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Abstract

We prove two explicit estimates respectively slightly stronger than
|
∑

d≤D µ(d)|/D ≤ 0.013/LogD for every D ≥ 1 100 000 and than
|
∑

d≤D µ(d)/d| ≤ 0.026/LogD for every D ≥ 61 000.

1 Introduction

There is a long litterature concerning explicit estimates for the summatory
function of the Moebius function, and we cite for instance [21], [1], [4], [3],
[6], [7], [10], [11]. The paper [5] proposes a very usefull annoted bibliography
covering relevant items up to 1983. It has been known since the beginning of
the 20th century at least (see for instance [13]) that showing that M(x) =∑

n≤x µ(n) is o(x) is equivalent to showing that the Tchebychef function
ψ(x) =

∑
n≤x Λ(n) is asymptotic to x. We have good explicit estimates for

ψ(x)− x, see for instance [19], [22] and [9]. This is due to the fact that we
can use analytic tools in this problem since the residues at the poles of the
Dirichlet generating series (namely here −ζ ′(s)/ζ(s)) are known. However
this situation has no counterpart in the Moebius function case. It would
thus be highly valuable to deduce estimates for M(x) from estimates for
ψ(x)− x, but a precise quantitative link is missing. I proposed some years
back the following conjecture:
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2 O. Ramaré

Conjecture (Strong form of Landau’s equivalence Theorem, II).
There exist positive constants c1 and c2 such that

|M(x)|/x ≤ c1 max
c2x<y≤x/c2

|ψ(y)− y|/y + c1x
−1/4.

Such a conjecture is trivially true under the Riemann Hypothesis. In this
respect, we note that [23] proves that in case of the Beurling’s generalized
integers, one can have MP(x) = o(x) without having ψ(x) ∼ x. This ref-
erence has been kindly shown to me by Harold Diamond whom I warmly
thank here.

We are not able to prove such a strong estimate, but we are still able
to derive estimate for M(x) from estimates for ψ(x) − x. Our process can
be seen as a generalization of the initial idea of [21] also used in [10]. We
describe it in the section 3, after a combinatorial preparation. Here is our
main Theorem.

Theorem 1.1. For D ≥ 1 078 853, we have∣∣∣∣∣∑
d≤D

µ(d)

∣∣∣∣∣ ≤ 0.0130 LogD − 0.118

(LogD)2
D.

The last result of this shape is from [10] and has 0.10917 (starting from
D = 695) instead of 0.0130.

On following an idea of [11] which we recall in the last section, we deduce
from the above the following estimate.

Corollary 1.2. For D ≥ 60 298, we have∣∣∣∣∣∑
d≤D

µ(d)/d

∣∣∣∣∣ ≤ 0.0260 LogD − 0.118

(LogD)2
.

The last result of this shape is from [11] and has 0.2185 (starting from
x = 33) instead of 0.0260. Here are two results that are simpler to remember:

Corollary 1.3. For D ≥ 60 200, we have∣∣∣∣∣∑
d≤D

µ(d)/d

∣∣∣∣∣ ≤ LogD − 4

40(LogD)2
.

If we replace the −4 by 0, the resulting bound is valid from 24 270 onward.

Corollary 1.4. For D ≥ 50 000, we have∣∣∣∣∣∑
d≤D

µ(d)/d

∣∣∣∣∣ ≤ 3 LogD − 10

100(LogD)2
.

If we replace the −10 by 0, the resulting bound is valid from 11 815 onward.
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We will meet another problem in between, which is to relate quantita-
tively the error term ψ(x)− x with the error term concerning the approxi-
mation of ψ̃(x) =

∑
n≤x Λ(n)/n by Log x− γ. This problem is surprisingly

difficult but [16] offers a good enough solution.

I thank Harald Helfgott for interesting discussions that pushed me into
pulling this note out of its drawer and François Dress for giving me the
preprint [11]. This paper was done in majority when I was enjoying the
hospitality of the Mathematical Sciences Institute in Chennai, and I thank
this institution and my hosts Ramachandran Balasubramanian, Anirban
Mukhopadhyay and Sanoli Gun for this opportunity to work in peace and
comfort.

