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Abstract

We prove that |
∑{

d≤x,
(d,q)=1

µ(d)/d| ≤ 2(q/ϕ(q))/ log(x/q) for every

x > q ≥ 1 and similar estimates for the Liouville functions. We give
also better constants when x/q is larger.

1 Introduction

In explicit analytic number theory, one needs very often to evaluate the

average of a multiplicative function, say f . The usual strategy is to compare

this function to a more usual model f0, as in [12, Lemma 3.1]. This process

is also well detailed in [2]. When the model is f0 = 1, the situation is readily

cleared out; it is also well studied when this model is the divisor function in

[1, Corollary 2.2]. We signal here that the case of the characteristic function

of the squarefree numbers is specifically handled in [4]. The next problem is

to use the Moebius function as a model. In this case the necessary material

can be found in [13], though of course the saving is much less and may be

insufficient: when the model is 1 or the divisor function, or the characteristic
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function of the squarefree integers, the saving is a power of the size of the

variable, while now it is only a logarithm (or the square of one according to

whether one says that the trivial estimate for
∑

d≤D µ(d)/d is 1 or logD).

One of the consequences is that one has to be more careful, and thrifty,

when it comes to small variations. The variations we consider here is the

addition of a coprimality condition (d, q) = 1, for some fixed q, on the

ranging variable d. Our first aim is thus to show how to get explicit estimates

for the family of functions

(1.1) mq(x) =
∑
n≤x,

(n,q)=1

µ(n)/n, m(x) = m1(x)

from explicit estimates concerning solely m(x). The definition of the Liou-

ville function λ(n) is recalled below in (1.3), while the auxiliary function `q

is defined in (1.4).

Theorem 1.1. We have, when 1 ≤ q < x, where q is an integer and x a

real number,∣∣∣∣ ∑
n≤x,

(n,q)=1

µ(n)

n

∣∣∣∣ ≤ q

ϕ(q)

2

log(x/q)
,

∣∣∣∣ ∑
n≤x,

(n,q)=1

λ(n)

n

∣∣∣∣ ≤ q

ϕ(q)

0.55

log(x/q)
.

Moreover log(x/q)|`q(x)| ≤ 0.155 q
ϕ(q)

and log(x/q)|mq(x)| ≤ 8
7

q
ϕ(q)

when

x/q ≥ 3310. We also have log(x/q)|mq(x)| ≤ 5
7

q
ϕ(q)

when x/q ≥ 9960.

The sole previous estimate on mq(x) seems to be [7, Lemma 10.2] which

bounds |mq(x)| uniformly by 1. The estimate for m(x) that will provide the

initial step comes from [13]

(1.2) |m(x)| ≤ 0.03/ log x (x ≥ X0 = 11 815).

Let us first note that the simplest treatment of this condition via the

Moebius function, i.e. writing

1(d,q)=1 =
∑
δ|q,
δ|d

µ(δ),

does not work here. Indeed we get:∑
d≤D,
(d,q)=1

µ(d)

d
=
∑
δ|q

∑
δ|d≤D

µ(d)

d
=
∑
δ|q

µ(δ)

δ

∑
d≤D/δ,
(d,δ)=1

µ(d)

d
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and we are back to the initial problem with different parameters. The clas-

sical workaround (used for instance in [10, near (7)] but already known by

Landau) runs as follows: we determine a function gq such that 1(n,q)=1µ(n) =

gq ? µ(n), where ? denotes the arithmetic convolution product. The draw-

back of this method is that the support of g is not bounded (determining

gq by comparing the Dirichlet series is a simple exercise). So if we write∑
d≤D,
(d,q)=1

µ(d)/d =
∑
δ≤D

gq(δ)
∑
d≤D/δ

µ(d)/d,

we are forced to two things:

1. using estimates for
∑

d≤D/δ µ(d)/d when D/δ can be small,

2. completing the sum over δ to get a decent result.

Both steps introduce quite a loss when q is not specified. We propose here

a different approach by introducing the Liouville function as an interme-

diary. This function λ(n) is the completely multiplicative function that is

1 on integers that have an even number of prime factors – counted with

multiplicity – and −1 otherwise. It satisfies

(1.3)
∑
n≥1

λ(n)

ns
=
ζ(2s)

ζ(s)
.

We introduce the family of auxiliary functions

(1.4) `q(x) =
∑
n≤x,

(n,q)=1

λ(n)/n, `(x) = `1(x).

Our process runs as follows: we derive bounds for `(x) from bounds on m(x)

and some computations, derive bounds on `q(x) from bounds on `(x), and

finally derive bounds on µq(x) from bounds on `q(x). The theoretical steps

are contained in the three Lemmas 2.3, 2.5 and 3.2.

