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Abstract

We prove that the space of continuous functions whose frequencies are
products of r powers of primes numbers, contains some complemented
copies of `1 hence is far from being isomorphic to the whole space of
continuous functions, or to the disc algebra. Actually, our results are more
general and may be written in some other frameworks, like the space L1.
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Introduction
It is now a well known topic in analysis to study the geometry (from the

point of view of Banach spaces) of the classical spaces of functions, with lacunary
spectrum, and try to compare the “thinness” properties of a subset Λ ⊆ Z with
the Banach space properties of the space XΛ, where X is a Banach space of
integrable functions on T and XΛ is the subspace of X consisting of the f ∈ X
whose spectrum lies in Λ: f̂(γ) = 0 if γ /∈ Λ. We refer to the monographs [12]
or [6] to know more on the various notions of thin sets of integers.

This wide topic has been extensively studied: see for instance [1], [6], [9] or
more recently [3].

We shall concentrate our attention on sets Λ ⊂ Z closely related to the set P
of prime numbers. Considering the set of prime numbers as “thin” is a question
of point of view. On one hand, it is a small set since it has zero density in
the set of integers. On the other hand, it contains arbitrarily large arithmetic
progressions [2] which is forbidden for the most classical thin sets in harmonic
analysis. The set P shares some equirepartition properties with the set of all
integers (see [11] for instance).

There is a nice result obtained by Lust-Piquard [8]: she showed that the
space CP(T) contains subspaces isomorphic to c0. It is well known that the
same phenomenon occurs for the space C(T) or the disc algebra A(D) = CN(T).
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As a consequence, P may appear as a “not very thin” subset of N. Actually, it
was proved more recently in [7] that there are some rather thin sets Λ (p-Sidon
sets for instance) such that CΛ(T) contains a subspace isomorphic to c0. A first
natural question concerning prime numbers is whether the space CP(T) contains
not only some but many subspaces isomorphic to c0, i.e. satisfies the property
(V) of Pe lczyński (see the definition below). Note that very thin sets like Sidon
sets (or Rosenthal sets) are far from having this property: when Λ is a Sidon
set, CΛ(T) is isomorphic to `1, hence cannot contain a subspace isomorphic to
c0.

In an opposite direction, it is proved in [4] that the set P of prime numbers
is a Lust-Piquard set (= a totally ergodic set), hence sharing this property with
“very thin sets” (like Sidon sets, or more generally Rosenthal sets). Let us recall
that neither Z or N have this property.

A natural question then occurs: is the geometry of the space CP(T) very
different from the one of C(T) or of the disc algebra? We shall give a positive
answer, proving in particular that CP(T) is isomorphic neither to C(T) nor to
the disc algebra.

Actually, writing Pr =
{ ∏

1≤i≤r

pαi
i | pi ∈ P , αi ∈ N

}
, our main result is the

following:

Theorem.
Let Λ ⊂ Z such that P ⊂ Λ ⊂ Pr ∪

(
− Pr

)
.

Then

1. CΛ(T) contains a complemented copy of `1.

2. L1
Λ(T) and L1

Z−∪Λ(T) contain a complemented copy of `2.

As an immediate corollary, we have:

Corollary.
Let Λ ⊂ Z such that P ⊂ Λ ⊂ Pr ∪

(
− Pr

)
.

Then

1. CΛ(T) does not have property (V) of Pe lczyński.

2. L1
Λ(T) and L1

Z−∪Λ(T) do not verify the Grothendieck Theorem.

In particular, CΛ(T) is isomorphic neither to C(T) nor to the disc algebra.
Neither L1

Λ(T) nor L1
Z−∪Λ(T) is isomorphic to L1(T).

Recall that a Banach space X has the property (V ) of Pe lczyński if, for every
non weakly compact (bounded) operator T : X → Y , there is a subspace X0 of
X, isomorphic to c0, such that T is an isomorphism from X0 onto T (X0) (i.e.
T stabilizes a copy of c0). This property is shared by C(T) and A(D).
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We shall say that a Banach space X verifies the Grothendieck Theorem if
every (bounded) operator from X to a Hilbert space is absolutely summing.
This property is shared by L1(T). See [10] to know more on the subject.

