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ABSTRACT

Populations balance models have been applied to the simultaneous aggregation and breakage of solid clusters in

agitated  liquid  metal.  Challenges  for  these  systems  lie  in  kinetics  constants  determination  (kernels)  from

experimental  clusters  concentrations  measurements.  However,  due  to  difficulties  inherent  to  molten  metals

experimentation  (severely  limiting  available  data  points  and  replication),  and  lack  of  literature  information

concerning the physical phenomena involved, more advanced inverse methods were needed.  Taking into account

physical characteristics, theoretical approaches using reactions networks proved the existence of at least one stable

positive equilibrium state. This result allowed the construction of two distinct fitting algorithms, aimed at solving

the corresponding  inverse  problem (kernels  determination  from experimental  data).  The first  of  these  heuristic

methods  accurately  identifies  kernels  parameters  from  perfect  steady  state  data,  while  the  second,  based  on

transitory states, reliably leads to correct results with as few data points as 2, and measurements errors as high as

5%.
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1 Introduction

Populations balances are a common class of models with a wide range of applications, from biology and population

ecology, to chemical engineering 1. This paper will address specifically the use of populations balance models in the

context of particulate clusters aggregation and breakage in agitated liquid media.

Generally speaking, populations balance problems are characterized by three main elements: 

- a set of boundary conditions (initial state, eventual entrance or exit fluxes for clusters)

- a reaction network (describing every possible interaction between clusters)

- a set of kernels (linking reactions kinetics to physical data and parameters) – in our case, the aggregation kernel

will describe the mechanisms by which clusters colliding through liquid drag merge into larger clusters, while the

breakage kernel will address clusters separation under liquid turbulence

While literature shows numerous examples of kernels models built upon theoretical considerations, experimental

validations are notoriously less frequent and much more complicated to implement. Determination of experimental

kernels characteristics (kernel model type, and the corresponding physical parameters) is thus a difficult but critical

task, needed to advance comprehension in this domain. Usual methods involve optical  in-situ measurements of

clusters concentrations during aggregation experiments, with the resulting concentrations evolutions with time being

matched  to  those  provided  by  populations  balance  simulations.  While  this  approach  is  suitable for  ordinary

transparent media (such as water and most common solvents), the opacity of other fluids, such as liquid metals,

makes it highly impractical, when at all possible. This obstacle is compounded by the uneasy transposition of results

obtained in simple cases to more difficult ones, owing to:

- considerable quantitative changes in fluid properties (viscosity – ranging from 2x10-4 for Rb to 5.5x10-3 Pa.s for

Co-, volumetric mass…)

- qualitative modifications of  involved physics: wettability (and thus surface tension), for  instance, has differing

meaning and mechanisms in water and liquid steel (due to the different bonds – hydrogen or metallic – present in

these two media)
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General investigations of the inverse problem linked to population balances (e.g. the determination of aggregation or

breakage kernels from clusters concentrations data) revealed it as ill-posed, adding theoretical  difficulties to the

experimental ones. Following works from Narsimhan et al.2 , Sathyagal et al.3, and Wright et al.4, many studies

managed to devise successful protocols for kernels determination under the hypothesis of scaling behavior. Other

regularization approaches involved approximation of kernel expressions with parametric functions such as Hermite

splines5, or by using  the method of moments 6,7. All these procedures typically require access to a large amount of

experimental data, either to validate their hypotheses, or to carry out their calculations. Sensitivity to experimental

noise has only been investigated in some rare studies, such as  8 or  9 (limited to elementary kernels forms: sum,

product, and constant). The corresponding observations seem to imply that most solving methodologies for inverse

population balances additionally suffer from ill-conditioning.

In this work, we will provide tools and algorithms to determine kernels characteristics (general kernels models, then

orders of magnitude for their parameters),  in the context of realistic laboratory model experiments, and under the

most commonly encountered conditions in liquid metals:

-  non  repeatability  of  initial  conditions;  while  some  experimental  conditions  such  as  temperature  or  media

hydrodynamics can easily be imposed,  controlled introduction of particles  in liquid metals has been shown by

decades of research to be a currently impossible task (10,11, 12, 13, 14, 15, 16 providing examples of such attempts). The

initial clusters concentrations distribution can thus be measured, but not set.

- limited number of experimental points; this restriction follows from the use of samples for measurements, typically

through metallographic analysis.  As sampling disturbs the media,  it  must thus be kept to a  minimum (up to a

maximum 3 or 4 samples per experiment).

- concentrations measurements errors: metallographic analyses are carried out on 2-dimensional cross-sections from

sampled ingots, while clusters are 3-dimensional structures, leading to unavoidable errors. Furthermore, the method

is  destructive,  forbidding  measurements  duplication  to  lessen  uncertainty  through  statistical  methods.  X-ray

tomography could provide similar data but seems more appropriate to study individual cluster 3D characteristics (as

shown in 17) than global concentration distributions.

4



The second part of this paper will detail the formalism and hypotheses used for populations balance problems under

the aforementioned conditions, then discuss the existence and nature of potential steady states. The third part will

concern  itself  with  new  heuristic  algorithms  to  determine  kernels  from  realistic  experimental  data,  and  their

limitations.
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2 Theoretical analysis of the population balance problem

Chemical  kinetics  formalism  will  be  used  for  both  aggregation  and  breakage  reactions,  even  though  these

phenomena are physical in nature for the cases considered. 

2.1 Model hypotheses:

H1 Quantization of clusters size

Existence of a minimal cluster size is postulated, and all clusters are considered aggregates of these elementary

particles. This hypothesis is both realistic (as monocrystalline oxide can be considered discrete, and ultimately is at

atomic scale) and not (aggregation phenomena and properties for atoms differ widely from those of macroscopic

clusters, leading to transitions in models long before reaching atomic scale). However, experimental use of non-

reactive (thus unbreakable) elementary particles of calibrated size coincides well with this modeling.

H2 Continuity of clusters concentrations

While classically used, this approach is highly unrealistic, as single clusters can only react in full, and concentrations

values  should thus be discrete.  However,  literature generally  postulates that  long term stochastic variations are

similar  to the corresponding deterministic steady state,  even if formal proofs  have only been  given under very

restrictive conditions 18. 

H3 Closed system / elementary particles conservation

While  highly  unrealistic  for most  practical  cases,  this  hypothesis  can  be  justified  in  the  context  of  model

experiments  where  unitary  particles  are  introduced  once  in  the  medium and not  removed.  Results  from these

simplified experiments could be transposed to more complex situations. One example for such adaptation would be

to take clusters entrance into account via additional nucleation mechanisms. From this hypothesis, with V the total

volume considered, and n the total number of elementary particles, conservation Eq. 1 can be deduced.

∑
i=1

i=∞

i⋅[ i ]= ∑
i= 1

i=N≤n

i⋅[ i ]=
n
V

 (1)

6



Following from hypotheses H1, H3, and the necessary finite volume of experimental devices, one can deduce the

existence of a maximum cluster size N=n (corresponding to the totality of elementary particles aggregated as a

single  cluster).  An  interesting  consequence  is  that  simulations  involving  finite  size  kernels  are  sufficient  to

completely describe the aggregation/breakage problem as formulated in Eq. 2.

∀ ( i,j )∈ℕ2 , i+j>N, {
k i,j=0
k i,j=0 }  (2)

Using the notations from symbols table, the most general expression for quantized aggregation/breakage population

balance problems is thus given by Eq. 3.

˙[ i ]= ∑
j=1

j=⌊ i
2 ⌋

ϕ j,i− j− ∑
j=1

j=N −i

(1+δi,j )⋅ϕ i,j
 (3)

H4 Aggregation and breakage phenomena as binary reversible reactions (see Eq. 4).

Reversibility accounts for some unusual aspects of this work, as pure aggregation or breakage have been studied

separately  in several  instances  (19,  20,  21,  or  22,  for  example),  but  much more scarcely  together.  This hypothesis

implies the existence of at least one reversible aggregation reaction in the system, but does not assume reversibility

for each.

Ri,j : i+ j ⇔ (i+j ) , ∀ (i,j )∈ℕ2  (4)

H5 First order kinetics for both aggregation and breakage reactions (e.g. use of mass action kinetics).

This hypothesis is commonly used  for diluted suspensions, and expressed as Eq. 5, with k i,j and k*
i,j  the kinetics

coefficients  corresponding  to  aggregation  and  breakage  kernels  respectively.  H5  also  implies  that  kinetics

coefficients are independent from clusters concentrations.