We complete this introduction by signalling that [14] contains explicit

estimates with a large range of uniformity for sums of the shape∑
d≤x,

(d,r)=1

µ(d)

d1+ε

and for a similar sum but with the summand µ(d) log(x/d)/d1+ε. The path

we followed there is essentially elementary and the saving is less.

I thank Harald Helfgott for interesting discussions that pushed me into

pulling this note out of its drawer, as well as the referee for his/her careful

reading that has helped getting a better version of this note.
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2 From the Moebius function to the Liou-

ville function

Lemma 2.1. For 2 ≤ x ≤ 906 000 000, we have |`(x)| ≤ 1.347/
√
x.

For 2 ≤ x ≤ 1.1 · 1010, we have |`(x)| ≤ 1.41/
√
x.

For 1 ≤ x ≤ 1.1 · 1010, we have |`(x)| ≤
√

2/x.

The computations have been run with PARI/GP (see [11]), speeded by

using gp2c as described for instance in [1]. We mention here that [6] proposes

an algorithm to compute isolated values of M(x). This can most probably

be adapted to compute isolated values of `(x), but does not seem to offer

any improvement for bounding |`(x)| on a large range. In [3], the authors

show that

`(x) ≥ 0, (x ≤ 72 185 376 951 205)

and that

`(x) ≥ −2.0757640× 10−9, (x ≤ 75 000 000 000 000)

This takes care of the lower bound for `(x). The computations we ran

are much less demanding in time and algorithm, but however rely on a

large enough sieve-kind of table to compute values of λ(n) on some very

large range. Harald Helfgott (indirectly) pointed out to me that the RAM-

memory can be very large nowadays, allowing to precompute large quantities

to which one has an almost immediate access. Here is a simplified version

of the main loop:

{getbounds(zmin:small, valini:real, zmax:small) =

my(maxi:real, valuesliouville:vecsmall, gotit:vecsmall,

valuel:real, bound:small, pa:small);

/* Precomputing lambda(n): */

valuesliouville = vectorsmall(zmax-zmin+1, m, 1);

gotit = vectorsmall(zmax-zmin+1, m, 1);

forprime (p:small = 2, floor(sqrt(zmax+0.0)),

bound = floor(log(zmax+0.0)/log(p+0.0));

pa = 1;

for(a:small = 1, bound,

pa *= p;

for(k:small = 1, floor((zmax+0.0)/pa),

if(k*pa >= zmin,
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valuesliouville[k*pa-zmin+1] *= -1;

gotit[k*pa-zmin+1] *= p,))));

/* Correction in case of a large prime factor: */

for(n:small = zmin, zmax,

if(gotit[n-zmin+1] < n,

valuesliouville[n-zmin+1] *= -1,));

valuel = (valini + 0.0) + valuesliouville[1]/zmin;

maxi = max( valini*sqrt(zmin+0.0), abs(valuesl*sqrt(zmin+1.0)));

/* Main loop: */

for(n:small = zmin+1, zmax,

valuel += valuesliouville[n-zmin+1]/n;

maxi = max(maxi, abs(valuel)*sqrt(n+1.0)));

return([maxi, valuel]);

}

We used this loop to compute our maximum on intervals of length 2 ·107.

The main function aggregates these results by making the interval vary. The

computations took about half a day on a 64 bits fast desktop equipped of

8G of RAM. In the actual script, we also checked that the computed value

of `(x) is non-negative in this range. Going farther would improve on the

final constants, but only when x/q is large. We compared |`(x)| with 1/
√
x,

and this seems correct for small values, but the works [9] and [8] suggest

that the maximal order is larger than that.

Lemma 2.2. The function

T (y) : y 7→ log y

y

∫ y

√
X0

dv

log v

satisfies T (105) ≤ 1.119.

Proof. We check numerically that the function T is increasing and then de-

creasing, with a maximum around 12478.8 with value 1.118 598 +O∗(10−6).

But this is only an observation, since a computer computes only a sample

of values. The bounded of T being easily bounded, we can rigorously infer

the claimed upper bound. The proof of Theorem 1.1 contains page 9 a sim-

ilar discussion, though with somewhat more details. The reader may also

consult [5] where a similar process is fully detailled.

5



The following lemma is a simple exercise:

Lemma 2.3. We have

(2.1) `q(x) =
∑
u2≤x,
(u,q)=1

mq

(
x/u2

)
/u2.

We shall use it only when q = 1, but it is equally easy to state it in

general.