Notation

We define the shortcuts R(x) = ψ(x) − x and r(x) = ψ̃(x) − Log x + γ,
where we recall that

(1.1) ψ̃(x) =
∑
n≤x

Λ(n)/n.

We shall use square-brackets to denote the integer part and parenthesis to
denote the fractionnal part, so that D = [D] +{D}. But since this notation
is used seldomly we shall also use square brackets in their usual function.

2 A combinatorial tool

We prove a formal identity in this section. Let F be a function and Z =
−F ′/F the opposite of its logarithmic derivative. We look at

F [1/F ](k) = Pk.

It is immediate to compute the first values and we find that

(2.1) P0 = F, P1 = Z, P2 = Z ′ + Z2, P3 = Z ′′ + 3ZZ ′ + Z3.

In general, the following recursion formula holds

(2.2) Pk = F (Pk−1/F )′ = P ′k−1 + ZPk−1.

Here is the result this leads to:

Theorem 2.1. We have

F [1/F ](k) =
∑

∑
i≥1 iki=k

k!

k1!k2! · · · · (1!)k1(2!)k2 · · ·
∏
ki

Z(i−1)ki .
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We can prove it by using the recursion formula given above. We present
now a different line. Let us exand 1/F (s+X) in Taylor series around X = 0.

1

F (s+X)
=
∑
k≥0

[1/F (s)](k)
Xk

k!
.

We do the same for −F ′(s+X)/F (s+X) getting:

−F ′(s+X)

F (s+X)
=
∑
k≥0

[Z(s)](k)
Xk

k!
.

Integrating formally this expression, we get

−Log(F (s+X)/F (s)) =
∑
k≥1

[Z(s)](k−1)
Xk

k!

where the constant term is chosen so that the constant term is indeed 0.
We then apply the exponential formula

exp

(∑
k≥1

xkX
k/k!

)
=
∑
m≥0

Ym(x1, x2, . . . )
Xm

m!

where the Ym(x1, x2, . . . ) are the complete exponential Bell polynomials
whose expression yields the Theorem above.

3 The general argument

Let us specialize F = ζ in Theorem 2.1. The left hand side therein has a
simple pole in s = 1 with a residu being the k-th Taylor coefficient of 1/ζ(s)
around s = 1, coefficient that we are to multiply by k!. Let us call Rk this
residue. By a routine argument, we get

(3.1)
∑
`≤L

1 ? (µLogk)(`) = RkL+ o(L).

Note that, thanks to Theorem 2.1, the error term is quantified in terms of
the error term in the approximations of both ψ(x)−x and ψ̃(x)−Log x+γ.
Getting to this error term in fact requires using a good enough error term
for both these quantities (see for instance [12]) . We then continue

(3.2)
∑
`≤L

µ(`) Logk ` =
∑
d≤L

µ(d)

(
Rk

L

d
+ o(L/d)

)

which ensures us that
∑

`≤L µ(`) Logk ` is o(LLogL).
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Case k = 2 is most enlightening. In this case, our method consist in
writing

(3.3)
∑
`≤L

µ(`) Log2 ` =
∑
d`≤L

µ(`)
(
Λ ? Λ(d)− Λ(d) Log d

)
.

As it turns out, the main term of the summatory function of Λ Log (namely
LLogL) cancels the one of Λ?Λ. This requires the prime number Theorem.
In deriving the prime number theorem from Selberg’s formula µ ? Log2 =
Λ Log +Λ ? Λ, it is a well known difficulty to show that both summands
indeed contribute and this is another show-up of the parity principle. We
modify (3.3) as follows:

(3.4) 2γ +
∑
`≤L

µ(`) Log2 ` =
∑
d`≤L

µ(`)
(
Λ ? Λ(d)− Λ(d) Log d+ 2γ

)
.

Case k = 1 is classical, but it is interesting to note that this is the
starting point of [21].

4 Some known estimates and straightforward

consequences

Lemma 4.1 ([18]). maxt≥1 ψ(t)/t = ψ(113)/113 ≤ 1.04.

Concerning small values, we quote from [17] the following result

(4.1) |ψ(x)− x| ≤
√
x (8 ≤ x ≤ 1010).

If we change this
√
x by

√
2x, this is valid from x = 1 onwards. Furthermore

(4.2) |ψ(x)− x| ≤ 0.8
√
x (1 500 ≤ x ≤ 1010).