ϕ i,j =k i,j⋅[ i ]⋅[ j ]−k i,j
 *⋅[ i+j ] , ∀ ( i,j ) , i+j N⩽  (5)
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2.2 Existence of equilibrium states

Theorems developed for  chemical  reactions networks can  be used to  evaluate the existence  and uniqueness  of

equilibrium  states  for  coupled  chemical  reactions  systems.  The  peculiarity  of  this  approach  resides  in its

independence from kinetics coefficients and initial conditions, being based on the structure of reactions networks

alone. While no general method was discovered to determine networks equilibrium properties, various theorems

have been devised to conclude under more restrictive conditions (summarized for instance in  23 or  24). Examples

include  deficiency  zero  and  deficiency  one  theorems  25,  higher  deficiency  algorithm  26,  or  injectivity  27 and

concordance 28 tests.

In the context of chemical reactions networks, species refer to pure chemical species (in our case, a species includes

all  clusters of a given size),  while  complexes correspond to sets of species  appearing on at  least one side of a

reaction (they are thus every single clusters sizes and every couples of 2 clusters sizes).

Reaction graphs (see 29 for other possible representations) corresponding to the population 

balance problem with the aforementioned hypotheses are summarized in Figure 1. General properties and concepts

pertaining to these networks will be detailed in the following sections:

2.2.1 Reversibility

Weak reversibility defines the existence, for each linked complexes couple (C1, C2), of oriented paths linking C1 to

C2, and C2 to C1.  As population balance reaction graphs present no cycle, the network is either fully reversible

(when each effective reaction is reversible), or not reversible at all (when at least one reaction is not reversible).

Weak reversibility is equivalent to complete reversibility for the population balance networks studied.
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2.2.2 Number of linkage classes l

A linkage class is defined as a set of complexes that are linked together through reactions. In the case of population

balance problems, there are (N-1) linkage classes (as expressed in Eq. 6), each one corresponding to all reversible

reactions leading to the formation of each clusters size ranging from 1 to (N-1).

l ( N ) =N −1  (6)

2.2.3 Number of complexes m

As visible in Figure 1, the reaction network contains (N-1) single species complexes, and k binary complexes per

linkage class linked to k-size single clusters complex, summed in Eq. 7.

m ( N )=( N−1 )+∑
k= 2

k=N

⌊ k
2 ⌋= ( N −1 )+⌊ N

2 ⌋⋅(N −⌊ N
2 ⌋)  (7)

2.2.4 Stoichiometric sub-space dimension s

The stoichiometric sub-space is defined as the vector space spanned by all chemical  reactions belonging to the

network. In the case of population balance problems, the easiest  way to determine its dimension is to exhibit a

(mathematical) basis for this space.

It can be noticed that each reaction of the network defined in Eq. 4 can be decomposed in a sum of reactions

involving the aggregation of single elementary particle to existing clusters, as expressed in Eq. 8.

Ri,j= ∑
l=j

k=i+j−1

R1 ,l−∑
k=1

k=i

R1 ,k  (8)

These  (N-1) reactions  are  independent,  and  thus  form a  basis  for  the  stoichiometric  sub-space,  leading  to  the

conclusion (Eq. 9) that its dimension equals (N-1):

s ( N ) =N −1  (9)
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2.2.5 Stoichiometric compatibility class

A stoichiometric compatibility class is defined as the set of clusters concentrations distributions that can be obtained

from a given initial state (initial concentrations distribution) through any combination of the network reactions. Due

to the H3 hypothesis of total elementary particles conservation, the stoichiometric compatibility class associated to a

starting concentrations distribution with a total concentration of unitary particles n/V, is a subset of concentrations

distributions with (obviously) the same concentration of elementary particles of n/V.

From the following observations:

-  the  set  of  concentrations  distributions with  n/V elementary  particles  concentration  is  of  dimension  (N-1)  (N

clusters sizes concentrations which are linked by Eq. 1) 

-  any  stoichiometric  compatibility  class  of  the  population  balance  problem shows  the  same  dimension  as  the

stoichiometric sub-space, which was determined in the preceding paragraph as (N-1)

It can be concluded about the identity between the stoichiometric compatibility class associated with any clusters

concentrations  distribution  totaling  n/V elementary  particles  per  volume  unit,  and  clusters  concentrations

distributions with n/V total elementary particles concentration.

The stoichiometric compatibility class of n/V elementary particles concentration can be represented, in the vector

space  of  clusters  concentrations  distributions,  by  a  simplex  bounded  by  N  vertices  (each  corresponding  to  a

concentrations distribution with a unique non-zero clusters size concentration).

2.2.6 Deficiency

Deficiency  is  an  important  function  of  reaction  networks,  as  its values  can  help  determine  the  existence  and

uniqueness of equilibrium states. Its expression (using definitions and notations detailed previously) is given as Eq.

10.

δ=m − l − s  (10)

This allows the determination of deficiency as a function of maximum cluster size N (Eq. 11).
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δ ( N )=⌊ N
2 ⌋⋅(N −⌊ N

2 ⌋)−N+1  (11)

Deficiency will be evaluated for populations balance networks as a function of maximum cluster size N, and its

consequences in terms of equilibrium states will be detailed, using deficiency zero and one theorems (as reminded

below, from 25) for simple cases, and properties of embedded networks when N value increases:

Deficiency Zero Theorem 

If a mass action system is applied to a weakly reversible and deficiency zero reaction network, then, independently

from  kinetics  constants,  the  system has  exactly  one  equilibrium concentration  in  each  positive  stoichiometric

compatibility class.

Deficiency One Theorem 

If a weakly reversible reaction network shows the three following properties:

- deficiency for each of its linkage classes is less than 2

- deficiency of the whole network equals the sum of its linkage classes deficiencies

- each of its linkage class contains only one terminal strongly linked component

Then every mass action system permitted by the network admits a positive equilibrium.

2.2.6.1 N=2 case

Deficiency equals zero. If the corresponding network is weakly reversible (e.g. the only reaction in the network is

reversible – all kinetics constants are strictly positive), according to zero deficiency theorem, the reaction network

for these population balance problems has then exactly one stable positive equilibrium state.
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2.2.6.2 N=3 case

Deficiency equals zero. If the corresponding network is weakly reversible (e.g. the 2 reactions in the network are

reversible – all kinetics constants are strictly positive), according to zero deficiency theorem, the reaction network

for these population balance problems has then exactly one stable positive equilibrium state.

2.2.6.3 N=4 case

Deficiency equals one. According to deficiency one theorem  25,  deficiency of each linkage class in the network

should be evaluated in order to prove existence and/or uniqueness of equilibrium states. From the data summarized

in Table 1, each linkage class has deficiency equal to zero, while the sum of all deficiencies is one, which precludes

the  use  of  deficiency  one  theorem.  However,  the  deficiency  one  algorithm  30,  used  through  the  CRNToolbox

implementation (developed by  Martin Feinberg Group for Chemical Reaction Network Theory at The Ohio State

University), can successfully determine that such networks admit either exactly one stable positive equilibrium state,

or none, depending on the reversibility of individual reactions, as summarized in Table 2.

2.2.6.4 N>4 case

For N greater than 4, the corresponding deficiency is greater than 1 and increasing with N. Simple theorems and

classical approaches (such as  31,32,33,34,35,36,23,37,38, or  29) cannot be applied anymore. According to  39, it is however

possible to conclude on the existence of steady states using the following property: a reaction network admits at

least the same number of stable positive equilibrium states as one of its embedded networks with which it shares the

exact same stoichiometric sub-space. In the context of reactions networks, an embedded network is constructed from

an initial network by the removal of any number of reactions and/or chemical species. 

An example of such an embedded network applied to population balance is presented in Figure 2, and obtained

through the removal of every reaction not corresponding to the aggregation of single elementary particles to clusters.

As presented before, dependency of characteristic functions for the embedded network can be expressed in Eq. 12,

Eq. 13, and Eq. 14 with N as a variable.

m ( N )=2⋅( N−1 )  (12)
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l ( N ) =N −1  (13)

s ( N ) =N −1  (14)

Deficiency can then be expressed in Eq. 15 as a function of the maximum cluster size.

δ ( N ) =m ( N )− l ( N )−s ( N )=0  (15)

By  construction,  the embedded  network  stoichiometric  sub-space  is  included  into  the  original  network

stoichiometric sub-space.  Furthermore,  these sub-spaces  share  the same dimension (Eq. 9 and Eq. 14),  and are

subsequently  one  and  the  same.  Consequently,  under  the  condition  of  embedded  network  weak  reversibility

(equivalent to the reversibility of the aggregation reactions of single elementary particles to clusters, with this choice

of embedded network), zero deficiency theorem applies to the embedded network, which then admits exactly one

stable positive equilibrium state. From 33, the reaction network for population balance problems has then at least one

stable positive equilibrium state.

It  should  be  noted  that  such  reasoning  can  be  applied  to  any  embedded  network  comprised  of  exactly  one

(effectively) reversible reaction per linkage class of the original network.

