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We prove that the error term n≤x Λ(n)/n -log x + γ differs from (ψ(x) -x)/x by a well controlled function. We deduce very precise numerical results from this formula.

Introduction

We define classically

ψ(x) = n≤x Λ(n), ψ(x) = n≤x Λ(n)/n.
There has been a good amount of work to find explicit asymptotics for ψ(x), see for instance [START_REF] Rosser | Explicit bounds for some functions of prime numbers[END_REF], [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF], [START_REF] Rosser | Sharper bounds for the Chebyshev Functions ϑ(x) and ψ(x)[END_REF], [START_REF] Schoenfeld | Sharper bounds for the Chebyshev Functions ϑ(x) and ψ(x) ii[END_REF] and [START_REF] Ramaré | Primes in arithmetic progressions[END_REF]. The quantity ψ(x) has been much less studied though [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF]Theorem 6] gives an estimate. There has been an attempt in a more general setting in [START_REF] Moree | The hexagonal versus the square lattice[END_REF] and recent attention has been turned to the Mertens product, as in [START_REF] Bordellés | An explicit Mertens' type inequality for arithmetic progressions[END_REF].The problem here is that one would really want to deduce such an estimate from the ones concerning ψ(x), but such a method is missing. The aim of this paper is to provide a fairly simple roundabout, see Theorem 1.1 below.

Let us note that the prime number Theorem in the form ψ(x) = (1 + o(1))x is "elementarily" equivalent to (1.1) ψ(x) = log x -γ + o [START_REF] Backlund | Sur les zéros de la fonction ζ(s) de Riemann[END_REF].

So in a sense, we are concerned with a quantitative version of this equivalence. A simple integration by parts is not enough, as it looses a log-factor. In effect, an estimate of the form |ψ(x) -x)|/x ≤ 0.01 for x large enough transfers into something like | ψ(x) -log x + γ| ≤ 0.01 log x which is of no interest. The Landau equivalence Theorem can however be made explicit, but forbid a saving better than 1/ √ log x in a rough form ; allowing a saving of any power of log x is already theoretically not obvious, see [START_REF] Landau | Über einige neuere Grenzwertsätze[END_REF] for instance.

Here is a conjecture.

Conjecture (Strong form of Landau equivalence Theorem, I).

There exist two positive constants c 1 and c 2 such that

ψ(x) -log x + γ ≤ c 1 max x/c 2 <y≤c 2 x |ψ(y) -y| y + c 2 x -1/4 .
Such a conjecture holds (almost trivially) true under the Rieman Hypothesis. The result of [START_REF] Diamond | A PNT equivalence for Beurling numbers[END_REF] indicates that such an inequality does not hold in the case of Beurling generalized integers. Indeed they show that the condition ψ P (x) ∼ x does not ensure that ψP (x) -log x has a limit, with obvious notations.

Let us end this introduction with a remark: in [START_REF] Kaczorowski | Almost periodicity of some error terms in prime number theory[END_REF], the authors exhibit, under the Riemann Hypothesis, a pseudo-periodical function that (essentially) takes the value ( ψ(e -y ) + y) e y/2 when y < 0 and (ψ(e y ) -e y ) e -y/2 when y > 0. This means that the values of ψ and of ψ may share a much more profond link than proposed in the above conjecture.

We are not able to prove our conjecture, but show in Lemma 2.2 that ψ(x) -log x + γ -ψ(x) -x x is a well-controlled function. Here are some consequences of this formula.

Theorem 1.1. For x ≥ 8 950, we have

ψ(x) = log x -γ + ψ(x) -x x + O * 1 2 √ x + O * 1.75 • 10 -12 .
Furthermore when log x ≥ 9270, we have (with R = 5.696 93)

ψ(x) = log x -γ + ψ(x) -x x + O * 1 2 √ x + O * 1 + 2 (log x)/R 2π exp -2 (log x)/R .
Corollary. We have for x > 1,

ψ(x) = log x -γ + O * 1.833/ log 2 x .
Furthermore, for 1 ≤ x ≤ 10 10 , we have ψ(x) = log x -γ + O * (1.31/ √ x). For x ≥ 23, we have ψ(x) = log x -γ + O * (0.0067/ log x).

As a comparison, [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF]Theorem 6] proposes an inequality similar to the last one above, but with 1/2 = 0.5 instead of 0.0067. No error term with a saving of 1/ log 2 x is proposed.

