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Piston Resonance in the Orifice Pulse Tube
(preliminary draft)

P.C.T. de Boer,1 J.-M. Duval, I. Charles and L. Duband

Département de Recherche Fondamentale sur la Matière Condensée
Service des Basses Températures, CEA-Grenoble
17 rue des Martyrs, 38054 Grenoble Cédex 9, France

ABSTRACT

The force exerted on the piston of a linear motor driving an orifice pulse tube is analyzed
using linearized theory. First, the case of a pulse tube without orifice and reservoir is
considered. It is found that there are two possible resonances, corresponding to a very
small and a very large orifice conductance, respectively. In principle, such resonances can be
used to reduce the current provided to the linear motor, and hence to reduce the associated
ohmic losses. There is no resonance of the power provided to the pulse tube. An expression
is derived for the dissipation in the tube chambers associated with heat losses to the wall.
Experimental results obtained for the phase angle and the amplitude of the piston force
indicate that there is a large influence of turbulent effects on thermal diffusivity. The analysis
is extended to the case with regenerator. It is found that dissipation as well large temperature
ratios across the regenerator tend to decrease the piston resonance effect.

NOMENCLATURE

A cross sectional area Greek symbols
C conductance ᾱ thermal diffusivity, k/(ρcp)
CA CεD/(2y2) ∆ denotes amplitude
Cε see Eq. (2) δ phase angle
c specific heat γ ratio of specific heats
COo Co/Cr λ characteristic thermal boundary layer
COr see Eq. (39) thickness, (2ᾱ/ω)1/2

D distance between parallel plates πb ∆pb/∆pp

F force πp ∆pp/∆pd

G (γ − 1)SD/(4V ) ρ density
ṁ mass flow rate Ω frequency, see Eqs.16, 22 and 36

1Present address: Cornell University, Ithaca, NY 14850. Tel. (607) 255-3583, Fax (607)255-3583. E-mail
PTD1@cornell.edu.



Po average pressure ω angular frequency
p pressure Subscripts

Q̇ rate of heat flow into system b buffer (reservoir)
q̇ heat flux into wall c cold
S surface area d driver
s 2x/(D) h hot
T temperature o orifice; average
t time p pulse tube
U internal energy r regenerator
V volume w wall

Ẇ rate of work done by system
x distance from centerplane
y (D)/(2λ)
z (1 + i)y

INTRODUCTION

In the last decade or so, the pulse tube has been developed as an efficient and reliable cry-
ocooler [1]. Many important improvements have been made. These include the introduction
of an inertance tube rather than an orifice to provide the required phase difference between
mass flow rate and pressure [2, 3]. The inertance tube is useful only for pulse tubes operat-
ing at relatively high frequencies. For pulse tubes operating at relatively low frequencies, a
major improvement has been the introduction of a second orifice in a tube that short-circuits
the regenerator [4]. Current efforts toward further improvements mostly concern efforts to
decrease various losses inherent in the operation of the tube.

A potential improvement in the operation of pulse tubes driven by linear motors is the
reduction of ohmic losses associated with the electric current provided to the motor. The
piston driven by the motor can be at resonance with the pressure pulsations in the drive
chamber. The resonance corresponds to a minimum of the amplitude of the force exerted
by the linear motor to the piston. This force is proportional to the current passing through
the motor. Operating the pulse tube at piston resonance thus would reduce ohmic losses.
Operation near resonant frequency is especially critical for large machines [5]

The value of the amplitude of the force at resonance is limited by the occurrence of
dissipation in the drive chamber and pulse tube, caused by irreversible heat transfer to the
walls. Mirels [6] used the linearized result presented by Lee [7] for the rate of this heat
transfer. This result is based on assuming molecular diffusivity in the thermal boundary
layer as well as in the region outside the boundary layer. The heat transfer is a second
order effect, which arises from the phase difference which exists between pressure and first
order heat transfer. Theoretical results of this model are in satisfactory agreement with
experimental data for a single gas spring without high velocity inflows [8]. Later work
carried out in connection with Stirling engine research by Cantelmi et al. [9] showed that
in actual engine cylinders, inflow generated turbulence can significantly increase the rate of
heat transfer to the walls. To account for this effect, Cantelmi et al. [9] used a turbulence
enhanced thermal diffusivity.

