Assuring the - authenticity of northwest Spain white wine varieties using machine learning techniques. *Food* - 510 Research International, 60, 230-240. - Halim, N. R. A., Yusof, H. M., & Sarbon, N. M. (2016). Functional and bioactive - properties of fish protein hydolysates and peptides: A comprehensive review. - 513 Trends in Food Science & Technology, 51, 24-33. - Ishwaran, H. & Kogalur, U.B. (2019). Random Forests for Survival, Regression, and - 515 Classification (RF-SRC), Version 2. 8-0. CRAN R package. - Kouakou, C. (2012). Etude du potentiel aromatique d'hydrolysats marins : Application aux - 517 co-produits de saumon (Thèse de doctorat). Nantes (France) : Université de Nantes – - Angers Le Mans. - Kouakou, C., Bergé, J. P., Baron, R., Lethuaut, L., Prost, C., & Cardinal, M. (2014). Odor - Modification in Salmon Hydrolysates Using the Maillard Reaction. *Journal of Aquatic* - 521 Food Product Technology, 23(5), 453-467. - 522 Leffingwell (2019). http://www.leffingwell.com/odorthre.htm - 523 Li, Y., Zhong, F., Ji, W., Yokoyama, W., Shoemaker, C. F., Zhu, S., & Xia, W.S. (2013). - Functional properties of Maillard reaction products of rice protein hydrolysates with - mono-, oligo- and polysaccharides. *Food Hydrocolloids*. 30(1), pp.53-60 - Machiels, D., & Istasse, L. (2002). Maillard reaction: importance and applications in food - 527 chemistry. *Annales de Médecine Vétérinaire*, 146 (6), 347–352. - Molla, A.E., & Hovannisyan, H. G. (2011) Optimization of enzymatic hydrolysis of visceral - waste proteins of beluga *Huso huso* using Protamex. *International Aquatic Research*, - *3*, 93-99. - Nguyen, H. T. M., Sylla, K. S. B., Randriamahatody, Z., Donnay-Moreno, C., Moreau, J., - Luyen, T. T., & Berge, J-P. (2011). Enzymatic Hydrolysis of Yellowfin Tuna - 533 (Thunnus albacares) By-Products Using Protamex Protease. Food Technology and - 534 *Biotechnology*, 49(1), 48-55. - Nguyen, H. T. M., Pérez-Gálvez, R., Bergé, J-P. (2012). Effect of diets containing tuna head - hydrolysates on the survival and growth of shrimp *Penaeus vannamei*. Aquaculture, - 537 (324-325), 127-134. - de Oliveira, D., Licodiedoff, S. Furigo, A. Ninow, J. L. Bork, J. A. Podesta, R. Block J. M. & - Waszczynskyj, N. (2017). Enzymatic extraction of oil from yellowfin tuna (*Thunnus* - *albacares*) by-products: a comparison with other extraction methods. *International* - *Journal of Food Science and Technology*, 52(3), 699-705. - Peinado, I., Koutsidis G. & Ames, J. (2016a). Production of seafood flavour formulations - from enzymatic hydrolysates of fish by-products. Lwt-Food Science and Technology, - *66*, 444-452. | 545 | Peinado, I., Miles, W. and Koutsidis, G. (2016b) Odour characteristics of seafood flavor | |-----|--| | 546 | formulations produced with fish by-products incorporating EPA, DHA and fish oil. | | 547 | Food Chemistry, 212, 612-619. | | 548 | Prabha, J, Narikimelli, A., Infanshia Sajini., M., & Vincent, S. (2013) Optimization for | | 549 | autolysis assisted production of fish protein hydrolysate from underutilized fish | | 550 | Pellona ditchela. International Journal of Scientific & Engineering Research, 4,(12), | | 551 | 1863-1869. | | 552 | Ravallec-Ple, R., Gilmartin, L., Van Wormhoudt, A., & Le