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We revisit results obtained in [F. Harary, U. Peled, Hamiltonian threshold graphs, Discrete Appl

Introduction

A threshold graph can be defined in many ways, as can be seen in [START_REF] Mahadev | Threshold Graphs and Related Topics[END_REF]. Here we follow the definition via binary generating sequences. Accordingly, a threshold graph G(b) is obtained from its binary generating sequence of the form b = (b 1 b 2 • • • b n ) in the following way:

(i) for i = 1, G 1 = G(b 1 ) = K 1 , i.e., a single vertex; (ii) for i ≥ 2, with G i-1 = G(b 1 b 2 • • • b i-1 ) already constructed, G i = G(b 1 b 2 • • • b i-1 b i )
is formed by adding an isolated vertex to G i-1 if b i = 0 (that is, a vertex nonadjacent to any vertex in G i-1 ) or by adding a dominating vertex to G i-1 if b i = 1 (that is, a vertex adjacent to all the vertices in G i-1 ).

Clearly, G(b) = G n . A schematic representation of a threshold graph is illustrated in Fig 1. 1(a); its vertices are partitioned into cells U i , V i (1 ≤ i ≤ h).

The vertices in U = h i=1 U i induce a co-clique, while the vertices in V = h i=1 V i induce a clique.

A bipartite counterpart to the threshold graph is a chain graph which is generated by the same binary sequence in the following way:

(i) for i = 1, G 1 = G(b 1 ) = K 1 , i.e., a single vertex belonging to one colour class, say white vertex; (ii) for i ≥ 2, with

G i-1 = G(b 1 b 2 • • • b i-1 ), G i = G(b 1 b 2 • • • b i-1 b i )

is obtained by adding

to G i-1 an isolated white vertex if b i = 0 or a black vertex which dominates all previously added white vertices if b i = 1.

A schematic representation is illustrated in Fig. 1.1(b).

Here are some conventions on binary generating sequences. First, observing that, due to the defining rule (i), (either a threshold or a chain) graph is independent of b 1 , we use the convention that the binary sequences always start with zero. Moreover, if b n = 1, then the corresponding graph is connected; otherwise, it is connected up to isolated vertices. Accordingly, since we restricted ourselves to connected graphs, a binary sequence can be

V h-2 V h-1 V h V 1 t h-2 t h-1 t h t 1 s h-2 s h-1 s h s 1 (a) Threshold V h-2 V h-1 V h V 1 t h-2 t h-1 t h t 1 s h-2 s h-1 s h s 1 (b) Chain U h-2 U h-1 U 1 U h U h-2 U h-1 U 1 U h Figure 1.1.
A schematic representation of a threshold and a chain graph. written as

(1.1) b = (0 t 1 1 s 1 )(0 t 2 1 s 2 ) • • • (0 t h 1 s h ), where t i , s i > 0, for 1 ≤ i ≤ h.
(Naturally, t i 's and s i 's are lengths of maximum runs of consecutive zeros and ones, respectively.) In a so-called split graph the vertex set can be divided into two disjunct sets, say U and V , in such a way that U induces a co-clique and V induces a clique. Evidently, every threshold graph is a split graph and the neighbourhoods of the vertices are totally ordered by inclusion. By deleting all the edges that belong to the clique V = h i=1 V i (see Figure 1.1) of a threshold graph, we obtain the chain graph that is generated by the same binary sequence. Note, that if t 1 = 1, V is not necessarily the maximal clique in a threshold graph.

We say that a graph is Hamiltonian if it contains a cycle passing through all of its vertices. Every such a cycle is called a Hamilton cycle.

In this paper we revisit the results obtained in [START_REF] Harary | Hamiltonian threshold graphs[END_REF] on Hamiltonicity of threshold graphs. We give necessary and sufficient conditions for a threshold graph to be Hamiltonian in terms of its generating binary sequence.