As a conclusion for N>4 population balance problems, the existence of at least one stable positive equilibrium state

is  guaranteed,  provided  (sufficient  condition)  there  is  at  least  one  effectively  reversible  aggregation/breakage

reaction leading to the formation of each clusters size ranging from 2 to N. 

2.3 Multiplicity of equilibrium states

An example will show the potential for multiple equilibrium states in a given population balance problem. Kernel

data are summarized in Table 3, and the corresponding boundary conditions are following: maximum cluster size of

N=5, total elementary particles concentration of 1 particle per volume unit. In this case,  two equilibrium states

shown in Table 4 are allowed, depending on initial conditions (e.g. starting clusters concentrations distribution) of

the problem. 

In order to assess the dependency of equilibrium states multiplicity with boundary conditions (and especially total

elementary particles concentration), population balance simulations were carried out (until steady state) using this
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same kernel and multiple starting points inside various stoichiometric compatibility classes. As demonstrated before,

in the case of population balance problems verifying H3 hypothesis, a compatibility class corresponds to all clusters

concentrations distributions with a given elementary particles total concentration.

As  mentioned  in  1.2.5,  each  stoichiometric  compatibility  class  can  be  seen  as  a  simplex  in  the  clusters

concentrations distributions vector space. As a way to maximize the regularity of simulation starting points, they

were chosen as evenly spaced points on each edge of the simplex.

Edges are defined as linking two distinct vertices of the simplex, which in turn correspond to clusters concentrations

distributions with only one non-zero concentration. Concentrations distributions belonging to an edge can thus be

expressed as Eq. 16.

(i,j ) ∈(1: N= 5 )
2 ,i<j, {∀ l ∈[0,1 ] ,([1 ]=0 , .. . , [i ]=

n
V⋅i

⋅l, . . . , [ j ]=
n

V⋅ j
⋅(1−l ) ,. . . , [ N ]=0)}  (16)

Five  evenly  spaced  concentrations  distributions on  each  edge for  every  compatibility  class  have  been  used  as

starting points. For N=5, the simplex has 10 edges, for a total of 35 starting concentrations distributions, defined by

Eq. 17.

(i,j ) ∈(1: N= 5 )
2 ,i<j, {∀ l ∈{0 ,

1
4

,
1
2

,
3
4

,1} ,([ 1 ]=0 , .. . , [i ]=
n

V⋅i
⋅l, .. . , [ j ]=

n
V⋅ j

⋅(1−l ) ,. . . , [ N ]=0)}
(17)

From these  initial distributions, steady states were  computed through population balance simulations, using tools

detailed in part  3: “Kernels  determination through experimental  data fitting”. Three consecutive time step sizes

(2.10-3s; 2.10-6s; 2.10-9s), have been applied 104 times each. Final instant concentrations variations were verified to

be less than 10-10 particles per volume unit and second, confirming that steady states were actually reached. 

Comparison between equilibrium states derived from starting concentrations distributions corresponding to the same

stoichiometric class has been carried out through Bhattacharyya distance calculations. The upper bound of computed

distances for each class (equivalent to a given total elementary particles concentration value) is represented in Figure

3. As visible on the figure, low and high values of particles concentration are characterized by a single equilibrium

state, while intermediary values allow the existence of multiple (in fact two) balance states. Since the kernel used is
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the same for all concentrations, this last parameter alone cannot be used to determine the multiplicity of solutions for

population  balance  problems  with  clusters  sizes  higher  than  4.  As  a  conclusion,  while  the  reactions  network

structure allows the  possibility  of  multiple equilibrium states  for  N greater  than 4,  boundary conditions (total

particles number, maximum clusters size) impose the actual number of steady states.

2.4 Kernel models

Apart from the 3 classical elementary kernel forms (namely, constant, sum, and product), which have the advantage

of  providing  analytical  solutions  40,  but  do  not  correspond  to  any  realistic  experimental  setup,  several  kernels

formalisms  have  been  developed  for  various  applications  (coagulation  of  solid  suspensions  in  liquids,

polymerization kinetics, liquid drops coagulation in gas...). Generally speaking, aggregation kernels were far more

investigated than breakage ones, hence explaining their higher mathematical complexity and number of variants.

In the limited scope of solid clusters coagulation and breakage in liquids, 6 general kernel classes (3 for aggregation,

and 3 for breakage) can be derived from literature reviews (41, for example). They are detailed in Table 5. Each of

these mathematical expressions corresponds to several physical models (for example, Kruis-Kuster and Saffman-

Turner models are both variants of the turbulence type 1 general  model), the physical  meanings of coefficients

varying wildly with the hypotheses used in their construction.

As  easily  visible  from  the expressions  in Table  5,  aggregation  (respectively  breakage)  kernel  coefficients  ki,j

(respectively ki,j
*) can locally (e. g. for an (i,j) clusters couple) take a value of zero, only if the corresponding kernel

is a constant and null. From this observation, it can be deduced that either each aggregation reaction is reversible, or

none is. In combination with H4 hypothesis, it can be concluded that classical kernel expressions lead to reversible

reactions exclusively, which in turn (using demonstrations from the preceding paragraphs) ensures the existence at

least one stable positive equilibrium state, independently from maximum clusters size.

2.5 Nature of equilibrium states

The most general form of equilibrium is the complex balanced state, which is characterized by the lack of evolution

of complexes (and consequently species) concentrations with time. A more restrictive case is the so-called detailed
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balanced state, in which each elementary aggregation/breakage reaction is balanced. As such,  detailed balanced

states are much simpler to investigate theoretically, since they can be studied through the classical tools of single

reaction kinetics. We will identify some necessary conditions for the existence of detailed balanced state in the

context of population balance problems.

If an equilibrium state is detailed balanced,  using the chemical kinetics formalism, and  under the hypothesis of

reversibility for each reaction, a general expression for equilibrium constants is given by the Eq. 18 system.

{K ij=
[ (i+j ) ]eq

[ i ]eq⋅[ j ]eq

=
k ij

k
ij

 *}( i= 1. . . N −1 ,j= 1. . .i,i+j≤ N )
 (18)

Easily verified recursive reasoning using Eq. 18 gives relationships between generic  equilibrium constants, and

constants corresponding to the reactions involving the aggregation of elementary particles. The resulting expressions

in Eq. 19 constitute a necessary condition for detailed balanced states.

{K ij=

∏
l=max ( i,j )

i+j−1

K 1 l

∏
k=1

min (i,j )−1

K 1 k }( i,j ) ∈(ℝ ∖ {1 } )
2

 (19)

A simpler incremental formulation, as shown in Eq. 20, can be used as a criterion to rule out the possibility of

detailed balanced states. If this criterion is different from 1 for at least one (i,j) couple in a given kernel, balanced

states can only be of the complex variety for this kernel.

{
K1 ,i⋅K i+1 ,j

K 1 ,i+j⋅K i,j

=1}( i,j ) ,i+j<N
 (20)

Formal expressions for this criterion have been calculated for each of the nine combinations of physical  kernel

models detailed in the preceding paragraphs.  As easily visible in Table 6, criterion equality with 1 can only be

satisfied when the maximum clusters size N equals 2. This configuration is, by definition, that of the equilibrium of

a single reversible reaction, which can be considered as both detailed and complex balanced. For i or j strictly higher

than 1, and independently from aggregation and breakage kernels models parameters, criterion values differ from 1.
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It can thus be concluded that  realistic kernels models restrict equilibrium states for population balance problems,

under the aforementioned hypotheses, to complex balanced states.
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As a general conclusion for this part, chemical reactions networks considerations proved the existence of at least one

positive  equilibrium state  for  each  population  balance  problem,  independently  from  kinetics  models  (kernels)

involved. Balance states can thus be used as a basis for inverse methods (e.g. determination of kernels models and

parameters from experimental data) in all cases, which is simpler than using transitory states. Furthermore, general

kernels models types constructed from physical consideration have been identified in literature, reducing the scope

of kernels identification to 9 aggregation/breakage models combinations. Finally, a criterion has been devised to

identify the nature of population balances equilibrium states. Its application demonstrated that physically realistic

kernels can only attain complex balanced states.

From these results, inverse methods applied to populations balance problems convey two main challenges. The first

is  the  determination  of  best  fitting  constants  for  each  of  the  9  kernels  types  combinations  based  on a  set  of

experimental data. The other resides in the ranking of these models against each other, in order to identify which one

is the best suited to describe the aggregation/breakage phenomena studied. These problems will be addressed in the

following part.
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3 Kernels determination through experimental data fitting

Data  fitting  can  be  carried  out  along  two  distinct  strategies,  involving  either  the  use  of  equilibrium  state

concentrations distributions (which existence was demonstrated in part 2), or the analysis of multiple transitory

concentrations distributions. Each approach shows marked and distinctive advantages:

-  Equilibrium data is fundamentally easier to obtain, as each populations balance experiment will finally reach this

state. Time and duration measurements are also unnecessary since equilibrium is by definition a steady state.