Lemma 2.4. For x > 1, we have |`(x)| ≤ 0.55/ log x.

For x ≥ 3310, we have |`(x)| ≤ 0.155/ log x.

For x ≥ 8918, we have |`(x)| ≤ 0.099/ log x.

Proof. We appeal to Lemma 2.3 (with q = 1) and separate the sum accord-

ing to u ≤ U or u > U where x/U2 ≥ X0. When u ≤ U we apply (1.2), in

the other case we use that |m(x)| ≤ 1

|`(x)| ≤ 0.03
∑
u≤U

1

u2 log(x/u2)
+

1 + U−1

U

With f(t) = 1/(t2 log(x/t2)), we check that

f ′(t) = − 2

u3 log(x/t2)
+

2

u3 log2(x/t2)
.

This quantity is non-positive 1 ≤ t ≤ U , since then x/U2 ≥ X0 ≥ e. We

thus have∑
u≤U

1

u2 log(x/u2)
=
∑
u≤U

(
f(U)−

∫ U

1

f ′(t)dt
)
≤ Uf(U)−

∫ U

1

tf ′(t)dt

≤ f(1) +

∫ U

1

f(t)dt ≤ 1

log x
+

∫ U

1

dt

t2 log(x/t2)
.

Changing variables we get

∑
u≤U

1

u2 log(x/u2)
≤ 1

log x
+

1√
x

∫ √x
√
x/U2

dv

2 log v
.

It follows that

|`(x)| ≤ 0.03

log x
+

0.03√
x

∫ √x
√
X0

dv

2 log v
+

1 +
√
X0/x√

x/X0

.
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We employ Lemma 2.2 at this level. Hence, when x ≥ 1010,

|`(x)| ≤ 0.03

log x
+

0.03 · 2 · 1.119

log x
+

1 +
√
X0/x√

x/X0

≤ 0.0983

log x
≤ 0.099

log x
.

We extend it to x ≥ 18 033 via Lemma 2.1, part one and two, and to x ≥
8918 by direct inspection. This inequality extends to x ≥ 1 by weakening the

constant 0.099 to 0.55. It is straighforward to use some mild computations

to check the validity of the bound 0.155 when x ≥ 3310.

Adding coprimality conditions

Our tool is provided by the simple elementary lemma.

Lemma 2.5. We have

`q(x) =
∑
d|q

µ2(d)

d
`
(
x/d
)
.

The first part of Theorem 1.1 follows immediately by combining Lemma 2.5

together with Lemma 2.4. Actually, what comes out is the bound

|`q(x)| ≤ 0.55

Log(x/q)

∑
d|q

µ2(d)

d
=

0.55

Log(x/q)

∏
p|q

p+ 1

p
.

As the function q/ϕ(q) is easier to remember and
∏

p|q
p+1
p
≤ q/ϕ(q), we

simplify the above into

|`q(x)| ≤ 0.55

Log(x/q)

q

ϕ(q)
.

When x/q ≥ 3310, one can replace 0.55 by 0.155, and when x/q ≥ 8918,

by 1/10.

3 Back to the Moebius function with copri-

mality coditions

Let us start with a wide ranging estimate:

Lemma 3.1. We have, for every integer q ≥ 1 and every real number x ≥ 1,

|`q(x)| ≤ π2/6.
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Proof. This a direct consequence of Lemma 2.3 and [7, Lemma 10.2].1

The following lemma is again a simple exercise.

Lemma 3.2. We have

mq(x) =
∑
u2≤x,
(u,q)=1

µ(u)

u2
`q
(
x/u2

)
.

Proof of Theorem 1.1. We proceed to prove the estimate concerning mq(x),

starting by appealing to Lemma 3.2. We have, for a real parameter U such

that x > U2q,

|mq(x)| ≤
∑
u2≤x

µ2(u)

u2
∣∣`q(x/u2)∣∣

≤
∑
u≤U

q

ϕ(q)

0.55µ2(u)

u2 log(x/(u2q))
+
π2

6

∑
u>U

µ2(u)

u2

≤ q

ϕ(q) log(x/q)

(∑
u≤U

0.55µ2(u)

u2(1− 2 log u
log(x/q)

)
+
π2

6

∑
u>U

µ2(u)

u2
log(x/q)

)
.

This is our starting inequality.

Small values of x∗ = x/q
We first notice that the bound provided by [7, Lemma 10.2] proves the

estimate |mq(x)| log x∗ ≤ 2q/φ(q) when log x∗ ≤ 2.

We define

(3.1) ρ(U, y) = 0.55
∑
u≤U

µ2(u)

u2(1− 2 log u
y

)
+
π2

6

∑
u>U

µ2(u)

u2
y.