The paper is organized as follows. In Section 2 we recall the results from [START_REF] Harary | Hamiltonian threshold graphs[END_REF]. In Section 3 we interpret these results in terms of the entries of the generating binary sequence of a threshold graph and give a criterion for Hamiltonicity of a threshold graph that can be deduced directly from its binary sequence. This criterion is implemented in the algorithm presented in Section 4, where we also include an algorithm that determines whether a given chain graph is Hamiltonian. In Section 5 we identify the chain graph of a given order that contains minimum number of Hamilton cycles. [START_REF] Harary | Hamiltonian threshold graphs[END_REF] Let G be a threshold graph with vertex set I ∪ J, where I (with |I| = r) induces a co-clique and J (with |J| = s) induces a maximal clique. Let further B denote the chain graph obtained from G by deleting all edges in the subgraph induced by J. For B, let

Results obtained in

d 1 ≤ d 2 ≤ • • • ≤ d r and e 1 ≤ e 2 ≤ • • • ≤ e s denote
the degrees of the vertices x 1 , x 2 , . . . , x r ∈ I and y 1 , y 2 , . . . , y s ∈ J, respectively.

In order to determine whether a given threshold graph is Hamiltonian, the authors of [START_REF] Harary | Hamiltonian threshold graphs[END_REF] first showed that this problem can be reduced to the Hamiltonicity of the corresponding chain graph B with I and J of the same size, as shown in the sequel.

The first lemma gives sufficient conditions for a split graph to be non-Hamiltonian. In what follows we only consider threshold graphs with r ≥ 2, since for r = 0, G is Hamiltonian if and only if s ≥ 3, while for r = 1, G is Hamiltonian if and only if

d 1 ≥ 2.
Since any threshold graph is a split graph, by the previous lemma, Hamiltonian threshold graphs satisfy 2 ≤ r ≤ s and e s-r > 0. The next lemma shows that the problem under the consideration can be reduced to the Hamiltonicity of threshold graphs with r = s.

Lemma 2.2. ([1]

) If 2 ≤ r < s and e s-r > 0, then the threshold graph G is Hamiltonian if and only if the threshold subgraph G * obtained by deleting the vertices y 1 , y 2 , . . . , y s-r is Hamiltonian.

If r = s, then the edges in the clique cannot be used in any Hamiltonian cycle, and therefore can be dropped from G, yielding the chain graph B with r = s ≥ 2.

For q = 0, 1, . . . , r -1 denote by S q the set of inequalities

d j ≥ j + 1, j = 1, 2, . . . , q; e j ≥ j + 1, j = 1, 2, . . . , r -1 -q.
The next theorem gives two equivalent conditions for a chain graph B with r = s ≥ 2 to be Hamiltonian. (a) B is Hamiltonian; (b) S q holds for some q ∈ {0, 1, . . . , r -1}; (c) S q holds for each q ∈ {0, 1, . . . , r -1}.

To conclude, in order to determine whether an arbitrary threshold graph is Hamiltonian, all three results reported in Lemma 2.1, Lemma 2.2 and Theorem 2.3 should be employed. [START_REF] Harary | Hamiltonian threshold graphs[END_REF] In this section we restate the results from Section 2 in terms of the entries of the generating binary sequence of a given threshold graph G. Afterwards, we amalgamate them in order to obtain a unique result that gives necessary and sufficient conditions for a threshold graph G to be Hamiltonian.

New versions of results obtained in

Let G and B be a threshold graph and a chain graph generated by a binary sequence (1.1). If t 1 = 1, then the degrees of vertices in B, corresponding to the colour classes U and V , are:

d t h 1 , d t h-1 2 , . . . , d t 1 h , with d j = h i=h+1-j s i e s 1
1 , e s 2 2 , . . . , e s h h , with e j = j i=1 t i . Note that the vertex degrees are given in non-decreasing order, and according to Figure 1.1, they are the degrees of vertices in U h , U h-1 , . . . , U 1 and V 1 , V 2 , . . . , V h , respectively.