The present work begins with extending the treatment of [9] from the case of a single
wall in contact with a semi-infinite gas to the case of two parallel walls. This extension is of
importance in the case of large enhancement of thermal diffusivity by turbulence. Next, the
theory presented by Mirels [6] is extended to a pulse tube with heat losses in the reservoir and
the pulse tube, as well as in the drive chamber. Expressions are developed for the phase angle
and the amplitude of the force exerted on the piston. It is found that piston resonance can
occur both at small and at large values of the dimensionless conductance of the regenerator.
The power delivered by the piston to the gas does not exhibit a resonance. The expressions



derived for the phase angle and force are compared with experimental results. The latter
were obtained in an set-up similar to that of a pulse tube, but with the regenerator replaced
by a valve of variable conductance, and without an orifice and reservoir. The experimental
heat losses to the wall are found to correspond with a large enhancement of diffusivity by
turbulent effects. As a result of this enhancement, the resonance effect can be significantly
reduced. This is shown for a complete pulse tube in the last section of the paper. It is found
that the temperature difference across the regenerator also tends to reduce the resonance
effect significantly.

Following the analyses of the works cited, the present treatment uses complex notation.
Physical quantities are given by the real parts of the corresponding parameters.

RATE OF HEAT TRANSFER TO THE WALL

The rate at which heat is transferred from the gas to the wall can be estimated using
the method described by Lee [7] and extended by Mirels [6] and Cantelmi et al. [9]. The
method is based on using the simplified energy equation

∂T

∂t
= ᾱ

∂

∂x

(
1 +

εH

ᾱ

)
∂T

∂x
+

1

ρcp

∂p

∂t
. (1)

The quantity εH/ᾱ represents the ratio of the turbulent eddy diffusivity to the molecular
diffusivity. Cantelmi et al. [9] considered the case of a single plate in thermal contact with
a semi-infinite gas. They took εH/ᾱ to be proportional to the distance from the wall. Here,
Eq. (1) is applied to the case of two infinite parallel plates. The ratio εH/ᾱ is taken to be
proportional to the distance to the closest wall

εH/ᾱ = Cε(D/2 − |x|). (2)

The solution of Eq. (1) under the boundary conditions T = To at x = ±D/2 and ∂T/∂x = 0
at x = 0 is

T (x, t) = To +
∆p

ρcp

[
1 − Ko(ζ) + Io(ζ)K1(θ)/I1(θ)

Ko(ζw) + Io(ζw)K1(θ)/I1(θ)

]
eiωt (3)

where ζ = θ
√

1 − C ′
εx, ζw = θ

√
1 − C ′

εD/2, C ′
ε = Cε/(1 + CεD/2), θ = 2(1 + i)/(CAy2),

CA = CεD/(2y2), and where K and I are the modified Bessel functions. Cantelmi et al. [9]
took CA to be proportional to the ratio of the cross section Acyl of the cylinder to the cross
section Ainlet of the inlet tube. They noted that the value of CAy = Cελ is a measure of the
magnitude of the eddy diffusivity in the thermal boundary layer.

The heat flux to the wall is given by

q̇ = −k

[
∂T

∂(sD/2)

]
s=0

=
D

4
ω∆peiωt(a + bi) (4)

where

a + bi =
z

y2

K1(ζw) − I1(ζw)K1(θ)/I1(θ)

Ko(ζw) + Io(zetaw)K1(θ)/I1(θ)
. (5)

ANALYSIS OF ORIFICE PULSE TUBE

The model on which this analysis is based is sketched in Fig.1. The analysis is an
extension of that presented by Mirels [6]. The three chambers are analyzed sequentially.