Gak, Y. (2001, July). Influence of | | 553 | the experimental conditions on the hydrolysis process in fish hydrolysates. Conference | | 554 | at 9th European Congress on Biotechnology (ECB9), Brussels, Belgium. Engineering | | 555 | and Manufacturing for Biotechnology, 4, 51-58. | | 556 | Refstie, S., Olli, J. J., & Standal, H. (2004). Feed intake, growth and protein utilization by | | 557 | post-smolt Alantic salmon (Salmo salar) in response to graded levels of fish protein | | 558 | hydrolysate in the diet. Aquaculture, 239, 331–349. | | 559 | Sathivel, S., Bechtel, P. J., Babbitt, J., Smiley, S., Crapo, C., Reppond, K. D., & | | 560 | Prinyawiwatkul, W. (2003). Biochemical and functional properties of herring (Clupea | | 561 | harengus) by product hydrolysates. Journal of Food Science, 68(7), 2196-2200. | | 562 | Stone, H., & Sidel, J.L. (2004). Sensory Evaluation Practices, 3rd edition. Elsevier | | 563 | Academic Press, Amsterdam. | | 564 | Sylla, K. S. B., Bergé, J.P., Prost, C., Musabyemariya, B., & Seydi, Mg (2009). Sensory and | | 565 | aromatic characteristic of tongue sole by products hydrolysates (Cynoglossus | | 566 | senegalensis). Microbiologie et Hygiène Alimentaire, 21(60), 35-43. | | 567 | Varlet, V., Prost, C., & Sérot, T. (2007) Volatile aldehydes in smoked fish: Analysis methods | | 568 | occurrence and mechanisms of formation. Food Chemistry, 105, 1536-1556. | | 569 | Varlet, V., & Fernandez, X. (2010). Review. Sulfur-containing volatile compounds in seafood: | |-----|--| | 570 | Occurrence, odorant properties and mechanisms of formation. Food Science and | | 571 | Technology International, 16(6), 463–503. | | 572 | Venkatesan, J., Anil, S., Kim, S. K., & Shim, M. S. (2017). Marine Fish Proteins and | | 573 | Peptides for Cosmeceuticals: A Review. Marine Drugs, 15(5). | | 574 | Vigneau, E., Courcoux, P., Symoneaux, R. (2018) Random forests: A machine learning | | 575 | methodology to highlight the volatile organic compounds involved in olfactory | | 576 | perception. Food Quality and Preference, 68, 135-145. | | 577 | Xu, Y., Li, L., Mac Regenstein, J., Gao, P., Zang, J., Xia, W. & Jiang, Q. (2018) The | | 578 | contribution of autochthonous microflora on free fatty acids release and flavor | | 579 | development in low-salt fermented fish. Food Chemistry, 256, 259-267. | | 580 | Zhao, Q. L., Shen, Q., Guo, R., Wu, J. J., & Dai, Z. Y. (2016). Characterization of Flavor | | 581 | Properties from Fish (Collichthys niveatus) Through Enzymatic Hydrolysis and the | | 582 | Maillard Reaction. Journal of Aquatic Food Product Technology, 25(4), 482-495. | | 583 | | # Figure Caption - Fig 1. (a) Representation of salmon hydrolysates on the first two dimensions of Principal Component Analysis (PCA) from profiling data. - (b) Projection of sensory descriptors in the first plane of PCA Fig.2 Variable importance of