Note that ρ(U, y) = ρ([U ], y) where [U ] is the integer part of U . We want

to determine an upper bound for

min
1≤U<exp(y/2)

ρ(U, y).

This will determine our choice of parameter U . Here is the GP/Pari (see

[11]) script that we have used:

{rho(U, y) =

local(res = 0.0); U = floor(U);

res += 0.55*sum(n = 1, U, moebius(n)^2/n^2/(1-2*log(n)/y));

1If we were to adapt the proof presented in [7] to the case of λ instead of µ, we would
reach the bound 2 and not π2/6.
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res += Pi^2/6*y*sum(n = U+1,10000, moebius(n)^2/n^2);

return(res);}

{rhominloc(U, y) =

local(res = 10000.0);

for(n = 1, U, res = min(res, rho(n,y)));

return(res);}

{rhomin(y) = return(rhominloc(exp(y/2)-0.01,y));}

We use this part for y = log x ≤ 8. We get a numerical maximum

around y = 1.72 with value ≤ 2.0196 · · · . When 2 ≤ y ≤ 3, we get a nu-

merical local maximum around y = 2.5315 with value 1.9749983 · · · . Other

numerical local maxima appear between each integer, but the values taken

there are smaller. As the referee rightly pointed out, it is better to specify

really what the adjective “numerical” covers in the above description:

• We cannot claim that the function of y indeed has a single maximum

in a given interval, but only that this is so on a selection of values

very narrowly placed (every 10−7 say).

• It is however easy to see that the derivative of ρ(U, y) with respect to

y is bounded by (since U ≤ exp(y/2) − 0.01, we have y − 2 log u ≥
(1− e−0.01)y/2)

∂ρ(U, y)

∂y
= −0.55

∑
u≤U

µ2(u) Log u

u2y(y − 2 log u)
+
π2

6

∑
u>U

µ2(u)

u2
∈ [−160, 1].

This tells us that is a specific value of U , say U0 yields an upper

bound for min1≤U<exp(y/2) ρ(U, y) for some y and this ensures that

min1≤U<exp(y/2) ρ(U, y′) is not much more when y′ and y are close

enough; more specifically, we see that the corresponding error term

is taken care of by the truncation of the final result.

The article [5] contains full details of a similar process.

Large values of x∗ = x/q
We start from Lemma 3.2, from which we deduce the simpler bound:

|mq(x)| ≤
∑
u2≤x

∣∣`q(x/u2)∣∣/u2
9



which we then exploit in the same way as what is done in the proof of

Lemma 2.4, replacing the bound |m(x)| ≤ 1 by Lemma 3.1. With x = eU2q

and x∗ = x/q, we thus get

|mq(x)| ≤ q

ϕ(q)

0.55

log x∗
+

0.55 q

ϕ(q)

∫ √x∗/e

1

du

u2 log(x∗/u2)
+
π2
√
e

6

1 +
√
ex∗−1/2√
x∗

≤ q

ϕ(q)

0.55

log x∗
+

0.55 q

ϕ(q)
√
x∗

∫ √x∗
e

dv

2 log v
+
π2
√
e

6

1 +
√
ex∗−1/2√
x∗

≤ c(x∗)
q

ϕ(q) log x∗

with

c(x∗) = 0.55 + 0.55
log x∗√
x∗

∫ √x∗
e

dv

2 log v
+
π2
√
e

6

1 +
√
ex∗−1/2√
x∗

log x∗.

Some numerical work shows that the quantity in parentheses is ≤ 1.71 when

x∗ ≥ 2 500. When x∗ ≥ 3310, we can single out the term n = 1 and modify

the coefficient 0.55 to 0.155:

c1(x
∗) = 0.155 + 0.55

log x∗

4 log x∗
+ 0.55

log x∗√
x∗

∫ √x∗/4

e

dv

2 log v

+
π2
√
e

6

1 +
√
ex∗−1/2√
x∗

log x∗.

When x∗ ≥ 3× 3310, we single out the terms of index 1, 2, and 3 similarly.

The proof of Theorem 1.1 is complete.
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[10] Y. Motohashi. Primes in arithmetic progressions. Invent. Math.,

44(2):163–178, 1978.

[11] The PARI Group, Bordeaux. PARI/GP, version 2.5.2, 2011. http:

//pari.math.u-bordeaux.fr/.

[12] O. Ramaré. On Snirel’man’s constant. Ann. Scu. Norm. Pisa, 21:645–

706, 1995. http://math.univ-lille1.fr/~ramare/Maths/Article.

pdf.
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