The proof of the theorem relies on a gap property realized by products of
powers of prime numbers:

Proposition.
Let r ≥ 1. There is an infinite subset Er of P such that

sup
λ∈Er

d
(
λ,Pr \ {λ}

)
= +∞

where d(λ,A) denotes the distance: d(λ,A) = inf{|λ− a| ; a ∈ A}.

In other words, there are big symmetric holes in any Λ such that P ⊂ Λ ⊂
Pr. Even in the case Λ = P, we did not find any reference of the preceding
proposition. Of course, it is well known that there are big holes in P, but the
standard argument is to consider the set {n! + 2, · · · , n! + n} with n arbitrarily
large (which is obviously disjoint from the set of prime numbers), which provides
one-sided holes in P. The new point in the proposition is that we can even
assume that these holes are symmetric. If we knew that there are infinitely
many primorial numbers (resp. factorial numbers), then it would suffice to
apply directly Prop.2 in [4] to prove the theorem.

Proof of the proposition.
For convenience, we shall define P0 = {1}.
We prove by induction on r ∈ N the assertion Hr: “For every a ≥ 1, there

exists a prime number p such that {p−a, . . . , p− 1, p+ 1, . . . , p+a}∩Pr = ∅.”
The property H0 is obvious.
Now assume that Hr−1 is true with r ≥ 1. Given a > 1, choose a prime

number A > a + 1 such that {A − a, . . . , A − 1, A + 1, . . . , A + a} ∩ Pr−1 = ∅.
Let

Q =
∏

1≤k<2A
k 6=A

k2 =

(
(2A− 1)!

A

)2

.

Note that A and Q are coprime.
By the Dirichlet’s theorem on arithmetic progressions, we obtain a prime

number p > A such that p ≡ A [Q].
We claim that this prime number p satisfies

d
(
p,Pr \ {p}

)
≥ a.

The conclusion will then follow.
In order to prove the claim we shall actually prove that for every j in

{1, . . . , A− 2}, neither p− j nor p+ j belongs to Pr.
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Indeed, fix j ∈ {±1, . . . ,±a} and assume that p+j =
∏

1≤i≤r

qαi
i where qi ∈ P,

αi ∈ N. Since A+ j divides Q and p+ j ≡ A+ j [Q], the number A+ j divides
p + j. Hence we can write A + j =

∏
1≤i≤r

qβi

i where βi ≤ αi. If at least one of

the βi vanished, then A + j would belong to Pr−1, but this is false. Hence for
every 1 ≤ i ≤ r, we have βi ≥ 1. On the other hand, since A < p, there exists
some i0 ∈ {1 . . . , r} such that βi0 < αi0 . Now, consider N = qi0(A + j). Since
βi0 ≥ 1, we have qi0 divides A+j, hence N divides (A+j)2; but (A+j)2 divides
Q so that N divides Q. On the other hand N divides p+ j since βi0 + 1 ≤ αi0 .
So N must divide A+ j which is false. The claim is proved and Hr also.

Proof of the theorem.
It suffices to apply the preceding proposition and Prop.2 in [4]. Nevertheless,

we repeat quickly the argument in our framework.
We shall produce a translation invariant projection which is nothing but a

convolution with a Riesz product.
From the proposition we get by induction a sequence of prime numbers(

pn
)
n≥1

which is a Hadamard sequence with ratio at least 3. We write H =
{pn n ≥ 1}. The mesh

[H] =
{ ∑

1≤n≤m

εnpn

∣∣∣ εn ∈ {−1, 0, 1} ; m ≥ 1
}

intersects Pr ∪
(
− Pr

)
only on the ±pn’s.

Then we consider the Riesz product

RN (x) = 2
N∏
n=1

[
1 + cos(2πpnx)

]
.

A standard star-weak compactness argument in M(T) provides a measure µ
(bounded in norm by 2) whose Fourier coefficient are 1 on H and vanish on
Λ \ [H].

The convolution operator associated to µ is then a translation invariant
projection from CΛ(T) onto CH(T), which is isomorphic to `1 (H is a Sidon
set).

The same convolution operator also defines a projection from L1
Λ(T) onto

L1
H(T), which is isomorphic to `2 (H is a Λ(2) set).

At last, the same conclusion for the space L1
Z−∪Λ(T) holds, using Prop. 1.4

in [5] (see [?] for some details).
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