the 44 volatile compounds in sensory descriptors of odor. Confidence intervals (95%) of the importance of compounds were obtained with 50 random forests of 1000 trees. Fig.3 Regression tree for prediction of all sensory descriptors from volatile compounds Legend: Number (n) of samples for each group defined by a specific sensory profile with sample reference number Fig 1. (a) (b) Fig.2 Fig.3 Table 1. Factor levels for the experimental design Independent factors | Run | E/S | X | HT | CT | |----------------|------|---------|-------|----| | 1 | 0.4 | 2 | 90 | 90 | | 2 | 0.25 | 10 | 50 | 60 | | 3 | 0.25 | 6 | 90 | 60 | | 4 | 0.1 | 10 | 10 | 90 | | 5 | 0.25 | 6 | 50 | 60 | | 6 | 0.25 | 6 | 50 | 90 | | 7 | 0.25 | 6 | 10 | 60 | | 8 | 0.1 | 2 | 90 | 30 | | 9 | 0.4 | 6 | 50 | 60 | | 10 | 0.25 | 6 | 50 | 60 | | 11 | 0.1 | 6 | 50 | 60 | | 12 | 0.25 | 2 | 50 | 60 | | 13 | 0.25 | 6 | 50 | 30 | | 14 | 0.4 | 10 | 10 | 30 | | 15 | 0.1 | 2 | 10 | 30 | | 16 | 0.4 | 10 | 90 | 30 | | 17 | 0.25 | 6 | 50 | 60 | | 18 | 0.1 | 10 | 90 | 90 | | 19 | 0.4 | 2 | 10 | 90 | | 20 | 0.4 | 0 | 90 | 90 | | (extra sample) | | -/O . V | LIT O | _ | Independent factors E/S, X, HT, CT represent the Enzyme/Substrate ratio (g.100g⁻¹), Xylose concentration (g.kg⁻¹), Hydrolysis Time at 40°C (min) and Cooking Time at 95°C (min) respectively Table 2: Volatile compounds identified in the hydrolysates. | Volatile compound | CAS number | RIª | Identification ^b | Odour
threshold ^c | Compound
origin ^d | Odour description ^e | |----------------------|------------|------|------------------------------------|---------------------------------|---------------------------------|---| | Alkanes | | | | | | | | Pentane | 109-66-0 | 500 | MS, RI, Std | | | | | Hexane | 110-54-3 | 600 | MS, RI, Std | | | | | Dodecane | 112-40-3 | 1198 | MS, RI, Std | | | | | Benzene compounds | | | | | | | | Methylbenzene | 108-88-3 | 977 | MS, RI, Std | | MR ⁵ | sweet | | Ethylbenzene | 100-41-4 | 1138 | MS, RI, Std | | | | | Styrene | 100-42-5 | 1268 | MS, RI, Std | 730 | | sweet balsam floral plastic | | Benzaldehyde | 100-52-7 | 1541 | MS, RI, Std | 350-3 500 | MR ⁵ | strong sharp sweet bitter almond cherry | | Aldehydes | | | | | | | | Acetaldehyde | 75-07-0 | 702 | MS, RI, Std | 15-120 | MR | pungent ethereal aldehydic fruity | | Propanal | 123-38-6 | 794 | MS, RI, Std | 9.5-37 | LO | earthy alcohol wine whiskey cocoa nutty | | 2-methylpropanal | 78-84-2 | 794 | MS, RI, Std | 0.1-2.3 | MR ¹ | fresh aldehydic floral green | | butanal | 123-72-8 | 869 | MS, RI, Std | 9-37.3 | | pungent cocoa musty green malty bready | | 2-methylbutanal | 96-17-3 | 909 | MS, RI, Std | 1 | MR ¹ | musty cocoa coffee nutty | | 3-methylbutanal | 590-86-3 | 913 | MS, RI, Std | 0.2-2 | MR ¹ | ethereal aldehydic chocolate peach fatty | | Hexanal | 66-25-1 | 1095 | MS, RI, Std | 4.5-5 | LO ¹ | fresh green fatty aldehydic grass leafy fruity | | | | | | | | sweaty | | Heptanal | 111-71-7 | 1196 | MS, RI, Std | 3 | LO^2 | fresh aldehydic fatty green herbal wine-lee ozone | | Alcohols | | | | | | | | ethanol | 64-17-5 | 935 | MS, RI, Std | 100 000 | F^3 , LO^3 | strong alcoholic ethereal medical | | 1-propanol | 71-23-8 | 1060 | MS, RI, Std | 9 000 | | alcoholic fermented fusel musty | | 2-methyl-1-propanol | 78-83-1 | 1121 | MS, RI, Std | 7 000 | | ethereal winey | | 1-penten-3-ol | 616-25-1 | 1180 | MS, RI, Std | 400 | LO^4 | pungent horseradish green vegetable tropical | | | | | | | | fruity | | (E)-2-penten-1-ol | 1576-96-1 | 1326 | MS, RI, Std | | | mushroom | | (Z)-2-penten-1-ol | 1576-95-0 | 1334 | MS, RI, Std | | | green plastic ethereal fruity | | Ketones | | | | | | | | 