Notation. We use the classical counting function

(1.2) N (T ) = ρ 0<γ≤T 1, where ρ = β + iγ is a zero of the Riemann zeta-function. Furthermore, by f (x) = O * (g(x)) we mean |f (x)| ≤ g(x).
The computations required have been done via Pari/GP, see [START_REF][END_REF].

Thanks. Thanks are due to the referee for his/her careful reading that has helped improve these results.

An explicit formula

We will need [14, Lemma 4]:

Lemma 2.1. Let g be a continuously differentiable function on [a, b] with 2 ≤ a ≤ b < +∞. We have b a ψ(t)g(t)dt = b a tg(t)dt - ρ b a t ρ ρ g(t)dt + b a log 2π -1 2 log(1 -t -2 ) g(t)dt.
Here is our main formula.

Lemma 2.2. We have, for x ≥ 1:

ψ(x) = log x -γ + ψ(x) -x x + ρ x ρ-1 ρ(ρ -1) + B(x) x .
where the sum is over the zeroes ρ of the Riemann zeta function that lie in the critical strip 0 < s < 1 (the so-called non trivial zeroes) and B(x) is the bounded function given by

B(x) = 1 2 + log 2π - x -1 2 log(1 -x -1 ).
The main feature of the Lemma is that the sum over the zeroes is uniformly convergent, a feature not shared by the explicit formulaes for ψ(x) or for ψ(x). In fact, the main difficulty is carried by the term (ψ(x) -x)/x.

Proof. We simply proceed by integration by parts:

ψ(x) = x 1 ψ(t) dt t 2 + ψ(x) x = log x -γ + ∞ x (ψ(t) -t) dt t 2 + ψ(x) -x x .
Note that the existence of the integral requires a strong enough form of the equivalence between ψ(t) and t. Next we apply the explicit formula given in Lemma 2.1 and get

Y x (ψ(t) -t) dt t 2 = - ρ Y x t ρ-2 dt ρ + Y x log 2π -1 2 log(1 -t -2 ) dt t 2 = - ρ Y ρ-1 -x ρ-1 ρ(ρ -1) + Y x log 2π -1 2 log(1 -t -2 ) dt t 2 .
Since (1.1) is known to hold, and ρ 1/|ρ(ρ -1)| is convergent, we can send Y to infinity and get

Y x (ψ(t) -t) dt t 2 = ρ x ρ-1 ρ(ρ -1) + ∞ x log 2π -1 2 log(1 -t -2 ) dt t 2 .

Known bounds on ψ(x)

In [START_REF] Ramaré | Primes in arithmetic progressions[END_REF], we find that 

(
(3.4) |ϑ(x) -x| ≤ 3.965x/ log 2 x (x > 2) (3.5) |ϑ(x) -x| ≤ 515x/ log 3 x (x > 2)
In fact [START_REF]Estimates of some functions over primes without R. H[END_REF]Theorem 5.2] proposes the constant 21 instead of 515 in this inequality, but this preprint has not been published. We will not use this bound but take this opportunity to record this fact. We go from ϑ to ψ by using [17, Theorem 6] We extend it to x ≥ 14 500 000 by using (3.1). We conclude by direct inspection.

(3.6) 0 ≤ ψ(x) -ϑ(x) ≤ 1.0012 √ x + 3x 1/3 (x > 0).
Lemma 3.2. We have for x > 1

|ψ(x) -x| ≤ 1.830 x/ log 2 x, |ψ(x) -x| ≤ 516 x/ log 3 x.
Proof. Indeed, we readily find that

|ψ(x) -x| (log x) 2 x ≤ |ψ(x) -ϑ(x)| (log x) 2 x + |ϑ(x) -x| (log x) 2 x ≤ min 1.0012(log x) 2 √ x + 3(log x) 2 x 2/3 + 515 log x , 0.0065 log x
which is not more than 1.830, on using the first estimate for x ≥ exp(281.5) and the second one for the smaller values. We prove the second estimate in the same way We proceed similarly for the bound with log 3 x.

|ψ(x) -x| (log x) 3 x ≤ |ψ(x) -ϑ(x)| (log x) 3 x + |ϑ(x) -x| (log x) 3 x ≤ min 1.0012(log x) 3 √ x + 3(log x) 3 x 2/3 +

Lemmas on the zeroes

We quote from [START_REF] Ramaré | Short effective intervals containing primes[END_REF]:

Lemma 4.1. If T is a real number ≥ 10 3 then N (T ) = T 2π log T 2π - T 2π + 7 8 + O * 0.67 log T 2π .
This is a version of Theorem 19 of [START_REF] Rosser | Explicit bounds for some functions of prime numbers[END_REF], relying on [START_REF] Backlund | Sur les zéros de la fonction ζ(s) de Riemann[END_REF].