- Dynamic concentrations distributions are more difficult to assess (in-situ experimental measurements are needed),

and more sensitive to errors (for both concentrations and time). However, the potential to enforce any experimental

time frame  (duration  between  measurements)  can  be  especially  useful  in  the  analysis  of  complex  experiments

involving multiple  aggregation/breakage  mechanisms that  occur  at  different  time scales.  By choosing the  right

experimental time intervals, some phenomena can be made negligible, thus simplifying results interpretation.

The following paragraphs  will  first  provide  some information  about  simulation tools  and  their  use to  generate

realistic pseudo-experimental data. Algorithms constructions corresponding to each of the aforementioned strategies

will then be detailed and validated using simulated data.

3.1 Simulation tools

Between the lack of generalized theoretical tools, and  minimal number of population balance problems allowing

analytical  solutions,  numerical  simulations  currently  constitute  the  only  reliable  method  when  studying  both

transitory and steady states. To this end, the C++ framework for population balances (PopulationBalance:  42) has

been devised to provide simulation and analysis tools, with performance in terms of CPU time and memory usage as

the main objective.

Tools in this framework were devised with the hypotheses mentioned in the first part of this paper in mind and are

thus optimized for similar cases. Adaptation to other situations is  nonetheless possible by using clever boundary

conditions (Neumann and Dirichlet types), at the expense of CPU time. Hypotheses H1, H4 and H5, however, are

too ingrained in the internal computing algorithms to be easily bypassed.

19



This  framework  allows the manipulation of  two different  types of  objects:  kernels and  clusters  concentrations

distributions.

Three different kernel types can be generated: simple mathematical expressions (such as sum or product), general

physical models as detailed in the previous part, and specific models based on physical parameters (Saffman-Turner,

or Levitch kernels for example) were implemented.

Basic operations between kernels (corresponding to coefficient to coefficient operations) allow the construction of

hybrid or even discontinuous kernels models.

Manipulation of clusters concentrations distributions follows the rules classically applied to probability distributions,

with one exception:  distances computations.  Probability distributions distances can only be calculated  under the

assumption that the two distributions are normalized, a condition that is incompatible with clusters conservation.

Definitions for Total Variation Distance, Hellinger, Bhattacharyya, and Manhattan distances are thus modified by

first normalizing the concerned clusters distributions, before applying the standard formulas reproduced in Eq. 21.

d TVD ( ( [i ]1)i≤N , ( [ i ]2 )i≤N ) =maxi≤N (|[ i ]1− [i ]2|)

d Manhattan ( ( [i ]1 )i≤N , ( [i ]2)i≤N )=∑
i≤N

|[i ]1− [ i ]2|

d Hellinger ( ([ i ]1 )i≤N , ( [i ]2)i≤N )=√1−∑
i≤N

√ [ i ]1⋅[ i ]2

d Bhattacharyya ( ( [i ]1)i≤N , ( [ i ]2 )i≤N )=−ln (∑i≤N
√ [ i ]1⋅[i ]2)

 (21)

Interactions  between  clusters  concentrations  distributions  and  kernels  correspond  to  population  balance

advancement. Such time steps are applied using either an explicit Euler method, with the objective to minimize CPU

time, or a second order Runge-Kutta method. The latter case is classically more stable, but configurations involving

at least one concentration  reaching zero can lead to unavoidable negative concentrations values on the following

time step, and must thus be carefully monitored. Typical durations for complete populations balance simulations

with clusters size reaching several thousand elementary particles can be estimated (depending on precise simulation

conditions)  as  a  few minutes  to  a  few hours.  A time step adaptation mechanism was also  added to the Euler

algorithm, in order to forbid clusters concentrations from reaching negative values.
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Sources  for  this  framework,  documentation,  and  examples  of  use  are  provided  at

https://gitlab.com/AugerJM/populationbalance.

3.2 Pseudo-experimental data generation

As a  means to  validate  inverse  methods  algorithms,  data  obtained  through controlled  experimental  parameters

(kernel types, kernel constants, initial state, experiment duration, measurement errors…) would be needed. Due to

the practical impossibility to carry out such experiments (experimental kernels are by definition unknown), clusters

concentrations distributions were generated using populations balance simulations.

Time steps used for simulations of experiments (“experimental simulations”) are deliberately very small (10 -8 s) in

comparison to those (10-6 s) of simulations used in the various fitting algorithms (“analysis simulations”), to better

reflect that experimental results correspond to infinitely small time increments. 

Steady states are generated from a starting clusters concentrations distribution (unless noted otherwise, this initial

state correspond to a maximal number of clusters, e.g. all clusters are of elementary size). Time steps (10 -8 s) are

then successively applied until the Bhattacharyya distance between clusters distributions at two consecutive steps is

less than a limit value. This limit is set to 10 -18, and by analogy to Cauchy criterion, ensures that simulations are

stopped close enough to the equilibrium state.

Transitory  states are  similarly  obtained  from a  starting  clusters  concentrations  distribution  corresponding  to  a

maximal number of clusters. The difference is that time steps of 10 -8 s are only applied until a fixed total duration

has  elapsed,  to  obtain  an  out  of  balance  clusters  concentrations  distribution.  Such  distributions  are  typically

generated in pairs, the first corresponding to a simulated duration from the initial state, and the second to a simulated

time interval following the first state. This time interval is considered a part of transitory states data, while duration

from initial  distribution is  not  (duration between experimental  measurements  can easily  be chosen,  but precise

control of the initial state is far more difficult). 

Concentrations  distributions  thus generated  simulate  perfect  experimental  data,  which  is  highly  unrealistic,  as

measurements are always subject to noise. Therefore, a good fitting algorithm must not only identify the right kernel

models (kernels expressions and constants values both) from perfect data, but also demonstrate robustness when
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applied to noisy information. Considering that concentrations are measured independently for each cluster size, three

hypotheses have been used to accurately model the noise added to simulated concentrations distributions:

- noise is applied independently for each clusters size concentration 

- noise follows a centered normal distribution

- noise standard deviation is proportional to the concentration it is applied to, with the same factor for all clusters

concentrations in a given distribution

From now on, a 4% error (or 4% noise) on concentrations distribution will describe a distribution for which the

standard deviation of the error applied to each cluster concentration equals 4% of the undisturbed concentration

value.

Considering  that  proper  kernels  models  are  currently  unidentified  for  liquid  metals,  computation  parameters

(durations, constants, clusters concentrations…) used thereafter in this paper are voluntarily unrealistic, as the aim of

this part is to provide generalized examples and  validate methods.  

3.3 Equilibrium states fitting

Using data corresponding to steady states presents several advantages,  one being that  equilibrium is  practically

easily reached (prolonged experiments always lead to equilibrium by definition), and another laying in the limitation

to only one necessary measurement point. Most methods aimed at fitting theoretical models to experimental results

rely on the use of some objective function, whose parameters can be divided between the experimental data set to fit

and model parameters (constrained multivariate optimization). In the case of inverse populations balance problems,

the data set is a measured equilibrium clusters concentrations distribution ([i]) i≤N, and the model parameters consist

of aggregation and breakage kernels K and K* (kernels mathematical expressions and their corresponding constants).

From Eq. 3 and 5, a possible definition for an objective function C would be given by Eq. 22.

C (( [ i ] )i ,K,K* )=∑
i= 1

i=N

| ˙[ i ]|=∑
i= 1

i=N

| ∑
j=1

j=i−1

(k j,i− j⋅[ j ]⋅[ i− j ]−k j,j−i
 *

⋅[ i ] )− ∑
j= 1

j=N−i

(1+δi,j )⋅( k i,j⋅[ i ]⋅[ j ]−k i,j
 *
⋅[ i+j ] )|

(22)
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By construction, criterion C has the following properties:

1- positive values

2- zero is reached only when the clusters concentrations distribution ([i]) i≤N corresponds to an equilibrium state for

kernels K and K* (distribution and kernels will be called compatible)

3- if kernels K, K* and distribution ([i])i≤N are compatible, then for any positive real number a,  kernels a.K, a.K* (a.K

defined  as the  kernel  whose  coefficients  equals  those  of  K  multiplied  by  a)  and  distribution  ([i]) i≤N  are  also

compatible (direct consequence of complex balanced state, which was demonstrated as the only equilibrium type

possible in Part 2)

For  a  chosen  equilibrium  distribution  ([i]eq)i≤N,  criterion  C  can  thus  be  used  as  an  objective  function  whose

minimization  with  regards  to  K  and  K* allows  the  identification  of  compatible  kernels.  Due  to  the  general

multiplicative coefficients common to all kernel models (α coefficients in Table 5), property 3 implies that the set of

parameters allowing compatibility for an aggregation/breakage kernel  models couple is either infinite or empty.