Otherwise, if t 1 = 1, then G is a split graph in which the subgraph induced by V ∪ U 1 gives a maximal clique. Then the degrees of vertices in B corresponding to the colour classes h i=2 U i and V ∪ U 1 are:

d t h 1 , d t h-1 2 , . . . , d t 2 h-1 , with d j = h i=h+1-j s i , 0 1+s 1 , e s 2
2 , . . . , e s h h , with e j = j i=2 t i .

Let T = h i=1 t i and S = h i=1 s i . From the previous observations, it follows that the size of the maximal clique s and the size of the corresponding co-clique r satisfy

r = T if t 1 = 1; T -1 if t 1 = 1 and s = S if t 1 = 1; S + 1 if t 1 = 1.
We first state, without proof, the following lemma that determines when e s-r = 0 may occur. 

-r ∈ {1, • • • , s 1 + 1}, then G is not Hamiltonian.
In the sequel we consider only threshold graphs, with s ≥ r if t 1 = 1 and with s ≥ r + s 1 + 2 if t 1 = 1. Let the integer be defined in the following way: if s -r < s 1 , then = 0; otherwise, is the least integer, such that i=1 s i ≤ s -r < +1 i=1 s i (obviously, such an integer exists). Observing that the threshold graph G * obtained by deleting the vertices y 1 , y 2 , . . . , y s-r from G is generated by the binary sequence (3.1) 0

+1 i=1 t i 1 +1 i=1 s i -(s-r) 0 t +2 1 s +2 • • • 0 t h 1 s h
we get a reformulation of Lemma 2.2. 

d * 1 = • • • = d * t h = s h , d * t h +1 = • • • = d * t h +t h-1 = s h-1 + s h , . . . d * t +3 +•••+t h +1 = • • • = d * t +2 +•••+t h = h i= +2 s i , d * t +2 +•••+t h +1 = • • • = d * t 1 +t 2 +•••+t h = h i=1 t i and e * 1 = • • • = e * s * +1 = +1 i=1 t i , e * s * +1 +1 = • • • = e * s * +1 +s +2 = +2 i=1 t i , . . . e * s * +1 +s +2 +•••+s h-1 +1 = • • • = e * s * +1 +s +2 +•••+s h = h i=1 t i .
Next, we consider the system of inequalities S q , q ∈ {0, 1, . . . , r -1}, for s = r. Proof. Recall from Section 2 that a threshold graph G, with s = r, is Hamiltonian if and only if the corresponding chain graph B is Hamiltonian. Next, by Theorem 2.3, the chain graph B is Hamiltonian if and only S q holds for q = r -1. On the other hand, for (3.2) and each repeated vertex degree, we have

     h i=j s i ≥ h i=j+1 t i + 2, . . . h i=j s i ≥ h i=j+1 t i + t j + 1 = h i=j t i + 1
. Now, it is easy to see that S r-1 holds if and only if (3.2) holds. Note that the inequality h i=1 s i ≥ h i=1 t i -1 + 1 is not included, since (by the assumption that s = r) it holds as equality.

Remark 3.1. The left hand sides of (3.2) are equal to the vertex degrees, while the right hand sides register the position of the last occurrence of the corresponding vertex degree augmented by 1.

Gathering all the previous results, we arrive at our main result, the criterion for the Hamiltonicity of a threshold graph based on its generating binary sequence. Theorem 3.5. Let G be a threshold graph generated by (1.1), such that r ≥ 2. If either s < r for t 1 = 1 or s < r + s 1 + 1 for t 1 = 1, then G is not Hamiltonian. Otherwise, G is Hamiltonian if and only if

+ 1 = h or h i=j s i ≥ h i=j t i + 1, for j = + 2, + 3, . . . , h, (3.3) 
where for s-r < s 1 , = 0, and otherwise is the least integer such that i=1 s i ≤ s-r < As a corollary we state a necessary and sufficient condition for a chain graph to be Hamiltonian. Note that Hamiltonian chain graph have the colour classes of the same size (see [START_REF] Moon | On Hamiltonian bipartite graphs[END_REF]) and can not have any pendant edges. Moreover, in any Hamiltonian chain graph generated by (1.1), the inequalities t 1 ≥ s 1 + 1 and s h ≥ t h + 1 must hold. Corollary 3.6. Let G be a chain graph generated by (1.1), such that r ≥ 2. If either s = r or r = s and t 1 < s 1 + 1 or s h < t h + 1, then G is not Hamiltonian. Otherwise, G is Hamiltonian if and only if

h i=j s i ≥ h i=j t i + 1 for j = 2, 3, . . . , h.