Lemma 4.2.

|ψ(x)− x| ≤ 0.0065x/Log x (x ≥ 1 514 928).

Proof. By [8, Théorème 1.3] improving on [22, Theorem 7], we have

(4.3) |ψ(x)− x| ≤ 0.0065x/Log x (x ≥ exp(22)).

We readily extend this estimate to x ≥ 3 430 190 by using (4.2). We then
use the function WalkPsi from the script IntR.gp (with the proper model

function).

Lemma 4.3. For x ≥ 7 105 266, we have

|ψ(x)− x|/x ≤ 0.000 213.
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Proof. We start with the estimate from [20, (4.1)]

(4.4) |ψ(x)− x|/x ≤ 0.000 213 (x ≥ 1010).

We extend it to x ≥ 14 500 000 by using (4.2). We complete the proof by
using the following Pari/Gp script (see [15]):

{CalculeLambdas(Taille)=

my(pk, Lambdas);

Lambdas = vector(Taille);

forprime(p = 2,Taille,

pk = p;

while(pk <= Taille, Lambdas[pk] = p; pk*=p));

return(Lambdas);}

{model(n)=n}

{WalkPsi(zmin, zmax)=

my(res = 0.0, mo, maxi, psiaux = 0.0, Lambdas);

Lambdas = CalculeLambdas(zmax);

for(y = 2, zmin,

if(Lambdas[y]!=0, psiaux += log(Lambdas[y]),));

maxi = abs(psiaux-zmin)/model(zmin);

for(y = zmin+1, zmax,

mo = 1/model(y);

maxi = max(maxi, abs(psiaux-y)*mo);

if(Lambdas[y]!=0, psiaux += log(Lambdas[y]),);

maxi = max(maxi, abs(psiaux-y)*mo));

print("|psi(x)-x|/model(x) <= ", maxi, " pour ",

zmin, " <= x <= ", zmax);

return(maxi);}

Lemma 4.4. For x ≥ 59 843, we have

|ψ(x)− x|/x ≤ 0.0025.

Proof. The preceding Lemma proves it for x ≥ 7 105 266. On using (4.2), we
extend it to x ≥ 102 500. We complete the proof by using the same script
as in the proof of Lemma 4.3.

Lemma 4.5. For x ≥ 32 054, we have

|ψ(x)− x|/x ≤ 0.003.

Proof. The preceding Lemma proves it for x ≥ 7 105 266. On using (4.2), we
extend it to x ≥ 102 500. We complete the proof by using the same script
as in the proof of Lemma 4.3.
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We quote from [16] the following Lemma.

Lemma 4.6. When x ≥ 23, we have

ψ̃(x) = Log x− γ +O∗
(

0.0067

Log x

)
.

Let us turn our attention to the summatory function of the Moebius
function. In [6], we find the bound

(4.5) |M(x)| ≤ 0.571
√
x (33 ≤ x ≤ 1012)

In [7], we find

(4.6) |M(x)| ≤ x/2360 (x ≥ 617 973)

(see also [4]) which [2] (published also in [3]) improves in

(4.7) |M(x)| ≤ x/4345 (x ≥ 2 160 535).

Bounds for squarefree numbers

Lemma 4.7. We have for D ≥ 1∑
d≤D

µ2(d) =
6

π2
D +O∗(0.7

√
D).

For D ≥ 10, we can replace 0.7 by 0.5.

Proof. [1] (see also [2]) proves that∑
d≤D

µ2(d) =
6

π2
D +O∗(0.1333

√
D) (D ≥ 1 664)

and we use direct inspection using Pari/Gp to conclude.

Lemma 4.8. Let D/K ≥ 1. Let f be a non-negative non-decreasing C1

function. We have∑
D/L<d≤D/K

µ2(d)f(D/d) ≤ 1.31f(L) +
6D

π2

∫ L

K

f(t)dt

t2
+ 0.35

√
D

∫ L

K

f(t)dt

t3/2
.