2-propanone | 67-64-1 | 814 | MS, RI, Std | 500 000 | | solvent ethereal apple pear | | 2-butanone | 78-93-3 | 900 | MS, RI, Std | 50 000 | | acetone-like ethereal fruity camphor | | 2,3-butanedione | 431-03-8 | 977 | MS, RI, Std | 2.3-6.5 | | strong butter sweet creamy pungent caramel | | 2,3-pentanedione | 600-14-6 | 1076 | MS, RI, Std | | | pungent sweet butter creamy caramel nutty cheese | | 3-hydroxy-2-butanone | 513-86-0 | 1297 | MS, RI | 800 | | sweet buttery creamy dairy milky fatty | | Volatile compound | CAS number | RIª | Identification ^b | Odour
threshold ^c | Compound
origin ^d | Odour description ^e | |-----------------------|------------|------|------------------------------------|---------------------------------|---------------------------------|--| | 1-hydroxy-2-propanone | 116-09-6 | 1312 | MS, RI, Std | | | pungent sweet caramellic ethereal | | 3-hydroxy-2-pentanone | 3142-66-3 | 1355 | MS, RI | | | herbal truffle | | Acids and esters | | | | | | | | Ethyl acetate | 141-78-6 | 883 | MS, RI, Std | 5-5 000 | | ethereal fruity sweet weedy green | | Acetic acid | 64-19-7 | 1452 | MS, RI, Std | | F^1 | sharp pungent sour vinegar | | 3-methylbutanoic acid | 503-74-2 | 1682 | MS, RI, Std | 120-700 | F^1 | sour stinky feet sweaty cheese tropical | | Furans | | | | | | | | 2-methylfuran | 534-22-5 | 863 | MS, RI, Std | | MR | ethereal acetone chocolate | | Furfural | 98-01-1 | 1471 | MS, RI, Std | 3 000-23 000 | MR^3 | sweet woody almond fragrant baked bread | | Pyrazines | | | | | | | | 2-methylpyrazine | 109-08-0 | 1281 | MS, RI, Std | 60-105 000 | MR | nutty cocoa roasted chocolate peanut green | | 2,5-dimethylpyrazine | 123-32-0 | 1339 | MS, RI, Std | 800-1 800 | MR^4 | cocoa roasted nuts roast beef woody grass
medical | | Sulfur compounds | | | | | | | | Methanethiol | 74-93-1 | 676 | MS, RI | 0.02 | | decomposing cabbage garlic | | Dimethyl disulfide | 624-92-0 | 1085 | MS, RI, Std | 0.16-12 | M^3 , F^3 | sulfurous vegetable cabbage onion | | Methional | 3268-49-3 | 1465 | MS, RI, Std | 0.2 | $MR^{2,3}$ | musty potato tomato earthy vegetable creamy | | Others | | | | | | , , , , , , , , , , , , , , , , , , , | | Unknown LRI 1147 | | | | | | | | 3-methyl-1-butanol + | 123-51-3 | 1228 | MS, RI, Std | 250-300 + | F^3 | fusel oil alcoholic whiskey fruity banana | | pyrazine | | | MS, RI | | | pungent sweet corn like roasted hazelnut barly | | Unknown LRI 1251 | | | | | | | | Unknown LRI 1491 | | | | | | | | g-butyrolactone | 96-48-0 | 1655 | MS, RI, Std | | | creamy oily fatty caramel | | 2-acetylthizaole + | 24295-03-2 | 1670 | MS, RI, Std | | | nutty popcorn roasted peanuts hazelnut | | 2-furanmethanol | 98-00-0 | | MS, RI, Std | | | alcoholic chemical musty sweet caramel bread coffee | ^aRI: Retention Index (RI) calculated on a DB-WAX column ^bMethods of identification of the volatile compounds: RI: Comparison of the retention index calculated with the literature, MS: comparison of the mass spectra of the compound with a database, Std: comparison of the retention index of the volatile compound with that of the corresponding standard ^cOdour threshold expressed in parts per billion (http://www.leffingwell.com/odorthre.htm) dCompound origin :LO: lipid oxidation, MR: Maillard reaction, F: fermentation, M: marine, O: other Peinado et al. (2016) LWT 66:444-452, ²Varlet et al. (2007) Food Chemistry 1536-1556, ³Giri et al., Food Res Int 43:1027-1040, ⁴Peinado et al. (2016b) Food Chem 212:612-619, ⁵Chung et al. (2002) d www.thegoodscentscompany.com Table 3: Relative quantity of the volatile compounds of the fish hydrolysates expressed in relative peak are per gram of product. Means are obtained from 3 measures. Standard deviation (SD) is specified for all the samples. | Volatile compound | Mean relative peak area / g of product $(x10^3) \pm SD$ | | | | | | | | | | | |--------------------------------|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | Alkanes | | | | | | | | | | | | | Pentane | 154 ± 24 | 111 ± 10 | 122 ± 19 | 68 ± 10 | 96 ± 6 | 68 ± 12 | 43 ± 1 | 57 ± 5 | 177 ± 49 | 84 ± 21 | | | Hexane | 45 ± 5 | 28 ± 6 | 24 ± 2 | 19 ± 1 | 23 ± 6 | 25 ± 6 | 20 ± 4 | 15 ± 2 | 30 ± 8 | 17 ± 3 | | | Dodecane | 64 ± 2 | 62 ± 21 | 50 ± 9 | 79 ± 15 | 71 ± 3 | 53 ± 9 | 89 ± 6 | 85 ± 12 | 52 ± 10 | 101 ± 5 | | | Benzene compounds | | | | | | | | | | | | | Methylbenzene | 85 ± 19 | - | 89 ± 8 | 16 ± 2 | 18 ± 1 | 21 ± 6 | 52 ± 8 | 71 ± 3 | 32 ± 3 | 23 ± 2 | | | Ethylbenzene | 122 ± 1 | 17 ± 9 | 71 ± 5 | 45 ± 6 | 40 ± 4 | 39 ± 8 | 82 ± 6 | 97 ± 4 | 73 ± 3 | 68 ± 6 | | | Styrene | 252 ± 38 | 198 ± 41 | 180 ± 5 | 199 ± 13 | 223 ± 11 | 164 ± 16 | 172 ± 2 | 205 ± 20 | 240 ± 50 | 216 ± 12 | | | Benzaldehyde | 57 ± 5 | 67 ± 4 | 78 ± 10 | 60 ± 8 | 57 ± 3 | 71 ± 5 | 58 ± 10 | 54 ± 3 | 59 ± 3 | 60 ± 6 | | | Aldehydes | | | | | | | | | | | | | Acetaldehyde | 299 ± 9 | 346 ± 36 | 307 ± 9 | 359 ± 15 | 336 ± 3 | 305 ± 19 | 442 ± 15 | 244 ± 2 | 335 ± 13 | 374 ± 23 | | | Propanal | 1107 ± 169 | 440 ± 22 | 563 ± 23 | 425 ± 19 | 602 ± 15 | 370 ± 23 | 911 ± 52 | 1095 ± 31 | 633 ± 23 | 864 ± 37 | | | Butanal | 342 ± 39 | 172 ± 38 | 188 ± 25 | 200 ± 47 | 180 ± 25 | 169 ± 15 | 260 ± 20 | 238 ± 3 | 241 ± 9 | 225 ± 23 | | | 2-methylbutanal | 1040 ± 30 | 1249 ± 172 | 1487 ± 183 | 886 ± 102 | 1013 ± 75 | 1471 ± 64 | 648 ± 73 | 802 ± 13 | 999 ± 72 | 1011 ± 72 | | | 3-methylbutanal | 6935 ± 410 | 6551 ± 109 | 7877 ± 329 | 2288 ± 158 | 5549 ± 106 | 6220 ± 161 | 2929 ± 195 | 5355 ± 23 | 5938 ± 214 | 5461 ± 86 | | | Hexanal | 397 ± 32 | 152 ± 5 |
214 ± 23 | 104 ± 14 | 223 ± 20 | 149 ± 6 | 229 ± 32 | 375 ± 21 | 251 ± 19 | 252 ± 1 | | | Heptanal | 55 ± 5 | 23 ± 4 | 27 ± 2 | 24 ± 4 | 29 ± 4 | 23 ± 3 | 39 ± 5 | 36 ± 5 | 33 ± 3 | 35 ± 7 | | | Alcohols | | | | | | | | | | | | | Ethanol | 6512 ± 393 | 6511 ± 387 | 6183 ± 268 | 6311 ± 198 | 7935 ± 78 | 7553 ± 462 | 7178 ± 750 | 7338 ± 484 | 7455 ± 463 | 6033 ± 349 | | | 1-propanol | 259 ± 38 | 152 ± 7 | 181 ± 17 | 185 ± 21 | 189 ± 22 | 164 ± 43 | 186 ± 24 | 187 ± 21 | 172 ± 21 | 194 ± 15 | | | 2-methyl-1-propanol | 47 ± 4 | 35 ± 4 | 32 ± 6 | 39 ± 1 | 37 ± 4 | 34 ± 6 | 54 ± 2 | 36 ± 2 | 48 ± 9 | 37 ± 6 | | | 1-penten-3-ol | 3636 ± 316 | 2021 ± 46 | 1873 ± 53 | 2580 ± 53 | 2269 ± 108 | 1424 ± 46 | 3387 ± 115 | 2681 ± 125 | 2385 ± 87 | 3059 ± 75 | | | (E)-2-penten-1-ol | 151 ± 12 | 78 ± 6 | 54 ± 2 | 105 ± 3 | 82 ± 4 | 45 ± 2 | 149 ± 15 | 99 ± 6 | 96 ± 11 | 123 ± 9 | | | (Z)-2-penten-1-ol | 193 ± 28 | 101 ± 4 | 121 ± 10 | 142 ± 11 | 122 ± 12 | 86 ± 6 | 146 ± 6 | 232 ± 16 | 126 ± 15 | 