Algorithms

In this section we present algorithms for recognition of Hamiltonian threshold graph and Hamiltonian chain graph. The input is a binary generating sequence, and in return we obtain the decision whether the corresponding threshold (resp. chain) graph is Hamiltonian or not.

Algorithm 1 (checks if a given threshold graph is Hamiltonian).

(0) INPUT: Generating binary sequence (0

t 1 1 s 1 ) • • • (0 t h 1 s h ).
(1) Calculate r and s. r

= h i=1 t i if t 1 = 1 and r = h i=1 t i -1 for t 1 = 1; s = h i=1 s i for t 1 = 1 and s = h i=1 s i + 1 for t 1 = 1. (2) If r = 1 and d 1 = s h ≥ 2, then G is Hamiltonian. Otherwise, if r = 1 and d 1 = s h = 1, then G is not Hamiltonian. RETURN. ( 3 
) If either s < r, for t 1 = 1 or s < r + s 1 + 2 for t 1 = 1, then G is not Hamiltonian.

RETURN. (Otherwise, go to the next step.) (4) Determine the least integer , such that i=1 s i ≤ s -r < +1 i=1 s i . If s -r < s 1 , take = 0.

(5) If + 1 = h or all inequalities in (3.3) hold for j = + 2, + 3, . . . , h then G is Hamiltonian. Otherwise, is not.

Algorithm 2 (checks if a given chain graph is Hamiltonian). (0) INPUT: Generating binary sequence (0

t 1 1 s 1 ) • • • (0 t h 1 s h ).
(1) Calculate r and s. r = h i=1 t i and s = h i=1 s i . (2) If r = s or r = s and t 1 < s 1 + 1 or s h < t h + 1, then G is not Hamiltonian.

RETURN. (Otherwise, go to the next step.) (3) If the inequalities h i=j s i ≥ h i=j t i + 1 hold for all j = 2, 3, . . . , h then G is Hamiltonian. Otherwise, is not.

We give some examples illustrating the application of the previous algorithms.

Example 4.1. Let G be a complete split graph, i.e, a threshold graph generated by (0

t 1 1 s 1 ). If t 1 = 1, then G is Hamiltonian if and only if s 1 ≥ 2. Otherwise, for t 1 ≥ 2, if s 1 < t 1 , then G is not Hamiltonian. If s 1 ≥ t 1 ,
then G is Hamiltonian, since in this case we have = 0 and + 1 = h = 1. Therefore, we conclude that a complete split graph is Hamiltonian if and only if the size of the clique is greater than or equal to the size of the co-clique, except for the case where both are equal to 1.

Example 4.2. Let G be a threshold graph generated by (0

t 1 1 s 1 0 t 2 1 s 2 ). If either t 1 + t 2 > s 1 + s 2 , t 1 = 1 or s 2 < t 1 + t 2 , t 1 = 1, then G is not Hamiltonian. Otherwise, if s -r < s 1 , then G is Hamiltonian if and only if s 2 ≥ t 2 + 1, while if s -r ≥ s 1 , then G is necessarily Hamiltonian.
Example 4.3. Let G be a particular threshold graph generated by (0 3 1 4 0 10 1 6 0 5 1 11 0 3 1 8 ). In this case we have r = 21 and s = 29. Implementing the step (4) of the algorithm 1, we get 0 < 4 + 6 -(29 -21) < 6, which implies that = 1. We next verify that the following inequalities hold: s 3 + s 4 ≥ t 3 + t 4 + 1 and s 4 ≥ t 4 + 1, and since they do, we conclude that G is Hamiltonian.