Consequently, minimizing algorithms cannot be  applied directly to criterion C with the chosen kernel models. In

order to avoid this effect, the multiplicative coefficient of aggregation kernel expressions can be locked to a single

value (1 will be used), reducing the number of parameters to determine.

The  algorithm used  for  C  criterion  minimization  (a  non-linear  problem)  is  the  Nelder-Mead  heuristic  method

(detailed in 43), which is based on simplexes properties.  Implementation simplicity and efficiency when applied to

few parameters (2 or 3 depending on the kernels considered) make  this method particularly  apt to the fitting of

kernels models to experimental data.

3.3.1 Examples of application for kernels determination: perfect experimental data

Pseudo-experimental data were generated using the following basis:

Kernels: 

- Turbulence type 1 aggregation, α=1

- Exponential law 2 breakage, n=0.5, α=0.25, β=3

23



Step size:  10-8 s

Total elementary particles: 5/volume unit

Maximum clusters size: N=200

Initial state: [1]= 5 clusters/volume unit

Noise: 0% (no noise)

Using the previously described fitting method, optimal parameters for each of the 9 kernel models combinations

have been determined, and the results summarized in Table 7. Two interesting constatations can be made: 

- first,  kernel constants determined by fitting the right models  (Turbulence type 1 and Exponential law 2)  match

perfectly (less than 0.2% error) the values used for pseudo-experimental data generation.

-  second,  the  correct  kernel  models  couple  is  easily  identified,  as  it  corresponds  to  the  lowest  value  for  C.

Furthermore, the C criterion value reached at the end of the minimization procedure shows a marked discriminating

effect, being six orders of magnitude smaller for the right models than for non-matching kernels.

Generality of these results was easily confirmed, by applying the same fitting method to pseudo-experimental data

generated using various kernels models and parameters.

3.3.2 Examples of application for kernels determination: noisy experimental data

In order to assess the effect of noise on the fitting procedure, a slightly disturbed pseudo-experimental data set was

generated from:

Kernels: 

- Turbulence type 1 aggregation, α=1

- Exponential law 2 breakage, n=0.5, α=0.25, β=3

Step size:  10-8 s

Total elementary particles: 5/volume unit

Maximum clusters size: N=200
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Initial state: [1]= 5 clusters/volume unit

Noise: 1%

As shown in Table 8, the turbulence type 1 and exponential law 1 kernels combination is falsely identified as best

fitting the pseudo-experimental data. Furthermore, even using the right theoretical models leads to highly incorrect

constants  (the  minimal  error  is  around two orders  of  magnitude).  This  effect  could be  linked  to  two different

phenomena:  an  important  sensitivity  of  the  algorithm  to  entered  data  (ill-conditioning),  or  a  systematic  error

following the use of noisy data (bias). In order to discriminate between these causes, 200 pseudo-experimental data

sets  were  generated  using  the  same  kernels  and  parameters  as  previously  mentioned,  with  the  fitting  results

corresponding to the correct kernels models being summarized in table Table 9 for 25 of them. Errors on kernels

parameters determined by the algorithm do not follow a systematic pattern, and seem dispersed between several

orders  of  magnitude.  This  effect  hints  at  a  low  condition  number  (ratio  between  relative  error  of  computed

parameters and relative error of entered data) for this approach.

As a general conclusion, the inverse method devised for kernels determination from equilibrium states is highly

accurate  for  both  kernel  models  discrimination  and  constants  determination,  provided  that  equilibrium data  is

noiseless.  However,  even  small  magnitude  noise  lead  to  incorrect  kernels  identification,  and  huge  errors  in

constants determination. This sensitivity to data accuracy is a telling symptom of an ill-conditioned problem-solving

algorithm.

3.4 Transitory states fitting

As mentioned  before,  experimental  or  pseudo-experimental  data  used to  define  transitory states  consist  in  two

consecutive clusters concentrations distributions, together with the time interval separating these 2 measurements.

The issue is thus to identify an aggregation/breakage kernels couple,  such that there exist a population balance

“trajectory” linking the two aforementioned distributions with the correct time interval. This kind of problem is

generally the province of least squares methods. However, a population balance trajectory is defined not only by two

kernels models and the corresponding parameters (3 or 4 in total), but also by a starting concentrations distribution

(100 or more additional parameters). The considerable number of parameters involved, together with the non-linear
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nature of the problem, renders classical multivariate fitting methods inapplicable. The following paragraphs detail a

variant version of the least squares method devised to circumvent this limitation. 

Using  the  first  measured  clusters  concentrations  distribution  ([i] initial)i  as  an  initial  state,  a  populations  balance

simulation (PBS) is carried out with kernels candidates K and K* for a time interval Δt corresponding to the duration

between  experimental  (or  pseudo-experimental)  measurements  (formally  expressed  as  Eq.  23).  The  resulting

simulated distribution ([i]simul)i  is then compared to the second (pseudo-)experimental distribution ([i] final)i  through

their Bhattacharyya distance, which constitute the objective function T (Eq. 24) to minimize with respect to K and

K*. 

PBS ( K,K*,Δt ) : ([ i ]initial )i≤ N → ( [i ]simul )i≤ N  (23)

T ( K ,K *,Δt, ( [ i ]in itia l )i≤ N , ( [i ] fina l )i ≤ N ) =d Battacharyya ( ( [i ] fina l )i≤ N , ([ i ]simu l )i≤ N )  (24)

Similarly to equilibrium states fitting, the method used for T criterion minimization (also a non-linear problem) is

the Nelder-Mead heuristic approach. Due to the more complex definition of objective function (which includes a

complete population balance simulation), this algorithm displays longer CPU times.

This fitting method provides results like those obtained using equilibrium states (some reproducibility examples are

given in Table 10 for lightly disturbed transitory distributions):

-  accurate  kernel  models  determination  and  parameters  identification  are  possible,  when  based  on  exact

(pseudo-)experimental data

- an inability to identify the correct kernel models using even slightly noisy (1% error) (pseudo-)experimental data.

Determination of kernel parameters in these conditions suffers from a reproducibility problem, with instability of

computed values ranging several orders of magnitude.

In order to understand the reasons for this demonstrated sensitivity of the fitting algorithm to imprecise data and

determine  potential workarounds,  statistics  of  errors  in  clusters  concentrations  distributions  had  to be  further

investigated.
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3.5 Measurements errors analysis

Models  for  errors  in  clusters  concentrations  distributions  were  selected for  their  agreement  with  experimental

measurement procedures. Each clusters size concentration is measured separately, leading to independent errors that

are often considered the result of multiple random phenomena. From central limit theorem, individual concentration

errors can be realistically thought-out as following a normal distribution, centered on an undisturbed concentration

value. Hypotheses pertaining to pseudo-experimental data generation can thus be summarized as Eq. 25.

∀ i ∈(1 ;N ) , ^[ i ]= [ i ] +X i with X i =Ν (0 ,k⋅[ i ])  (25)

Variable k is the measurement error as a proportionality factor to clusters concentration.

In order to check an eventual bias linked to concentrations errors, knowledge of the probability distribution of noisy

concentrations distributions is  needed.  As literature  does not provide any example  of theoretical  study for  this

problem,  it  will  be  qualitatively  evaluated through numerical  simulations.  Starting  from a  base  concentrations

distribution (maximum clusters size N=100), 100000 disturbed distributions were generated by adding 5% noise to

individual concentrations. Bhattacharyya distances between base and disturbed distributions were calculated, and the

corresponding frequencies determined using ten evenly spaced classes, as presented in Figure 4. It should be noted

that  the  use  of  different  distance  definitions,  such  as   Hellinger,  Manhattan,  Total  Variation  Distance  or

Mahalanobis, leads to the same characteristics, whose consequences will be discussed in detail:

- the probability distribution does not follow a normal law (no symmetry around the maximum probability distance).

Statistical properties of errors in clusters concentrations distributions can be likened to those of multivariate normal

distributions.

- highest probability is not reached for a distance of zero. This observation reveals the existence of a statistical bias

in disturbed experimental data when considering clusters distributions distances. The actual clusters distribution is

most probably situated on a sphere at some distance around the measured distribution.

- probability around a distance of zero is very low. This effect  is  of extreme import to the accuracy of fitting

algorithms. It is highly improbable that any measured distribution closely matches the real distribution. Since the

transitory states fitting method is based on distance minimization between experimental  (thus noisy) points and
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simulated  points,  the  algorithm  as  presented  will  ensure  (statistically)  a  high  error  in  kernels  parameters

determination.

This  kind  of  bias  is  classically  dealt  with  through  the  multiplication  of  experiments  under  similar  conditions.