169 ± 10 | | | Ketones | | | | | | | | | | | | | 2-propanone + 2-methylpropanal | 6041 ± 799 | 7095 ± 398 | 5341 ± 334 | 8189 ± 559 | 5474 ± 117 | 5700 ± 402 | 7413 ± 608 | 2619 ± 304 | 6147 ± 353 | 6107 ± 322 | | | 2-butanone | 691 ± 49 | 577 ± 30 | 703 ± 29 | 638 ± 29 | 602 ± 66 | 476 ± 11 | 638 ± 21 | 408 ± 34 | 604 ± 17 | 609 ± 28 | | | 2,3-butanedione | 1103 ± 26 | 733 ± 63 | 852 ± 80 | 654 ± 66 | 767 ± 18 | 860 ± 60 | 836 ± 113 | 801 ± 58 | 879 ± 167 | 721 ± 9 | | | 2,3-pentanedione | 95 ± 7 | 76 ± 18 | 95 ± 16 | 57 ± 7 | 97 ± 17 | 76 ± 11 | 64 ± 4 | 212 ± 35 | 89 ± 12 | 115 ± 8 | | | 3-hydroxy-2-butanone | 1674 ± 198 | 1638 ± 118 | 1169 ± 63 | 2151 ± 54 | 1824 ± 57 | 2086 ± 51 | 1280 ± 28 | 1584 ± 3 | 1500 ± 68 | 1757 ± 60 | | | 1-hydroxy-2-propanone | 348 ± 35 | 630 ± 42 | 553 ± 47 | 1305 ± 45 | 494 ± 25 | 882 ± 29 | 470 ± 11 | 111 ± 9 | 424 ± 31 | 494 ± 32 | | | 3-hydroxy-2-pentanone | 56 ± 2 | 44 ± 3 | 49 ± 2 | 61 ± 3 | 50 ± 1 | 43 ± 3 | 57 ± 3 | 59 ± 2 | 37 ± 3 | 54 ± 5 | | | Volatile compound | Mean relative peak area / g of product $(x10^3) \pm SD$ | | | | | | | | | | | | |---------------------------------------|---|--------------|---------------|---------------|--------------|---------------|--------------|---------------|---------------|--------------|--|--| | - | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | | Acids and esters | | | | | | | | | | | | | | Ethyl acetate | 122 ± 26 | 91 ± 21 | 80 ± 2 | 102 ± 17 | 108 ± 10 | 96 ± 15 | 120 ± 7 | 102 ± 1 | 101 ± 2 | 99 ± 5 | | | | Acetic acid | 599 ± 160 | 422 ± 19 | 494 ± 129 | 758 ± 194 | 601 ± 75 | 778 ± 304 | 574 ± 71 | 463 ± 123 | 464 ± 112 | 693 ± 83 | | | | 3-methylbutanoic acid | 46 ± 7 | 41 ±11 | 43 ± 1 | 20 ± 3 | 35 ± 6 | 44 ± 3 | 33 ± 2 | 40 ± 4 | 38 ± 2 | 41 ± 3 | | | | Furans | | | | | | | | | | | | | | 2-methylfuran | 46 ± 27 | 71 ± 10 | 72 ± 7 | 162 ± 19 | 59 ± 12 | 94 ± 6 | 64 ± 27 | - | 68 ± 8 | 52 ± 9 | | | | Furfural | 103 ± 6 | 111 ± 12 | 94 ± 1 | 107 ± 9 | 87 ± 1 | 83 ± 3 | 83 ± 3 | 39 ± 3 | 91 ± 4 | 91 ± 4 | | | | Pyrazines | | | | | | | | | | | | | | 2-methylpyrazine | 26 ± 5 | 54 ± 13 | 34 ± 4 | 69 ± 2 | 32 ± 7 | 60 ± 11 | 25 ± 3 | 32 ± 6 | 32 ± 5 | 29 ± 6 | | | | 2,5-dimethylpyrazine | 75 ± 24 | 85 ± 9 | 133 ± 7 | 85 ± 8 | 91 ± 20 | 152 ± 34 | 78 ± 6 | - | 77 ± 4 | 93 ± 10 | | | | Sulfur compounds | | | | | | | | | | | | | | Methanethiol | 41 ± 6 | 43 ± 8 | 39 ± 4 | 40 ± 3 | 43 ± 2 | 46 ± 1 | 44 ± 1 | 33 ± 2 | 47 ± 4 | 53 ± 8 | | | | Dimethyl disulfide | 40 ± 6 | 118 ± 18 | 88 ± 9 | 124 ± 2 | 77 ± 10 | 88 ± 3 | 72 ± 12 | 33 ± 5 | 110 ± 36 | 71 ± 3 | | | | Methional | 46 ± 1 | 55 ± 3 | 54 ± 6 | 48 ± 4 | 48 ± 2 | 45 ± 1 | 42 ± 1 | 41 ± 3 | 43 ± 1 | 48 ± 3 | | | | Others | | | | | | | | | | | | | | Unknown LRI 1147 | 32 ± 2 | 27 ± 3 | 23 ± 3 | 16 ± 5 | 17 ± 1 | 14 ± 3 | 18 ± 2 | 16 ± 2 | 15 ± 3 | 21 ± 2 | | | | 3-methyl-1-butanol + | 96 ± 4 | 122 ± 24 | 86 ± 3 | 128 ± 14 | 135 ± 11 | 142 ± 16 | 94 ± 4 | 99 ± 5 | 108 ± 6 | 96 ± 2 | | | | pyrazine | | | | | | | | | | | | | | Unknown LRI 1251 | 71 ± 2 | 36 ± 1 | 36 ± 5 | 44 ± 7 | 55 ± 12 | 58 ± 11 | 30 ± 4 | 27 ± 5 | 47 ± 5 | 67 ± 12 | | | | Unknown LRI 1491 | 93 ± 4 | 67 ± 9 | 67 ± 14 | 70 ± 9 | 75 ± 9 | 87 ± 12 | 79 ± 12 | 94 ± 7 | 72 ± 11 | 80 ± 8 | | | | g-butyrolactone | 28 ± 3 | 27 ± 4 | 22 ± 4 | 28 ± 5 | 22 ± 2 | 27 ± 5 | 25 ± 5 | 21 ± 4 | 22 ± 3 | 23 ± 2 | | | | 2-acetylthizaole +