Figure 1: Sketch of model used

Each of them is subject to the time-dependent first law of thermodynamics for a control
volume with at most one inlet (i) and one exit (e)

dU

dt
= ṁihi − ṁehe + Q̇ − Ẇ (6)

Here,

U =
∫

V
cvTρdV =

pV

γ − 1
(7)

where use was made of the ideal gas law. The pressures and mass flow rates are written as
follows

pb(t) = ∆pbe
i(ωt+δb) + Po (8)

pp(t) = ∆ppe
iωt + Po (9)

pd(t) = ∆pde
i(ωt+δd) + Po (10)

ṁo = ρhCo [pp(t) − pb(t)] (11)

ṁr = ρcCr [pd(t) − pp(t)] (12)

Application of Eq. (6) to the reservoir (”buffer”) involves setting p = pb(t), V = Vb =constant,
ṁi = ṁo, hi = cpTh, ṁe = 0, Ẇ = 0 and Q̇ = −q̇bSb. This yields, after some algebra

πbe
iδb (αb − βbi) = −i/Ωb (13)

where

αb = 1 + Gbbb, (14)

βb = Ω−1
b + Gbab (15)

Ωb =
ωVb

γPoCo
, πb =

∆pb

∆pp
(16)

It follows that

πb =
1

Ωb

√
α2

b + β2
b

, (17)

tan(δb) = −αb/βb (18)

Next, Eq.6 is applied to the pulse tube. Noting that now p = pp(t), V = Vp =constant,
ṁi = ṁr, hi = cpTc, ṁe = ṁo, he = cpTh, Ẇ = 0 and Q̇ = −q̇pSp, this yields

πpe
−iδd (αp − βpi) = −iΩ−1

p (19)

where

αp = 1 +
Vb

Vp

1

Ω2
b

αb

α2
b + β2

b

+ Gpbp, (20)

βp =
1

Ωp
+

Vb

Vp

1

Ω2
b

(
Ωb − βb

α2
b + β2

b

)
+ Gpap, (21)

Ωp =
ωVp

γPoCr

, πp =
∆pp

∆pd

(22)



It follows that

πp =
1

Ωp

√
α2

p + β2
p

, (23)

tan(δd) = αp/βp. (24)

Application of Eq. (6) to the driver section requires setting p = pd(t), V = Vd − Ax(t)),
ṁi = 0, ṁe = ṁr, he = cpTh, Ẇ = −PoAdx/dt = PodVd/dt, Q̇ = −q̇dSd. Setting furthermore

x(t) = ∆xei(ωt+δx) (25)

it is found that
γPoA∆xeiδx

Vd∆pdeiδd
= αd − βdi, (26)

where

αd = 1 +
Th

Tc

Vp

Vd

1

Ω2
p

αp

α2
p + β2

p

+ Gdbd, (27)

βd =
Th

Tc

Vp

Vd

1

Ω2
p

(
Ωp − βp

α2
p + β2

p

)
+ Gdad. (28)

It follows that

γPoA∆x

Vd∆pd
=
√

α2
d + β2

d , (29)

tan(δx − δd) = −βd/αd. (30)

Taking γ = 5/3, the value of G ≡ (γ−1)SD/(4V ) in the foregoing results is 1/3 for 2 infinite
plates. Provided y � 1, the results may be applied to other geometries by substituting the
actual value of the surrounding surface for S, and the value of the actual volume for V [6].
For a cylinder this yields G = 2/3, for a sphere G = 1.

FORCE ON PISTON

The force on the piston is found from the equation

F̃ ≡ ∆F̃ ei(ωt+δF ) = m
d2∆xei(ωt+δx)

dt2
+ A∆pde

i(ωt+δd). (31)

Working this out yields

∆FeiδF

∆xeiδx
=

γPoA
2

Vd

(
−Ω2

m +
αd + βdi

α2
d + β2

d

)
, (32)

from which

∆F̃ =
γPoA

2∆x

Vd
∆F, (33)

tan(δF − δx) =
βd

αd − Ω2
m(α2

d + β2
d)

, (34)

where use was made of Eq. (26), and where

∆F =

(
Ω4

m − 2Ω2
m

αd

α2
d + β2

d

+
1

α2
d + β2

d

)1/2

, (35)

Ωm =
ω

A

√
mVd

γPo
. (36)