Proof. We use a simple integration by parts to write

∑
D/L<d≤D/K

µ2(d)f(D/d) =
∑

D/L<d≤D/K

µ2(d)

(
f(K) +

∫ D/d

K

f ′(t)dt

)

=
∑

D/L<d≤D/K

µ2(d)f(K) +

∫ L

K

 ∑
D/L<d≤D/t

µ2(d)

 f ′(t)dt.
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We then employ Lemma 4.7 to get the bound:

6D

π2K
f(K) +

∫ L

K

6D

π2t
f ′(t)dt+ 0.7

√
D

K
f(K) + 0.7

∫ L

K

√
D

t
f ′(t)dt

Two integrations by parts gives the expression

6

π2
f(L) +

∫ L

K

6D

π2t2
f(t)dt+ 0.7f(L) + 0.35

√
D

∫ L

K

f(t)dt

t3/2
.

The Lemma follows readily.

5 A preliminary estimate on primes

Our aim here is to evaluate

(5.1) R4(D) =
∑

d1≤
√
D

Λ(d1)R(D/d1).

This remainder term is crucial in the final analysis and will be numerically
one of the dominant terms.

Lemma 5.1. When D ≥ 1, and
√
D ≥ T ≥ 1, we have

∑
d≤T

Λ(d)

dLog D
d

≤ 1.04 Log
LogD

Log(D/T )
+

1.04

LogD
.

Proof. Let us define f(t) = 1/
(
tLog D

t

)
. We have by a classical summation

by parts:

∑
d≤T

Λ(d)f(d) =
∑
d≤T

Λ(d)f(T )−
∑
d≤T

Λ(d)

∫ T

d

f ′(t)dt

≤ 1.04

Log(D/T )
− 1.04

∫ T

1

tf ′(t)dt

≤ 1.04

Log(D/T )
− 1.04[tf(t)]T1 + 1.04

∫ T

1

f(t)dt

≤ 1.04

LogD
+ 1.04

∫ D

D/T

dt

tLog t
≤ 1.04

LogD
+ 1.04 Log

LogD

Log(D/T )

as required.

Lemma 5.2. We have |R4(D)|/D ≤ 0.0065 when D ≥ 1010. When D ≥
1 300 000 000, we have |R4(D)|/D ≤ 0.0073.
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The proof that follows is somewhat clumsy due to the fact that we have
not been able to compute R4(D) for D up to 1010. By inspecting the ex-
pression defining R4 and the proof below, the reader will see one could try
to get a better bound for ∑

D1/4<d≤
√
D

Λ(d)R(D/d).

Indeed one can compute the exact values of R(D/d) and try to approximate
them properly so as not to loose the sign changes in the expression. A proper
model is even given by the explicit formula for ψ(x). We have however tried

to use the resulting polynomial, namely x −
∑
|γ|≤G x

1
2
+iγ/(1

2
+ iγ) with

G = 20, G = 30 and G = 200, but the approximation was very weak. It
may be better to find directly a numerical fit for R(x) on this limited range.
It should be noted that the function R(x) is highly erratical. Such a process
would be important since the value 0.0065 that we get here decides for a
large part of the final value in Theorem 1.1.

Proof. When D ≥ 15149282, we have by Lemma 4.2 and Lemma 5.1:

|R4(D)|/D ≤ 0.0065
∑
d≤
√
D

Λ(d)

dLog(D/d)
≤ 0.0065 ·

(
0.73 +

1.04

LogD

)
.

This implies that |R4(D)|/D ≤ 0.00499 in the given range. When 1010 ≤
D ≤ 15149282, we set T = D/1010, we write

|R4(D)|/D ≤ 0.000213
∑
d≤T

Λ(d)

d
+

1

D1/2

∑
T<d≤

√
D

Λ(d)√
d

≤ 0.000213 ψ̃(T )

+
1

D1/2

(
ψ(
√
D)− ψ(T )

D1/4
+

1

2

∫ √D
T

ψ(u)− ψ(T )

u3/2
du

)
i.e. on using ψ(u) ≤ u+

√
u,

|R4(D)|/D ≤ 0.000213 ψ̃(T )

+
1

D1/2

(
ψ(
√
D)

D1/4
− ψ(T )

T 1/2
+

1

2

∫ √D
T

ψ(u)

u3/2
du

)
≤ 0.000213 ψ̃(T )