2-furanmethanol | 39 ± 4 | 37 ±1 | 31 ± 4 | 42 ± 1 | 26 ± 5 | 49 ± 3 | 19 ± 1 | 12 ± 1 | 27 ± 4 | 26 ± 2 | | | | Volatile compound | Mean relative peak area / g of product $(x10^3) \pm SD$ | | | | | | | | | | |--------------------------------|---|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------| | - | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | Alkanes | | | | | | | | | | | | Pentane | 66 ± 11 | 73 ± 5 | 166 ± 12 | 141 ± 28 | 373 ± 53 | 107 ± 8 | 194 ± 38 | 89 ± 24 | 124 ± 17 | 187 ± 30 | | Hexane | 17 ± 1 | 28 ± 7 | 34 ± 4 | 35 ± 8 | 99 ± 16 | 42 ± 7 | 41 ± 9 | 17 ± 4 | 16 ± 2 | 27 ± 6 | | Dodecane | 87 ± 6 | 100 ± 23 | 42 ± 8 | 97 ± 24 | 50 ± 5 | 123 ± 15 | 86 ± 10 | 92 ± 15 | 93 ± 8 | 118 ± 18 | | Benzene compounds | | | | | | | | | | | | Methylbenzene | 22 ± 3 | 41 ± 12 | 27 ± 4 | 45 ± 7 | 35 ± 2 | 45 ± 4 | 17 ± 1 | 25 ± 2 | 28 ± 3 | 31 ± 6 | | Ethylbenzene | 64 ± 7 | 91 ± 4 | 73 ± 6 | 153 ± 20 | 42 ± 5 | 80 ± 6 | 36 ± 2 | 98 ± 8 | 88 ± 4 | 80 ± 6 | | Styrene | 215 ± 1 | 263 ± 37 | 115 ± 10 | 197 ± 45 | 210 ± 3 | 284 ± 32 | 190 ± 11 | 183 ± 51 | 259 ± 27 | 295 ± 17 | | Benzaldehyde | 58 ± 7 | 56 ± 5 | 57 ± 10 | 60 ± 7 | 50 ± 3 | 63 ± 2 | 55 ± 5 | 73 ± 7 | 55 ± 8 | 56 ± 3 | | Aldehydes | | | | | | | | | | | | Acetaldehyde | 414 ± 13 | 305 ± 7 | 296 ± 37 | 458 ± 22 | 409 ± 15 | 377 ± 3 | 374 ± 14 | 399 ± 8 | 406 ± 10 | 334 ± 22 | | Propanal | 1106 ± 45 | 1070 ± 76 | 955 ± 84 | 1461 ± 44 | 1250 ± 24 | 941 ± 26 | 1022 ± 85 | 510 ± 26 | 1126 ± 84 | 1508 ± 215 | | Butanal | 307 ± 11 | 269 ± 21 | 230 ± 30 | 309 ± 6 | 232 ± 25 | 233 ± 5 | 272 ± 21 | 238 ± 18 | 342 ± 11 | 375 ± 7 | | 2-methylbutanal | 992 ± 91 | 653 ± 46 | 554 ± 20 | 555 ± 55 | 381 ± 27 | 998 ± 46 | 970 ± 20 | 2459 ± 69 | 523 ± 35 | 647 ± 11 | | 3-methylbutanal | 4720 ± 143 | 4662 ± 135 | 4054 ± 626 | 3174 ± 87 | 2220 ± 245 | 5922 ± 492 | 5453 ± 221 | 7391 ± 206 | 2960 ± 97 | 5599 ± 123 | | Hexanal | 297 ± 37 | 377 ± 36 | 331 ± 22 | 316 ± 43 | 351 ± 26 | 329 ± 12 | 315 ± 18 | 130 ± 9 | 325 ± 32 | 738 ± 57 | | Heptanal | 38 ± 6 | 41 ± 4 | 43 ± 6 | 38 ± 6 | 50 ± 5 | 47 ± 2 | 40 ± 6 | 32 ± 7 | 57 ± 3 | 81 ± 8 | | Alcohols | | | | | | | | | | | | Ethanol | 7824 ± 586 | 7497 ± 386 | 6772 ± 608 | 7139 ± 367 | 6595 ± 405 | 6524 ± 425 | 6085 ± 755 | 6464 ± 308 | 6817 ± 538 | 6295 ± 415 | | 1-propanol | 234 ± 41 | 199 ± 16 | 210 ± 22 | 213 ± 29 | 149 ± 11 | 203 ± 22 | 240 ± 12 | 218 ± 24 | 211 ± 29 | 207 ± 59 | | 2-methyl-1-propanol | 45 ± 6 | 45 ± 8 | 28 ± 5 | 47 ± 2 | 53 ± 8 | 64 ± 4 | 48 ± 5 | 45 ± 2 | 40 ± 1 | 73 ± 8 | | 1-penten-3-ol | 3551 ± 386 | 2821 ± 197 | 2353 ± 41 | 3185 ± 92 | 2202 ± 81 | 2408 ± 56 | 3275 ± 171 | 3305 ± 122 | 4231 ± 21 | 4432 ± 141 | | (E)-2-penten-1-ol | 137 ± 14 | 111 ± 11 | 81 ± 4 | 129 ± 4 | 94 ± 4 | 85 ± 5 | 132 ± 8 | 120 ± 7 | 199 ± 2 | 188 ± 16 | | (Z)-2-penten-1-ol | 180 ± 8 | 154 ± 33 | 167 ± 7 | 176 ± 14 | 112 ± 10 | 143 ± 9 | 197 ± 10 | 206 ± 13 | 198 ± 5 | 319 ± 17 | | Ketones | | | | | | | | | | | | 2-propanone + 2-methylpropanal | 5866 ± 479 | 3832 ± 87 | 2896 ± 260 | 5027 ± 123 | 3021 ± 81 | 4473 ± 429 | 5817 ± 518 | 11064 ± 208 | 5998 ± 273 | 2638 ± 203 | | 2-butanone | 609 ± 44 | 458 ± 17 | 415 ± 27 | 542 ± 25 | 282 ± 38 | 560 ± 28 | 623 ± 62 | 838 ± 7 | 597 ± 5 | 468 ± 37 | | 2,3-butanedione | 786 ± 137 | 1027 ± 62 | 1051 ± 83 | 822 ± 14 | 903 ± 78 | 925 ± 125 | 710 ± 25 | 716 ± 79 | 828 ± 66 | 843 ± 16 | | 2,3-pentanedione | 113 ± 21 | 146 ± 22 | 170 ± 32 | $157 \pm