Figure 2: Amplitude ∆F of force as function of Ωm

RESONANCES AT ZERO HEAT LOSS

The resonance character of ∆F can be illustrated by considering the simplified case
of zero heat loss. For the purposes of this illustration, the orifice is taken to be closed
(Co = 0), and the regenerator temperature is taken to be uniform (Th/Tc = 1). For this
case, Ωb = ∞, ap = bp = ad = bd = 0, αp = 1, βp = 1/Ωp, αd = 1 + (Vp/Vd)/(Ω2

p + 1),
βd = (Vp/Vd)Ωp/(Ω2

p + 1). This leads to two possible resonances. One obtains in the limit of
zero regenerator conductance (Cr = 0), which corresponds to a geometry consisting of the
drive chamber, only. In this case, Ωp = ∞, αd = 1, βd = 0, and

∆F =
∣∣∣Ω2

m − 1
∣∣∣ . (37)

The second resonance obtains in the limit of infinitely large regenerator conductance (Cr =
∞), which corresponds to a geometry consisting of a single chamber having the combined
volume Vp + Vd of the pulse tube and the drive chamber. Now Ωp = 0, αd = 1 + Vp/Vd,
βd = 0, and

∆F̃ =
γPoA

2∆x

Vp + Vd

∣∣∣Ω2
mpd − 1

∣∣∣ . (38)

Here Ωmpd = (ω/A)
√

[mVd/(γPo)] is the resonance frequency of the combined volume. The

resonance at Ωmpd = 1 corresponds to Ωm =
√

Vd/(Vp + Vd). In considering intermediate
value of Cr, the dimensionless conductance of the regenerator is defined as

COr ≡ Cr

A

√
γmPo

Vd

(
=

Ωm

Ωp

Vp

Vd

)
. (39)

Hence

Ωp =
Ωm

COr

Vp

Vd
. (40)

Consequently, ∆F can be plotted as a function of Ωm for given values of the parameters COr

and Vp/Vd. Such a plot is shown in Fig. 2 for Vp/Vd = 2.5 and for various values of COr.

The possible resonances at Ωm = 1 and Ωm =
√

Vd/(Vp + Vd) = 0.535 manifest themselves
clearly. At values of COr near unity, the value of ∆F is dominated by dissipation in the
regenerator, and the resonance phenomenon disappears. Corresponding results for the phase
angle δF − δx are shown in Fig. 3. In the limiting cases COr = 0 and COr = ∞, this phase
angle jumps from 0 degrees just below resonance to 180 degrees just above. Its value at
resonance is 90 degrees.



Figure 3: Phase angle δF − δx as function of Ωm

.

POWER DELIVERED BY PISTON

The power delivered by the piston is given by

P̃ =
∮

F̃
dx

dt
dt =

ω

2π

∫ 2π/ω

0
∆F̃ cos(ωt+δF )

d

dt
∆xcos(ωt+δx)dt =

ω

2
∆x∆F̃ sin(δF −δx). (41)

Using Eq. (32) to substitute for ∆F̃ sin(δF − δx), there results

P̃ =
ωγPo(A∆x)2

2Vd

P, (42)

where the dimenensionless power P equals

P =
βd

α2
d + β2

d

. (43)

This power P is plotted in Fig. 4 as function of Ωm, for the values of Vp/Vd and COr also
used in Figs. 2 and 3. It is seen that the power delivered by the piston to the gas does not
exhibit minima corresponding to the minima in ∆F at Ωm = 1 and Ωmpd = 1. At these
minima, the phase angle δF − δx is 90 degrees (see Fig. 3). Consequently, the sine of this
angle is at its maximum value. As a result, the product ∆F̃ sin(δF − δx) appearing in Eq.
41 for P̃ does not pass through an extremum.

Figure 4: Dimensionless power P as function of Ωm



ESTIMATE OF CA

In order to assess the influence of heat losses to the the wall, the power P is shown in
Fig. 5 as function of y for the case of two parallel plates considered previously. The figure
is based on a single chamber, which corresponds to setting Cr = 0. It follows that Ωd = ∞,
αd = 1 + Gb, βd = Ga, in agreement with [6]. In obtaining Fig. 5, the value of G was taken
equal to 1. At large values of y, the results depend strongly on the value of CA. Large values
of CA here correspond to a large effect of turbulence, and cause significant increases in the
power dissipated as compared with the laminar case (CA = 0). The results are essentially
independent of CA in the nearly isothermal region (y � 1). The power dissipated goes to 0
in the isothermal limit (y → 0)as well as in the adiabatic limit (y → ∞).