Provided enough data points, the corrected clusters concentrations distribution will be at the center of the noisy

points cloud. In the case  of clusters concentrations,  such correction is obtained by a separate averaging of the

concentration for each cluster size. This approach, however, is limited by experimental repeatability. Sufficient data

accumulation  is  impossible  in  the  context  of  liquid  metal  tests,  due  to  uncontrollable  initial  conditions  and

destructive measurement methods (metallography). As a replacement, another corrective method based on statistical

maximum likelihood can be used instead, as described in the following paragraph. 

3.6 Maximum likelihood statistical correction

The objective of this part will be to construct a function (the likelihood function) of an experimental (noisy) data

point (e.g. clusters concentrations distribution), which is statistically minimal when simulated points approach the

corresponding undisturbed concentrations distribution.

Under the hypotheses already detailed in the previous part in Eq. 25, normalizing and centering of the normal law

leads to the expression of Eq. 26.

^[i ]− [i ]

k⋅^[ i ]
≃

^[ i ]− [i ]

k⋅[i ]
=Ν (0,1 )  (26)

By definition of Χ2 law, summation of Eq. 26 for all values of i gives Eq. 27.

∑
i= 1

i=N

(
^[ i ]− [ i ]

k⋅ ^[i ] )
2

Χ≃ 2 ( N )  (27)

If N is sufficiently large (N>100), Χ2 law can be accurately approximated by a normal law leading to Eq. 28.

∑
i= 1

i=N

(
^[ i ]− [ i ]

k⋅^[i ] )
2

≈ Ν ( N ,2⋅N )  (28)

Centering this normal law (Eq. 29), the probability of the expression becomes maximal at zero.
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(∑i= 1

i=N

(
^[ i ]−[ i ]

k⋅^[ i ] )
2

)⋅ 1
N

−1≈Ν (0,2 )  (29)

Finally  leading  to  the  maximum  likelihood  function  expression  f  (Eq.  30),  which  follows  the  half-normal

distribution.

f ( ( ^[i ])i , ( [ i ]) i ,k,N )=|(∑i= 1

i=N

(
^[ i ]− [ i ]

k⋅ ^[ i ] )
2

)⋅ 1
2⋅N

−0 . 5|≈|Ν (0,1 )|  (30)

f  has  the  required  properties  to  be  used  in  the  transitory  states  algorithm in  place  of  Bhattacharyya  distance

(confirmed by 100000 simulations, N=100, k=5% - see Figure 5):

- f is positive, and consequently f minimal value is zero.

- f follows the half-normal law, ensuring a maximal probability when f is minimal.

Conclusion: 

For  a  given  disturbed  concentrations  distribution  (maximum  clusters  size  N,  k%  error)  ( ^[ i ] )i ,  the  clusters

concentrations distribution ([i])i such as the function f defined by Eq. 31 is minimal,  offers the most probable

correspondence with the undisturbed concentrations distribution.

f ( ( ^[i ])i , ( [ i ]) i ,k,N )=|(∑i= 1

i=N

(
^[ i ]− [ i ]

k⋅ ^[ i ] )
2

)⋅ 1
2⋅N

−0.5|  (31)

3.7 Transitory states fitting with maximum likelihood correction

Maximum likelihood correction can be used to improve kernels fitting methods without relying on measurements

multiplication. The algorithm previously described for transitory states fitting is altered by substituting the objective

function T with another,  TC,  constructed from the maximum likelihood function f  (as  defined  in  the previous

paragraph). This modified algorithm is described by Eq. 32 and TC function in Eq. 33.
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PBS ( K,K*,Δt ) : ([ i ]initial )i≤ N → ( [i ]simul )i≤ N  (32)

TC ( K,K*,Δt,N,k, ([ i ]initial )i≤ N , ( [ i ] final )i≤ N )=f ( ([ i ] final )i≤N , ( [ i ] simul )i≤N ,k,N )

=|(∑i= 1

i=N

(
[ i ] final−[ i ]simul

k⋅[i ] final )
2

)⋅ 1
2⋅N

−0.5|  (33)

Minimization  of  TC objective  function with respect  to  K and K* is  similarly carried  out  using  Nelder-Mead

heuristic approach.

In order to assess the effect of noise on the maximum likelihood corrected fitting procedure, a disturbed pseudo-

experimental data set was generated from:

Kernels: 

- Turbulence type 1 aggregation, α=4

- Exponential law 1 breakage, n=0.5, α=1, β=3

Step size:  10-8 s

Simulated time from initial state: 0.01 s

Simulated duration between transitory states: 0.025 s

Total elementary particles: 5/volume unit

Maximum clusters size: N=150

Initial state: [1]= 5 clusters/volume unit

Noise: 5%

As illustrated in Table 11, the kernels are accurately identified by the minimum of criterion TC. Discrimination of

kernels models is however less clear-cut than for undisturbed base data. 

Reproducibility tests for kernels parameters determination have been carried out for a large pseudo-experimental

data set (100 clusters distributions couples) generated using:

Kernels: 
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- Turbulence type 2 aggregation, α=1

- Exponential law 2 breakage, n=0.5, α=1, β=3

Step size:  10-8 s

Simulated time from initial state: 0.01 s

Simulated duration between transitory states: 0.025 s

Total elementary particles: 5/volume unit

Maximum clusters size: N=150

Initial state: [1]= 5 clusters/volume unit

Noise: 2%

Fitting results samples using correct kernels models are detailed by tests N°1 to 5 in Table 12. While still much

higher (around one order of magnitude) than the original data errors (2% only), the variability of computed kernels

parameters was dramatically diminished  using maximum likelihood corrected algorithm. It should be noted that

anomalous parameters values are still computed in some cases (α value for breakage kernel model in N°4 test, for

example), but the frequency of these  happenings is decreased compared to that shown by using T criterion (see

Table 10). Generally speaking, multiplicative factor α tends to be more precise than exponential factor β, which in

turn is more precise than exponent n.

As  a  conclusion,  maximum  likelihood  correction  greatly  improves  the  accuracy  of  kernels  parameters

determination. However, as a statistics-based approach, this method is still dependent on actual measured data (two

clusters concentrations distributions), that can occasionally take values too far removed from the most probable ones

to be effectively corrected. In order to establish the limits of this improved algorithm (and thus determine the best

experimental  setup  to  optimize  its  use),  sensitivity  to  two  easily  controlled  experimental  conditions  has  been

investigated:  the  time  interval  between  transitory  states  measurements,  and  how  far  removed  they  are  from

equilibrium state.
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3.7.1 Sensitivity to time duration between (pseudo-)experimental points:

Cases N°11 to 15 in  Table  12 were  generated  using the following characteristics  (corresponding  to  a  duration

decrease between the pseudo-experimental transitory states in contrast to cases N°1 to 5): 

Kernels: 

- Turbulence type 2 aggregation, α=1

- Exponential law 2 breakage, n=0.5, α=1, β=3

Step size:  10-8 s

Simulated time from initial state: 0.01 s

Simulated duration between transitory states: 0.005 s

Total elementary particles: 5/volume unit

Maximum clusters size: N=150

Initial state: [1]= 5 clusters/volume unit

Noise: 2%

Comparison of results N°1 to 5 and N°11 to 15 shows of marked decrease in fitting accuracy when the time interval

between measurements for transitory states diminishes. This effect is like the increasing slope error observed if base

points are closer from each other, when performing linear regression algorithms.

3.7.2 Sensitivity to distance from equilibrium state:

Cases N°6 to 10 in Table 12 were generated using the following characteristics (corresponding to an increase in

duration from initial simulation state compared to cases N°1 to 5): 

Kernels: 

- Turbulence type 2 aggregation, α=1

- Exponential law 2 breakage, n=0.5, α=1, β=3
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Step size:  10-8 s

Simulated time from initial state: 0.05 s

Simulated duration between transitory states: 0.025 s

Total elementary particles: 5/volume unit

Maximum clusters size: N=150

Initial state: [1]= 5 clusters/volume unit

Noise: 2%

Accuracy of kernels parameters determined by the algorithm is visibly degraded with data points nearer  to the

equilibrium state (comparison of cases N°1-5 to 6-10), in terms of both aberrant values frequency and amplitude (for

example, computed β coefficient values range between 24 orders of magnitude in only 5 tests).

4 Conclusions

Part 2  investigated the specifics of population balance problems, notably using reaction networks theory, with a

special interest toward eventual equilibrium states and their attributes. 

- A set of hypotheses that closely matches model experimental setups (clusters quantization, particles conservation,

concentrations continuity, binary reversible aggregations, and mass action kinetics) allowed the use of embedded

reaction networks for population balance problems with maximum cluster size N. The existence of at  least one

stable positive equilibrium state was demonstrated, provided (sufficient condition) there is at least one effectively

reversible aggregation/breakage reaction leading to the formation of each clusters size ranging from 2 to N.