+
1

D1/2

(√
D +D1/4

D1/4
− T −

√
T

T 1/2
+D1/4 −

√
T + Log

√
D

T

)
i.e. since ψ̃(x) ≤ Log x when x ≥ 1

|R4(D)|/D ≤ 0.000213 Log T

+
1

D1/2

(
2D1/4 − 2

√
T + 2 + Log

√
D

T

)
.
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We deduce that |R4(D)|/D ≤ 0.0065 when D ≥ 1010. When now 109 ≤
D ≤ 1010, we proceed as follows:

|R4(D)|/D ≤ 1

D1/2

(
ψ(1500)

15001/2
+

1

2

∫ 1500

1

ψ(u)

u3/2
du

)
+

0.8

D1/2

(
ψ(
√
D)− ψ(1500)

D1/4
+

1

2

∫ √D
1500

ψ(u)− ψ(1500)

u3/2
du

)
.

ψ(1500) = 1509.27 +O∗(0.01)

|R4(D)|/D1/2 ≤ (0.2− 0.8)
1509.3

15001/2
+ 0.642 + 0.8 · 1.04

(
2D1/4 − 15001/2

)
.

The right hand side is not more than 0.0073 when D ≥ 1 300 000 000.

6 The relevant error term for the primes

The main actor of this section is the remainder term R∗2 defined by

(6.1)
∑
d≤D

(Λ ? Λ(d)− Λ(d) Log d) = −2[D]γ +R∗2(D).

The object of this section is is to derive explicit estimate for R∗2 from explicit
estimates for the ψ. Most of the original work has been achieved already
in the previous section, and we essentially put things in shape. Here is our
result.

Lemma 6.1. When D ≥ 1 435 319, we have |R∗2(D)|/D ≤ 0.0213.

We start by an expression for R∗2.

Lemma 6.2.

|R∗2(D)| ≤ 2D|r(
√
D)|+ 2D1/2R(

√
D) +R(

√
D)2 +R(D) LogD

+ 1 + 2γ + 2R4(D) +

∣∣∣∣∫ D

1

R(t)
dt

t

∣∣∣∣
where R4 is defined in (5.1).

Proof. The proof is fully pedestrian. We have

∑
d≤D

Λ(d) Log d = ψ(D) LogD −
∫ D

1

ψ(t)dt/t

= D LogD −D + 1 +R(D) LogD −
∫ D

1

R(t)dt/t.
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Concerning the other summand, Dirichlet hyperbola formula yields∑
d1d2≤D

Λ(d1)Λ(d2) = 2
∑

d1≤
√
D

Λ(d1)
∑

d2≤D/d1

Λ(d2)− ψ(
√
D)2

= 2D
∑

d1≤
√
D

Λ(d1)

d1
−D

−2
√
DR(
√
D)−R(

√
D)2 + 2

∑
d1≤
√
D

Λ(d1)R(D/d1)

= D LogD − 2Dγ −D
+2Dr(

√
D)− 2

√
DR(
√
D)−R(

√
D)2 + 2R4(D).

We reach R∗2(D) = R3(D)−1+2R4(D)−R(D) LogD+
∫ D
1
R(t)dt/t, where

(6.2) R3(D) = 2Dr(
√
D)− 2γ{D} − 2

√
DR(
√
D)−R(

√
D)2.

The Lemma follows readily.

Lemma 6.3. For the real number D verifying 3 ≤ D ≤ 110 000 000, we
have

|R∗2(D)| ≤ 1.80
√
D LogD.

When 110 000 000 ≤ D ≤ 1 800 000 000, we have

|R∗2(D)| ≤ 1.93
√
D LogD.

We used a Pari/Gp script. The only non-obvious point is that we have
precomputed the values of Λ ?Λ−Λ ?Log on intervals of length 2 · 106. On
letting this script run longer (about twenty days), I would most probably
able to show that the bound |R∗2(D)| ≤ 2

√
D LogD holds when D ≤ 1010.

This would improve a bit on the final result.

Lemma 6.4. ∫ 108

1

R(t)dt/t = −129.559 +O∗(0.01).

See script IntR.gp.