29$ | 123 ± 13 | 180 ± 25 | 111 ± 13 | 76 ± 14 | 68 ± 12 | 124 ± 24 | | 3-hydroxy-2-butanone | 1630 ± 81 | 2107 ± 64 | 2042 ± 49 | 1755 ± 62 | 1849 ± 37 | 2190 ± 74 | 2316 ± 139 | 1323 ± 63 | 1717 ± 19 | 1717 ± 89 | | 1-hydroxy-2-propanone | 502 ± 32 | 211 ± 8 | 212 ± 4 | 273 ± 15 | 135 ± 5 | 314 ± 12 | 552 ± 35 | 1123 ± 77 | 295 ± 9 | 113 ± 6 | | 3-hydroxy-2-pentanone | 85 ± 12 | 55 ± 5 | 76 ± 4 | 64 ± 4 | 56 ± 1 | 55 ± 2 | 67 ± 3 | 60 ± 5 | 55 ± 2 | 61 ± 2 | | Volatile compound | Mean relative peak area / g of product $(x10^3) \pm SD$ | | | | | | | | | | | | |-------------------------------|---|--------------|--------------|--------------|---------------|--------------|---------------|---------------|--------------|---------------|--|--| | _ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | Acids and esters | | | | | | | | | | | | | | Ethyl acetate | 131 ± 4 | 103 ± 3 | 90 ± 13 | 126 ± 6 | 86 ± 29 | 118 ± 21 | 105 ± 15 | 110 ± 8 | 125 ± 7 | 76 ± 15 | | | | Acetic acid | 587 ± 330 | 371 ± 86 | 404 ± 45 | 449 ± 87 | 671 ± 128 | 477 ± 84 | 636 ± 134 | 907 ± 116 | 455 ± 23 | 787 ± 200 | | | | 3-methylbutanoic acid | 38 ± 7 | 30 ± 4 | 28 ± 3 | 29 ± 2 | 23 ± 6 | 39 ± 4 | 33 ± 2 | 45 ± 1 | 23 ± 1 | 32 ± 1 | | | | Furans | | | | | | | | | | | | | | 2-methylfuran | 67 ± 7 | - | 50 ± 9 | 54 ± 7 | - | 66 ± 8 | 71 ± 12 | 192 ± 32 | 61 ± 10 | - | | | | Furfural | 82 ± 8 | 62 ± 2 | 51 ± 5 | 83 ± 9 | 39 ± 2 | 64 ± 3 | 96 ± 10 | 150 ± 5 | 82 ± 3 | 48 ± 5 | | | | Pyrazines | | | | | | | | | | | | | | 2-methylpyrazine | 43 ± 7 | 33 ± 13 | 74 ± 4 | 26 ± 3 | 29 ± 7 | 51 ± 3 | 31 ± 2 | 61 ± 9 | 47 ± 8 | 23 ± 3 | | | | 2,5-dimethylpyrazine | 85 ± 13 | 45 ± 12 | 58 ± 9 | 62 ± 10 | 24 ± 3 | 55 ± 8 | 110 ± 5 | 159 ± 17 | 71 ± 12 | 19 ± 2 | | | | Sulfur compounds | | | | | | | | | | | | | | Methanethiol | 42 ± 5 | 32 ± 1 | 40 ± 10 | 45 ± 9 | 33 ± 1 | 27 ± 5 | 44 ± 2 | 40 ± 2 | 42 ± 3 | 19 ± 1 | | | | Dimethyl disulfide | 66 ± 10 | 31 ± 6 | 40 ± 7 | 67 ± 1 | 33 ± 5 | 71 ± 12 | 62 ± 8 | 140 ± 22 | 48 ± 5 | 19 ± 5 | | | | Methional | 49 ± 3 | 37 ± 2 | 41 ± 2 | 38 ± 4 | 32 ± 2 | 51 ± 1 | 49 ± 2 | 68 ± 4 | 36 ± 1 | 43 ± 5 | | | | Others | | | | | | | | | | | | | | Unknown LRI 1147 | 41 ± 4 | 15 ± 3 | 14 ± 3 | 30 ± 9 | 14 ± 2 | 16 ± 1 | 21 ± 3 | 27 ± 4 | 21 ± 3 | 30 ± 2 | | | | 3-methyl-1-butanol + pyrazine | 108 ± 10 | 115 ± 10 | 93 ± 7 | 101 ± 10 | 104 ± 1 | 99 ± 5 | 106 ± 5 | 89 ± 4 | 90 ± 3 | 100 ± 4 | | | | Unknown LRI 1251 | 45 ± 5 | 67 ± 5 | 151 ± 48 | 48 ± 8 | 42 ± 5 | 143 ± 12 | 77 ± 17 | 64 ± 6 | 63 ± 8 | 97 ± 9 | | | | Unknown LRI 1491 | 81 ± 14 | 89 ± 8 | 90 ± 23 | 78 ± 12 | 84 ± 15 | 75 ± 6 | 94 ± 8 | 83 ± 10 | 82 ± 7 | 96 ± 7 | | | | g-butyrolactone | 26 ± 3 | 26 ± 3 | 22 ± 1 | 22 ± 3 | 21 ± 2 | 25 ± 2 | 24 ± 1 | 30 ± 1 | 23 ± 3 | 27 ± 6 | | | | 2-acetylthizaole + | 27 ± 4 | 18 ± 1 | 14 ± 3 | 13 ± 1 | 8 ± 2 | 23 ± 4 | 26 ± 2 | 68 ± 3 | 27 ± 4 | 42 ± 4 | | | | 2-furanmethanol | | | | | | | | | | | | |