Example 4.4. Let G be a particular chain graph generated by (0 3 1 4 0 10 1 6 0 5 1 3 0 3 1 8 ). In this case we have r = s = 21. By the step (3) of the algorithm 2, we get s 2 + s 3 + s 4 ≥ t 2 + t 3 + t 4 + 1, which implies that G is not Hamiltonian.

The minimum number of Hamilton cycles in a Hamiltonian chain graph of a prescribed order

In this section we give some observations on Hamiltonian chain graphs and we also determine chain graphs with minimum number of Hamilton cycles. The problem on the value of the minimum number of Hamilton cycles in a given graph has been considered for some special graph classes. For existing literature and recent results related to threshold graphs, we refer reader to [START_REF] Qiao | The minimum number of Hamilton cycles in a hamiltonian threshold graph of a prescribed order[END_REF]. An edge of a chain graph G generated by (1.1) is called a key edge of G if it joins a vertex in U i to a vertex in V i for some 1 ≤ i ≤ h (see 1.1 (b)). As it will be shown in the sequel, key edges play a significant role in determining Hamiltonian chain graphs. We proceed by the following two lemmas.

Lemma 5.1. Let e be a key edge of a chain graph G generated by (1.1), then G -e is a chain graph.

Proof. Let e = uv, where u ∈ U i and v ∈ V i . We consider the following cases. Case 1. If t i > 1, s i > 1, then G -e is a chain graph generated by

(0 t 1 1 s 1 ) • • • (0 t i-1 1 s i-1 )(0 t i -1 1 1 )(0 1 1 s i -1 )(0 t i+1 1 s i+1 ) • • • (0 t h 1 s h ). Case 2. If t i > 1, s i = 1, i.e., if G is generated by (0 t 1 1 s 1 ) • • • (0 t i-1 1 s i-1 )(0 t i 1 1 )(0 t i+1 1 s i+1 ) • • • (0 t h 1 s h ),
then G -e is a chain graph generated by

(0 t 1 1 s 1 ) • • • (0 t i-1 1 s i-1 )(0 t i -1 1 1 )(0 t i+1 +1 1 s i+1 ) • • • (0 t h 1 s h ). Case 3. If t i = 1, s i > 1, i.e, if G is generated by (0 t 1 1 s 1 ) • • • (0 t i-1 1 s i-1 )(0 1 1 s i )(0 t i+1 1 s i+1 ) • • • (0 t h 1 s h ),
then G -e is a chain graph generated by

(0 t 1 1 s 1 ) • • • (0 t i-1 1 s i-1 +1 )(0 1 1 s i -1 )(0 t i+1 +1 1 s i+1 ) • • • (0 t h 1 s h ). Case 4. If t i = s i = 1, i.e., if G is generated by (0 t 1 1 s 1 ) • • • (0 t i-1 1 s i-1 )(0 1 1 1 )(0 t i+1 1 s i+1 ) • • • (0 t h 1 s h ), then G -e is a chain graph generated by (0 t 1 1 s 1 ) • • • (0 t i-1 1 s i-1 +1 )(0 t i+1 +1 1 s i+1 ) • • • (0 t h 1 s h ).
Lemma 5.2. Every key edge of a Hamiltonian chain graph lies in at least one Hamilton cycle.

Proof. Let G be Hamiltonian chain graph, e = uv be a key edge of G, with u ∈ U i and v ∈ V i , and let C be a Hamilton cycle. If e ∈ C, there is nothing to prove. Otherwise, let C has the form (u, s, . . . , v, t . . .). Then u ∼ s and v ∼ t which implies s ∈ V j for some j ≥ i and v ∈ U k for some k ≤ i and consequently s ∼ t. So, both uv and st are the edges of G. The cycle C obtained by adding these two edges to C and deleting us and vt from C is Hamilton and contains e.

We are ready for the main result of this section. .