- Boundary conditions (total elementary particles concentration) and kernels mathematical formulations have been

shown to  determine  the  multiplicity of  equilibrium states.  However,  no  simulation  involving  physical  kernels

expressions has been observed to generate multiple equilibrium states during this study.

- Possibility for detailed balanced equilibrium state can be assessed through a simple criterion based on kernels

formulae. This criterion was constructed under the hypothesis of reversible elementary aggregation reactions.
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- Using the 6 general kernels expressions found in literature for aggregation and breakage of solid clusters in liquid

media,  equilibrium states for realistic population balance problems were thus demonstrated to be of the complex

balanced variety.

Part  3  concerned  itself  with  the  population  balances  inverse  problem  (e.g.  determination  of  aggregation  and

breakage  kernels  from  experimental  data).  Making  use  of  the  specifically  developed  PopulationBalance  C++

framework for implementation and testing, two different fitting heuristics have been devised to solve this non-linear

problem:

- The first algorithm, based on equilibrium states, is a simple and highly efficient method to both identify kernels

types and compute their parameters, when applied to undisturbed (perfect) experimental data. However, extreme

sensitivity to measurement errors makes it unusable in any realistic experimental context and exposes the inverse

problem as an ill-conditioned one.

-  Similar  observations  were  made on  a  second  algorithm  constructed  from least  squares  methods  applied  to

transitory states. Sensitivity to measurements uncertainties evidenced a systematic bias that could be traced back to

statistical errors spread in clusters concentrations measurements.

A statistically  unbiased  objective  function  (TC)  was  devised  as  a  substitute  to  distributions  distances  in  the

algorithm.  This improvement reduced error ranges for computed parameters to a single order of magnitude, and

allowed accurate kernels identification using minimal experimental data (only two points) with 5% or less errors.

Study of the corrected  algorithm sensitivity to experimental  measurement  parameters  led to the following (and

opposite) recommendations, in order to optimize kernels determination:

- measurement points must be separated by the greatest time interval possible

- measurement points must be as far removed from equilibrium as possible
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FIGURES

Figure 1. Reaction graphs for population balance problems (N=2, N=3, N=4 and general graph) – Boxes correspond

to various complexes – Arrows are aggregation or breakage reactions
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Figure 2. Example of deficiency zero embedded network extracted from the population balance problem reaction

network
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Figure 3. Maximum distance between equilibrium states as a function of total elementary particles concentration  
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Figure 4. Simulated probability distribution of Bhattacharyya distances between disturbed and undisturbed clusters

distributions (5% noise) 
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Figure 5. Simulated probability distribution of the maximum likelihood function (N=100, k=5% noise) 
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ABBREVIATIONS AND NOTATIONS

(i) Size i cluster (i elementary particles aggregated) 

(i+j) Size (i+j) cluster

(i)i≤N Cluster sizes set

[i] Volumetric concentration for size i clusters

[i]eq Volumetric concentration for size i clusters at equilibrium

˙[ i ] Evolution rate for volumetric concentration for size i clusters

^[ i ] Volumetric concentration for size i clusters measurement (random variable)

([i])i≤N Volumetric concentration distribution of clusters by sizes

( ˙[i ] )i≤ N
Evolution rate for volumetric concentration distribution of clusters by sizes

ki,j Kinetic constant for i and j clusters aggregation into (i+j) clusters

k*
i,j Kinetic constant for (i+j) clusters breakage into i and j clusters

Ki,j Equilibrium constant for i and j clusters aggregation into (i+j) clusters reaction

Φi,j Reaction rate for aggregation/breakage of i and j clusters

N Maximum clusters size (as a number of elementary particles)

n Total number of identical elementary (unbreakable) particles

V Total volume considered

δi,j Kronecker delta

δ Deficiency of population balance network

l Number of linkage classes of population balance network

m Number of complexes in population balance network

s Dimension of stoichiometric sub-space of population balance network

K Aggregation kernel
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K* Breakage kernel

 ⌊ ⌋ Floor function
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TABLES

Table 1. Deficiency data for each linkage class in N=4 reaction networks

Network
decomposition  in
linkage classes

Number  of  linkage
classes 

Complexes number
Stoichiometric  sub-
space dimension

Deficiency

1st linkage class 1 2 1 0

2nd linkage class 1 2 1 0

3rd linkage class 1 3 2 0

Full network 3 7 3 1
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Table 2. Equilibrium states conditions in N=4 reaction networks

Clusters reactions reversibility
Stable positive equilibrium states

1+1→2 1+2→3 1+3→4 2+2→4

Yes Yes Yes Yes Unique

No Yes Yes Yes Unique

Yes Yes Yes No Unique

Yes No Yes Yes Unique

Yes Yes No Yes Unique

No Yes Yes No Unique

No No Yes Yes None

No Yes No Yes None

Yes Yes No No None

Yes No No Yes Unique

Yes No Yes No None

Yes No No No None

No Yes No No None

No No Yes No None

No No No Yes None

No No No No None
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Table 3. Example of potentially multi-stable aggregation/breakage kernel

Maximum cluster size N = 5

Kinetic constants

k1,1=1 k*
1,1=592.48963

k1,2=95.437698 k*
1,2=201.38279

k1,3=419.0933 k*
1,3=2074.8396

k1,4=1421.4501 k*
1,4=368.28533

k2,2=34076.512 k*
2,2=753.42078

k2,3=507535.96 k*
2,3=11190.471
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Table 4. Equilibrium states corresponding to the same population balance problem (kernels described in Table 3,

total elementary clusters concentration of 1 per volume unit)

Clusters size Equilibrium  state  1
(clusters/volume unit)

Equilibrium  state  2
(clusters/volume unit)

[1]  0.93783354 0.84858688

[2] 9.8266x10-3 1.6201x10-2

[3] 4.3674x10-3 1.0742x10-2

[4] 4.3674x10-3 1.0742x10-2

[5] 2.3881x10-3 8.7629x10-3
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Table 5. Models types for aggregation and breakage kernels (clusters are considered spherical)

Aggregation

Kernel type
Expression  as  functions  of
clusters sizes

Constants Specific examples

Brownian ki,j =α⋅
(i

1
3 +j

1
3 )

2

i
1
3⋅ j

1
3

α ≥ 0 Smoluchowski 44

Turbulence type 1 ki,j =α⋅(i
1
3 +j

1
3 )

2

α ≥ 0
Kruis-Kuster  45, Saffman-Turner
46

Turbulence type 2 ki,j =α⋅(i
1
3 +j

1
3 )

3

α ≥ 0 Camp-Stein 47, Levich 48

Breakage

Kernel type
Expression  as  functions  of
clusters sizes

Constants Specific examples

Power law k i,j
 * =α⋅(i+j )

( n−1 )
n ≥ 0, α ≥ 0

 Valentas 49

Ramkrishna 50

Exponential law 1 k i,j
 * =α⋅e

− β⋅( 1
i+j )

n

n ≥ 0, α ≥ 0, β Delichatsios-Probstein 51

Exponential law 2 k i,j
 *=

α

(i+j )
( 2 /9 )

⋅e
− β⋅( 1

i+j )
n

n ≥ 0, α ≥ 0, β
Marchisio 52

Selomulya 53
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Table 6. Detailed balance criterion expressions for each physical kernels models combination

Aggregation kernel type Breakage kernel type Criterion expression

Brownian Power law
(i

1
3+1)

2

⋅( i+1 )
( 2

3
−n)

⋅( j
1
3 +(i+1)

1
3 )

2

⋅( i+ j )
(n−

2
3 )

(i
1
3+ j

1
3)

2

⋅((i+ j)
1
3+1)

2

Brownian Exponential law 1
(i

1
3+1)

2

⋅( j
1
3 +( i+1)

1
3 )

2

⋅(i+ j )
( 1

3 )
⋅e

β

(1+i)n
−

β

(i + j)n

(i+1 )

1
3
⋅(i

1
3+ j

1
3)

2

⋅(( i+ j)
1
3+1)

2

Brownian Exponential law 2
(i

1
3+1)

2

⋅( j
1
3 +( i+1)

1
3 )

2

⋅(i+ j )
( 1

9 )
⋅e

β

(1+i)n
−

β

( i+ j)n

(i+1 )

1
9
⋅(i

1
3 + j

1
3)

2

⋅(( i+ j)
1
3+1)

2

Turbulence type 1 Power law
(i

1
3
+1)

2

⋅( i+1 )
( 1−n )

⋅( j
1
3
+( i+1)

1
3 )

2

⋅( i+ j )
( n−1 )

(i
1
3+ j

1
3 )

2

⋅((i+ j)
1
3+1)

2

Turbulence type 1 Exponential law 1
(i

1
3
+1)

2

⋅( j
1
3
+( i+1)

1
3 )