Proof. We prove Lemma 6.1 here. Let us assume that D ≥ 1.3·109. We start
with Lemma 6.2. We bound r(

√
D) via Lemma 4.6 (this requires D ≥ 232),

then R(
√
D) by Lemma 4.4 (this requires D ≥ 320542), and R(D) LogD by

using Lemma 4.2 (this requires D ≥ 1 514 928). We bound R4 by appealing
to Lemma 5.2. We conclude by appealing to Lemma 4.3. All of that amounts
to the bound:

|R∗2(D)| ≤ 4 · 0.0067D

LogD
+ 0.006D + (0.003)2D + 0.0065D

+ 0.0073D + 132 + 0.000213D − 0.000213 · 108.
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We reach

(6.3) |R∗2(D)|/D ≤ 0.0213

when D ≥ 1.3 · 109. Thanks to Lemma 6.3, we extend this bound to D ≥
1 435 319.

7 Estimating M(D)

We appeal to (3.4) and use Dirichlet hyperbola formula. We get in this
manner our starting equation:

(7.1)
∑
d≤D

µ(d) Log2 d = 2γ +
∑

d≤D/K

µ(d)R∗2(D/d)

+
∑
k≤K

R∗2(k)
∑

D/(k+1)<d≤D/k

µ(d).

This equation is much more important than it looks since a bound for R∗2(k)
that is � k/(Log k)2 shows that the second sum converges. A more usual
treatment would consist in writing∑

d≤D

µ(d) Log2 d = 2γ +
∑

d≤D/K

µ(d)R∗2(D/d)

+
∑
k≤K

(Λ ? Λ− Λ Log +2γ)(k)
∑

D/K<d≤D/k

µ(d).

as in [21] for instance. However, when we bound M(D/k)−M(D/(k + 1))
roughly by D/(k(k + 1)) in (7.1), we get D

∑
k≤K |R∗2(k)|/(k(k + 1)) which

is expected to be O(D). On bounding M(D/k)−M(D/K) by D/k in the
second expression, we only get D

∑
k≤K |Λ ? Λ − Λ Log−2γ|(k)/k which

is of size D Log2K. Practically, if we want to use a bound of the shape
|M(x)| ≤ x/4345, we will loose the differenciating aspect and will bound
|M(D/k) −M(D/(k + 1))| by 2D/(4345 k) and not by D/(4345 k2). It is
thus better to use differentiation with respect to R∗2 when k is fairly small.
It turns out that small is large enough! We write

(7.2)
∑
k≤K

R∗2(k)
(
M(D/k)−M(D/(k + 1))

)
=
∑
k≤K

(Λ ? Λ− Λ Log +2γ)(k)M(D/k) +R∗2(K)M(D/K).

Lemma 7.1. When K = 462 848, we have∑
k≤K

|Λ ? Λ− Λ Log +2γ|(k)

k
+
|R∗2(K)|
K

≤ 0.03739× 4345.
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We can use the simple bound (6.3) and get, for D/K ≥ 2 160 535∣∣∣∣∑
d≤D

µ(d) Log2 d

∣∣∣∣/D ≤ 2γ

D
+ 0.0213

(
6

π2
Log

D

K
+ 1.166

)
+ 0.03739

≤ 0.0130 LogD − 0.144

with K = 462 848. Note that this lower bound of K has been chosen to
verify

462 848× 2 160 535 ≤ 1012.

Concerning the smaller values, we use summation by parts:

∑
d≤D

µ(d) Log2 d =
∑
d≤D

µ(d) Log2D − 2

∫ D

1

∑
d≤t

µ(d)
Log t dt

t

which gives, when 33 ≤ D ≤ 1012,∣∣∣∣∑
d≤D

µ(d) Log2 d

∣∣∣∣ ≤ 0.571
√
D Log2D + 2

∣∣∣∫ 33

1

∑
d≤t

µ(d)
Log t dt

t

∣∣∣
+2 · 0.571

∫ D

33

Log t dt√
t

≤ 0.571
√
D Log2D + 2.284

√
D LogD + 4.568

√
D − 43

and this is ≤ 0.0130 LogD − 0.144 when D ≥ 8 613 000. We extend this
bound to D ≥ 2 161 205 by direct computations using Pari/Gp.

Let us state formally:

Lemma 7.2. For D ≥ 2 161 205, we have∣∣∣∣∑
d≤D

µ(d) Log2 d

∣∣∣∣/D ≤ 0.0130 LogD − 0.144.