The previous work by Cantelmi et al [9]. has shown that heat losses to the walls in
Stirling engines correspond to CA values of about 0.3 to 0.6. As part of the present work,
experiments were carried out to determine a value of CA appropriate for chamber dimensions
and a geometry characteristic of pulse tubes. The experimental set-up used was similar to
that sketched in Fig. 1, except that there was no reservoir. The regenerator was simulated
by an adjustable valve. The piston was connected to a linear motor. Measurements were
made of the current delivered to the motor as a function of time under zero-load conditions.
This current is proportional to the force on the piston. At sufficiently small amplitudes
of the piston motion, the spring force exerted by the flexure bearings is negligible. The
force delivered to the piston then serves only to overcome the inertial force md2x/dt2. The
mass m of the piston is known (m = 0.165 kg). The electronics provided with the motor
yielded the value of the amplitude ∆x. This allows determination of the inertial force, and
hence of the constant of proportionality between current and force. The resulting value was
15.9 N/A. The electronics provided with the motor also allow determination of the phase
angle δF − δx between the force F̃ (t) and the motion x(t) of the piston. The pressure at
which the measurements were taken was Po = 1.5 Mpa. The volumes of the drive chamber
and the reservoir were Vd = 17.5 × 10−6m3 and Vo = 44 × 10−6m3, respectively. The cross
sectional area of the piston was A = 3.8 × 10−4m2, the piston amplitude was ∆x = 1
mm. Experimental results for the force amplitude ∆F̃ are shown in Fig. 6, together with
corresponding theoretical curves obtained with CA = 7. It is seen that the theoretical curves
generally lie below the experimental data, even though the value used for CA is very large.
While not shown here, the corresponding theoretical values for the phase angles δF − δx are
higher by about 40 degrees than the experimental data. It appears that the theory described
can provide an estimate of the order of magnitude of the heat losses to the wall, but does
not yield accurate quantitative results. It may be that the heat losses are dominated by
convective effects, which have not been taken into account here.

Figure 5: Power P due to heat loss as function of y



Figure 6: Amplitude of force on piston as function of frequency ω

APPLICATION TO ORIFICE PULSE TUBE

The amplitude ∆F of the force on the piston for the case of a complete pulse tube is
plotted in Fig. 7. The values used for geometric quantities are the same as those used in
obtaining Fig. 6. Additional values used are Vb/V p = 10, COr = 0.1, and CA = 1. The latter
value represents a level of turbulence considerably less than than that corresponding to the
measurements reported in the previous section. The value COr=0.1 represents a regenerator
with a low conductance, offering the best prospects for making use of the resonance in the
drive chamber (cf. Fig. 2). In carrying out the computations, use was made of the identity

Ωb =
Vb

Vp

Ωp

OCo

, (44)

which follows from Eqs. (16) and (22). The value used for OCo is given by

OCo,∆x = Ωp

√√√√(1 + v)2 + Ω2
p

v2 + Ω2
p

, (45)

where v = (Th/Tc)(Vp/Vd). As shown in [10], this expression optimizes the enthalpy flux for
given amplitude ∆x of the piston.

Figure 7: Amplitude of force ∆F as function of frequency Ωm for pulse tube, at various
values of temperature ratio Th/Tc.



Fig. 7 shows that there is a pronounced resonance for low values of Th/Tc. However,
this resonance disappears for values of Th/Tc that are of practical interest. Dissipation
corresponding to values of CA larger than 1 would make the resonance disappear at still
lower values of Th/Tc. On the other hand, it was found that for values of COr and CA

much smaller than one there is a pronounced resonance even at high values of Th/Tc. It can
be concluded that in order to make beneficial use of piston resonance in pulse tubes, it is
necessary to use a regenerator of low dimensionless conductance, and to minimize heat losses
due to turbulence and convective effects.
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