2

⋅e

β

(1+ i )
n −

β

(i+ j )
n

(i
1
3+ j

1
3 )

2

⋅((i+ j )
1
3+1)

2

Turbulence type 1 Exponential law 2
(i

1
3
+1)

2

⋅(i+1)
2
9
⋅( j

1
3
+(i +1)

1
3 )

2

⋅e

β

(1+i )
n −

β

(i + j )
n

(i
1
3+ j

1
3 )

2

⋅(i+ j )
2
9⋅((i+ j)

1
3+1)

2

Turbulence type 2 Power law
(i

1
3
+1)

3

⋅(i+1 )
( 1− n )

⋅( j
1
3
+(i+1)

1
3 )

3

⋅(i+ j )
( n−1 )

(i
1
3+ j

1
3 )

3

⋅((i+ j)
1
3 +1)

3
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Turbulence type 2 Exponential law 1
(i

1
3
+1)

3

⋅( j
1
3
+(i +1)

1
3 )

3

⋅e

β

(1+ i)
n−

β

(i+ j )
n

(i
1
3+ j

1
3 )

3

⋅((i+ j )
1
3 +1)

3

Turbulence type 2 Exponential law 2
(i

1
3
+1)

3

⋅( i+1)

2
9
⋅( j

1
3
+(i+1)

1
3 )

3

⋅e

β

(1+ i )
n −

β

(i+ j )
n

(i
1
3 + j

1
3 )

3

⋅(i+ j)
2
9⋅((i+ j )

1
3 +1)

3

49



Table 7. Example of kernel parameters fitting based on equilibrium state data (0% error)

Kernel models
Best fitting aggregation

kernel constants
Best fitting breakage kernel

constants
Fitting criterion

Aggregation Breakage α α β n C

Turbulence 1 Exponential 2 1 0.25 3.00 0.501 1.62x10-12

Turbulence 1 Power law 1 0.0421 - 0.146 5.98x10-7

Brownian Power law 1 0.246 - -0.915 1.01x10-5

Turbulence 2 Exponential 1 1 0.313 785 2.98 1.07x10-4

Turbulence 2 Exponential 2 1 0.703 183 2.21 1.08x10-4

Turbulence 2 Power law 1 0.0573 - 0.518 5.04x10-4

Brownian Exponential 1 1 0.00231 4.31 0.604 1.05x10-3

Brownian Exponential 2 1 0.00231 4.31 0.604 1.13x10-3

Turbulence 1 Exponential 1 1 0.00231 4.31 0.604 1.95x10-2
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Table 8. Example of kernel parameters fitting based on disturbed equilibrium state data (1% error)

Kernel models
Best fitting

aggregation kernel
constants

Best fitting breakage kernel constants Fitting criterion

Aggregation Breakage α α β n C

Turbulence 1 Exponential 1 1 2.31x10-3 4.31 0.604 5.98x10-7

Turbulence 1 Exponential 2 1 3.98x1067 159 2.32x10-3 5.57x10-6

Turbulence 1 Power law 1 0.0422 - 0.143 1.01x10-5

Turbulence 2 Exponential 2 1 0.742 77.8 1.84 1.07x10-4

Turbulence 2 Exponential 1 1 0.742 77.8 1.84 1.08x10-4

Turbulence 2 Power law 1 0.056 - 0.523 5.04x10-4

Brownian Exponential 2 1 0.00231 4.31 0.604 1.05x10-3

Brownian Exponential 1 1 0.00231 4.31 0.604 1.13x10-3

Brownian Power law 1 0.26 - -0.935 1.95x10-2
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Table 9. Examples of kernel parameters fitting based on disturbed equilibrium state data (1% error) – reproducibility

tests using correct theoretical kernel models

Best fitting aggregation
kernel constants

Best fitting breakage kernel constants
Fitting

criterion

α α β n C

Theoretical
values

1 0.25 3 0.5 0

N°1 test 1 0.1546 2400 3.23446 0.00051

N°2 test 1 0.135 -1.6x10-14 46.68 0.00299

N°3 test 1 0.1278 1.34x1089 114.103 0.0027

N°4 test 1 0.134876 13.34 2.18957 0.00593

N°5 test 1 0.134956 87733 5.16 0.0065858

N°6 test 1 0.14008 -2.2369x1015 50 0.014257

N°7 test 1 0.166198 86.2013 2.06 0.021

N°8 test 1 1.42x10160 372 0.00169 0.016

N°9 test 1 0.13748 7x10235 211 0.0284

N°10 test 1 0.1436 -286 6.63 0.0579

N°11 test 1 0.132886 -100 5.49 0.03299

N°12 test 1 0.113926 -5.80392 1.418 0.0565

N°13 test 1 0.123744 -5.56x1011 37 0.0893

N°14 test 1 2.93 10.17 0.3929 0.0615

N°15 test 1 0.1236 9.4x10307 284 0.0357

N°16 test 1 0.131805 2.4x10149 156 0.147

N°17 test 1 4.49x1080 189 0.0028 0.181
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N°18 test 1 0.1297 1.61x1046 93.89 0.285

N°19 test 1 0.136 -629.6 8.37 0.174

N°20 test 1 1.33x10202 471 0.00284 0.0921

N°21 test 1 0.134 1.37x1012 10.9 0.17

N°22 test 1 0.144 1.2x106 5.64 0.2977

N°23 test 1 49.28 7.13 0.0552 0.1458

N°24 test 1 0.1897 30.48 1.477 0.153

N°25 test 1 1.8x10234 547 0.00298 0.466
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Table  10.  Examples  of  kernel  parameters  fitting  based  on  disturbed  equilibrium  state  data  (2%  error)  –

reproducibility tests using correct theoretical kernel models – T criterion

Best fitting aggregation kernel
constants

Best fitting breakage kernel constants

α α β n

Theoretical values 1 1 3 1.5

N°1 test 1099.2 6.47607x10-27 28.8895 250.435

N°2 test 1094.63 5.54897x10-28 7.5477 470.113

N°3 test 1098.46 2.52139x10-27 28.8702 250.264

N°4 test 49.9474 4.40021x10-5 6.73752x10-13 0.000330121

N°5 test 30.8188 1.98245x10-13 1.79745x10-13 1.22582x10-5
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Table 11. Example of kernel parameters fitting based on disturbed transitory states data (5% error)

Kernel models
Best fitting
aggregation

kernel constants
Best fitting breakage kernel constants

Fitting
criterion

Aggregation Breakage α α β n T

Turbulence 1 Exponential 1 4.05888 0.842453 1.45318 0.815055 3.91454

Turbulence 1 Exponential 2 3.99292 7.77817 3.4312 0.214202 3.92658

Turbulence 1 Power law 4.07621 0.68399 0.0399478 - 3.94365

Turbulence 2 Exponential 1 1.32957 3.10842 17.3232 1.67806 4.48134

Turbulence 2 Power law 1.572811 3.76433 1.318x10-14 - 5.31992

Turbulence 2 Exponential 2 4.14059 28.1234 12.1649 38.7169 6.7654

Brownian Exponential 2 27.2112 0.299807 3.9293x10-12 1.37684 102.421

Brownian Exponential 1 25.7857 3.1725x10-14 5.7908 0.185404 102.438

Brownian Power law 25.7857 8.27797x10-15 0.00251735 - 102.438
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Table 12. Examples of kernel parameters fitting based on disturbed transitory states data (2% error- reproducibility

tests using correct theoretical kernel models - TC criterion minimization) : effects of proximity to equilibrium state

and time interval between measurements 

Best fitting aggregation kernel
constants

Best fitting breakage kernel constants

α α β n

Theoretical values 1 1 3 1.5

Time from initial state 0.01s - Time interval 0.025s

N°1 test 0.997673 1.18519 2.4185 3.19936

N°2 test 0.961397 0.854704 1.86165 4.0272

N°3 test 0.982993 1.24039 3.3828 2.21797

N°4 test 0.94833 0.071937 5.11014 3.54243

N°5 test 1.03542 1.15425 3.97135 2.38127

Time from initial state 0.05s - Time interval 0.025s

N°6 test 0.95 0.857545 6.44983 0.981753

N°7 test 0.983844 0.934813 1.75802x1012 26.2046

N°8 test 1.01492 1.12928 25.8302 2.14533

N°9 test 0.970671 0.914566 5.63656x10-12 1.67278

N°10 test 0.981762 0.922952 1.95157 3.49263

Time from initial state 0.01s - Time interval 0.005s

N°11 test 1.0203 3.54121 14.1176 0.703108

N°12 test 0.978134 1.49193x10-13 2.05187 4.75196

N°13 test 1.06494 9.41688 477.607 3.29802

N°14 test 1.00915 2.24547 12.0581 0.968625
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N°15 test 0.98008 3.33347x10-14 3.57407 1.08501
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