8 A general formula and proof of Theorem 1.1

Let (f(n)) be a sequence of complex numbers. We consider, for integer
k ≥ 0, the weighted summatory function

(8.1) Mk(f,D) =
∑
n≤D

f(n) Logk n.

We want to derive information on M0(f,D) from information on Mk(f,D).
The traditional way to do that is in essence due to [14] and goes via a
differential equation. It turns out that it is clearer and somewhat more
precise to use the identity that follows.
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Lemma 8.1. We have, when k ≥ 0, and for D ≥ D0,

M0(f,D) =
Mk(f,D)

LogkD
+M0(f,D0)−

Mk(f,D0)

LogkD0

− k
∫ D

D0

Mk(f, t)

tLogk+1 t
dt.

This formula in a special case is also used in [21] and [10].

Proof. Indeed, we have

k

∫ D

D0

Mk(f, t)

tLogk+1 t
dt = −Mk(f,D0)

LogkD0

+
∑
n≤D

f(n)
Logk n

LogkD
−

∑
D0<n≤D

f(n)

Proof. We proceed to the proof of Theorem 1.1. In the notation of Lemma 8.1,
we have M(D) = M0(µ,D). We have by Lemma 7.2 and with D0 =
2 161 205:

|M(D)| ≤ 0.0130 LogD − 0.144

Log2D
D +M(D0)−

M2(µ,D0)

Log2D0

+2

∫ D

D0

0.0130 Log t− 0.144

Log3 t
dt.

≤ 0.0130 LogD − 0.144

Log2D
D − 3.48 + 2

∫ D

D0

0.0130 Log t− 0.144

Log3 t
dt.

≤ 0.0130 LogD − 0.118

Log2D
D − 3.48

−0.0260
D0

Log2D0

−
∫ D

D0

0.236

tLog3 t
dt.

(We used Pari/Gp to compute the quantity M(D0)−M2(µ,D0)/Log2D0).
We conclude by direct verification, again by relying on Pari/Gp.

9 From M to m

We take the following Lemma from [11, (1.1)].

Lemma 9.1 (El Marraki). We have

|m(D)| ≤ |M(D)|
D

+
1

D

∫ D

1

|M(t)|dt
t

+
LogD

D
.

This Lemma may look trivial enough, but its teeth are hidden. Indeed, a
usual summation by parts would bound |m(D)| by an expression containing
the integral of |M(t)|/t2. An upper bound for |M(t)| of the shape ct/Log t
would hence result in the useless bound m(D)� Log LogD.
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Proof. We reproduce the proof, as it is short and the preprint we refer to is
difficult to find. We have two equations, namely:

(9.1) m(D) =
M(D)

D
+

∫ D

1

M(t)dt

t2

and

(9.2)

∫ D

1

[
D

t

]
M(t)dt

t
= LogD.

We deduce from the above that

m(D) =
M(D)

D
+

1

D

∫ D

1

(
D

t
−
[
D

t

])
M(t)dt

t
+

LogD

D
.

The Lemma follows readily.

Proof. We have, when D ≥ D0 = 1 078 853,

|m(D)| ≤ 0.0130 LogD − 0.118

(LogD)2
+

1

D

∫ D

D0

0.0130 Log t− 0.118

(Log t)2
dt

+
1

D

∫ D0

1

|M(t)|dt
t

+
LogD

D
,

≤ 0.0130 LogD − 0.118

(LogD)2
+

1

D

∫ D

D0

0.0130dt

Log t

− 1

D

∫ D

D0

0.118dt

(Log t)2
+

301 + LogD

D
.

We continue by an integration by parts and some numerical computations:

|m(D)| ≤ 0.0260 LogD − 0.118

(LogD)2
− 0.105

D

∫ D

D0

dt

(Log t)2
+
−9795 + LogD

D
,

≤ 0.0260 LogD − 0.118

(LogD)2
− 1

D

∫ D

D0

dt

t
+
−9795 + LogD

D

This proves that |m(D)|(LogD)2 ≤ 0.0260 LogD − 0.118 as soon as D ≥
1 078 853. We extend this bound by direct inspection.
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