Proof. If G is Hamiltonian chain graph, then G has colour classes of the same order, say h (see [START_REF] Moon | On Hamiltonian bipartite graphs[END_REF]). If G is generated by 0 t 1 1 s 1 • • • 0 t k 1 s k , then t 1 = 1 and s k = 1. The chain graph with minimum number of Hamilton cycles is defined with minimum values of t i 's, s i 's that, according to Corollary 3.6, are t 1 = s k = 2, t i = 1, i = 1, s j = 1, j = k. The graph under consideration, i.e., the graph generated by (5.1) is Hamiltonian, which is an easy exercise to prove. If any of t i 's, s i 's takes a greater value than the given one, then by deleting any key edge (which by Lemma 5.2 belongs to at least one Hamilton cycle), we would obtain a graph that, in case that it is Hamiltonian, would have fewer number of Hamilton cycles (as the deletion of an edge cannot increase the number of Hamilton cycles).

It remains to compute the number of Hamilton cycles, say c 2h , which can be performed by induction on h. If h = 2, then G 4 = C 4 and c 4 = 2 2-2 = 1.

Let n = 2(h + 1). If U 1 = {x, y} and V 1 = {z}, then by Lemma 5.2, neither G 2(h+1) -xz nor G 2(h+1) -yz is Hamiltonian. Thus the path xzy must lie in every Hamilton cycle of G 2(h+1) and so every Hamilton cycle of G 2(h+1) must go through z. And from z it may continue either through x or y. Assume, without loss of generality, that z is followed by x. The remaining part of the Hamilton cycle must continue through a vertex a / ∈ {x, y, z} and before it returns to z it should go through y. Since G 2(h+1) \ {xz} is isomorphic to G 2h , together with 2 possible choices starting from z we obtain c 2(h+1) = 2c 2h = 2 h-1 . This completes the proof.

Lemma 2 . 1 .

 21 ([1]) Let G be a split graph with vertex set I ∪ J, where I induces a co-clique of size r and J induces a maximal clique of size s. If either r > s or r < s with e s-r = 0, then G is not Hamiltonian.

Theorem 2 . 3 .

 23 ([1]) If r = s ≥ 2, then the following conditions are equivalent:

Lemma 3 . 1 .

 31 Let G be a threshold graph generated by (1.1), such that s > r. Then e s-r = 0 holds if and only if t 1 = 1 and s -r ∈ {1, • • • , s 1 + 1}. Now, Lemma 2.1 applied to threshold graphs states the following. Lemma 3.2. Let G be a threshold graph generated by (1.1). If r > s or t 1 = 1 and s

Lemma 3 . 3 .

 33 Let G be a threshold graph generated by (1.1) with s ≥ r ≥ 2. Then G is Hamiltonian if and only if G * generated by (3.1) is Hamiltonian. For s * +1 = +1 i=1 s i -(s -r), the degrees of vertices in U * and V * in the corresponding bipartite graph B * of G * given in non-decreasing order are

Lemma 3 . 4 .

 34 Let G be a threshold graph generated by (1.1), with s = r ≥ 2 and t 1 = 1. Then G is Hamiltonian if and only if h i=j s i ≥ h i=j t i + 1, for j = 2, 3, . . . , h. (3.2)

Theorem 5. 3 .

 3 The minimum number of Hamilton cycles in a Hamiltonian chain graph of order n = 2h, h ≥ 2, is 2 h-2 and this number is attained uniquely by the chain graph G n generated by(5.1) (0 2 1)(01) . . . (01 2 ) 2(h-1)

  +1 i=1 s i . Proof. A threshold graph G generated by (1.1) is Hamiltonian if and only G * generated by (3.1) is Hamiltonian. Now, G * , with t * 1 = +1 i=1 t i = 1, is Hamiltonian if and only if the corresponding chain graph B * generated by (3.1) is Hamiltonian. The last one holds if and only if + 1 = h or otherwise if and only if the system of inequalities (3.2) holds for B * , i.e., if and only if

	h	h
	s i ≥	t i + 1, for j = + 2, + 3, . . . , h,
	i=j	i=j
	which completes the proof.