Lemma 4.2. We have, when T ≥ 10

3 γ≥T 0 1/γ 2 ≤ log(T /(2π)) 2πT + 0.67 2 log(T /(2π)) + (1/2) T 2 .
Proof. We call S the sum to evaluated and we simply use integration by parts:

S = 2 ∞ T N (t) -N (T ) t 3 dt ≤ 2 (2π) 2 ∞ T /(2π)
u log u -u + 7 8 + 0.67 log u u 3 du

- T 2π log T 2π -T 2π + 7 8 -0.67 log T 2π T 2 ≤ log(T /(2π)) 2πT + 0.67 2 log(T /(2π)) + (1/2) T 2 .
The Lemma follows readily. In particular, we do not impose ρ > 0. We prove this Lemma by using the file of the first 10 5 zeroes provided by Odlyzko [START_REF] Odlyzko | The first 100, 000 zeros of the Riemann zeta function[END_REF].

We in fact used zeroes only up to height 10 000 and ran the computations using 28 digits precision on GP/Pari. Note that when ρ = 1/2, we have ρ(ρ -1) = -|ρ| 2 . Truncation of the imaginary parts only increases the sum, while the high enough precision takes care of the machine error. The restricted sum is about 0.023 02 (with condition ρ > 0). We next use Lemma 4.2 to handle the tail of the series. We finally double the value to remove the condition ρ > 0, and round the value up.

We also know, thanks to [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta Function and zeros computations at very large height[END_REF], that the zeroes ρ in the critical strip and verifying | ρ| ≤ 2.44 • 10 12 = T 0 are all on the line ρ = 1/2. We handle zeros with large imaginary part with the following Theorem from [START_REF] Kadiri | Une région explicite sans zéros pour la fonction ζ de Riemann[END_REF] Lemma 4.4. Every zero ρ = β + iγ of ζ in the strip 0 < β < 1 and γ ≥ 10 verifies β ≤ 1 -ϕ(γ) = 1 -1/(R log γ), R = 5.696 93.

Proof of Theorem 1.1

We start with Lemma 2.2. Let us set (5.1)

J(x) = ρ x ρ-1 ρ(ρ -1)
.

By considering the symmetry ρ → 1 -ρ, we get (remember that no zero of ζ lies on the segment [0, 1])

J(x) = ρ, ρ>0
x ρ-1 + x -ρ ρ(ρ -1) .

We are ready to majorize J(x):

J(x) ≤ |γ|≤T 0 x -1/2 |ρ| 2 + γ>T 0 x -1/2 |ρ(ρ -1)| + x -ϕ(γ) |ρ(ρ -1)| ≤ 0.047 √ x + γ>T 0 x -ϕ(γ) γ 2 .
We first bound x -ϕ(γ) by 1 and get, by Lemma 4.2

J(x) ≤ 0.047 √ x + log(T 0 /(2π)) 2πT 0 1 + 1.36 2π T 0 ≤ 0.047 √ x + 1.75 • 10 -12 .
This proves the first part of Theorem 1.1. For large x, we can take advantage of the zero free region. We set ϕ 2 (γ) = x -ϕ(γ) /γ 2 and get

J(x) ≤ 0.047 √ x - ∞ T 0 (N (t) -N (T 0 ))ϕ 2 (t)dt ≤ 0.047 √ x - ∞ T 0 (N * (t) -N (T 0 ))ϕ 2 (t)dt - ∞ T 0 (N (t) -N * (t))ϕ 2 (t)dt ≤ 0.047 √ x + (N * (T 0 ) -N (T 0 ))ϕ 2 (T 0 ) + ∞ T 0 N * (t) ϕ 2 (t)dt - ∞ T 0 (N (t) -N * (t))ϕ 2 (t)dt ≤ 0.047 √ x + 3 • 10 -24 x -ϕ(T 0 ) + ∞ T 0 x -ϕ(t) log(t/(2π))dt 2πt 2 + ∞ T 0 log x 2R -log 2 t 2x -ϕ(t) log(t/(2π))dt t 3 log 2 t .
We now assume log x ≥ 2R log 2 T 0 and infer the bound

J(x) ≤ 0.047 √ x + 6 • 10 -24 x -ϕ(T 0 ) + ∞ T 0 x -ϕ(t) log(t/(2π))dt 2πt 2 + 0.67 ∞ T 0 x -ϕ(t) dt t 3 ≤ 0.047 √ x + 6 • 10 -24 x -ϕ(T 0 ) + ∞ T 0 x -ϕ(t) log(t/6.25)dt 2πt 2 ≤ 0.047 √ x + ∞ T 0 x -ϕ(t) log t dt 2πt 2 . I = ∞ T 0 exp - log x R log t -log t log t dt 2πt = ∞ log T 0 exp - log x Ru -u u du 2π . We set log x Ru + u = v which gets solved in (u 2 -uv + (log x)/R = 0) 2u = v ± v 2 -4(log x)/R.
We further get

4u du = v ± v 2 -4(log x)/R 1 ± v v 2 -4(log x)/R dv = v ± v 2 -4(log x)/R ± v 2 v 2 -4(log x)/R + v dv = 2v ± 2v 2 -4(log x)/R v 2 -4(log x)/R dv
so that I gets rewritten as

I = ∞ 2 √ (log x)/R e -v v + v 2 -2(log x)/R v 2 -4(log x)/R dv 4π + log x R log T 0 +log T 0 2 √ (log x)/R e -v v - v 2 -2(log x)/R v 2 -4(log x)/R dv 4π which yields I ≤ ∞ 2 √ (log x)/R ve -v dv 2π = 1 + 2 (log x)/R 2π exp -2 (log x)/R .
It is then immediate to conclude the proof of Theorem 1.1.

Proof of the Corollary

When log x ≤ 2R log 2 T 0 , but x ≥ 10 We complete the proof by direct inspection.

Lemma 3 . 1 .

 31 For x ≥ 7 105 266, we have |ψ(x) -x|/x ≤ 0.000 213. Proof. We start with the estimate from [17, (4.1)] (3.7) |ψ(x) -x|/x ≤ 0.000 213 (x ≥ 10 10 ).

Lemma 4 . 3 .

 43 We have ρ 1/|ρ(ρ -1)| ≤ 0.047, where ρ ranges over all non trivial zeroes of ζ.

  515, 0.0065 log 2 x which is not more than 516, on using again the first estimate for x ≥ exp(281.5) and the second one for the smaller values. For x lower, we first use |ψ(x) -x| ≤ (log 2 x/(1.830 √ x))1.830x/ log 2 x which extends our bound till x ≥ 55. A very primitif GP script shows that |ψ(x) -x| ≤ 1.417x/ log 2 x, (1 ≤ x ≤ 10 5 ).

  10 , we use Lemma 3.2 and get ψ(x) -log x + γ log 2 x ≤ 1.830 + log 2 x 2 √ x + 1.68 • 10 -12 log 2 x ≤ 1.833. When 8 950 ≤ x ≤ 10 10 , we have ψ(x) -log x + γ log 2 x ≤ 1.3 log 2 x √ x + 1.68 • 10 -12 log 2 x ≤ 1.14. When log x ≥ 2R log 2 T 0 , the bound becomes (log x)/R log 2 x ≤ 1.832. We complete the proof by direct inspection. For the limited range bound, we write ψ(x) -log x + γ √ x ≤ 1.3 + 1.68 • 10 -12 √ x ≤ 1.31 when x ≥ 8 950. We again conclude by direct inspection. When log x ≤ 2R log 2 T 0 , but x ≥ 10 10 , we have ψ(x) -log x + γ log x ≤ 0.0065 + log x 2 √ x + 1.68 • 10 -12 log x ≤ 0.0067. When 8 950 ≤ x ≤ 10 10 , we have ψ(x) -log x + γ log x ≤ 1.3 log x √ x + 1.68 • 10 -12 log x ≤ 0.0003.

	1.830 +	1 + 2 (log x)/R 2π	exp -2

When log x ≥ 2R log 2 T 0 , the bound becomes

0.0065 + 1 + 2 (log x)/R 2π exp -2 (log x)/R log 2 x ≤ 0.0066.