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On long κ-tuples with few prime factors

O. Ramaré

Abstract

We prove that there are infinitely many integers n such that the total number of prime factors
of (n+ h1) · · · (n+ hκ) is exactly (1 + o(1))κLog κ. Our result even ensures us that these prime
factors are fairly evenly distributed among every factors n+ hi.

1. Introduction and some results

The prime κ-tuple conjecture of Hardy & Littlewood in [11] asserts that, given any
“admissible” κ-tuple (h1 = 0, h2, · · · , hκ), there are infinitely integers such that each of n, n+
h2, · · · , n+ hκ is prime. By an admissible κ-tuple, we mean a κ-tuple (h1 = 0, h2, · · · , hκ) of
distinct non-negative integers such that the set {h1, · · · , hκ} does not cover all of Z/pZ, for
every prime p. For instance, (0, 2) and (0, 2, 6) are admissible tuples, while (0, 2, 4) is not.
This conjecture is of course out of reach of today’s techniques, and the best one can do, since
Brun in [4], is to produce tuples (n, n+ h2, · · · , n+ hκ) whose total number of prime factors is
bounded in terms of κ. We are concerned in this paper with the case when κ is large. The best
available result is still the one of Miech from [16], where he proves that there exist infinitely
many κ-tuples having in all at most κLog κ+O(κ) prime factors. The best bound one can
expect is κ by the Hardy-Littlewood conjecture, but, more realistically and taking the parity
barrier into account, the best bound we hope to achieve here is 2κ. As a matter of fact, the
parity principle is the only identified hurdle here, but even getting a bound ≤ (1− δ)κLog κ
for some positive δ has not been achieved. We will be confronted here to the same barrier, in a
strong way, see the paragraph before Theorem 1.2, but will explain partly this phenomenom.
The proof of the claim of [21, Proposition, page 287] is faulty, as far as I can see. Different
bounds appear in [10, Theorem 10.5, 10.7, Corollary 10.11.2], [5, table 11.1]; all have the same
asymptotic behaviour.

The main novelty in recent years is due to Heath-Brown in [12]. On developing an idea of
Selberg on the twin prime conjecture, he investigated the problem of bounding the number
of prime factors of each n+ hi and has obtained that, given any admissible κ-tuple, there
are infinitely many tuples (n, n+ h2, · · · , n+ hκ) such that each n+ hi has at most 2(1 +
o(1)) Log κ/Log 2 prime factors.

Here is a typical corollary of the method we develop:

Theorem 1.1. Given any admissible κ-tuple (h1, · · · , hκ) there are infinitely many
integers n such that

(1/κ)
∑

1≤i≤κ

(
ω(n+ hi)− Log κ

)2 � Log κ

where ω(m) denotes the number of prime factors of m counted without multiplicity.
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In short, we are not only able to produce κ-tuples with at most κLog κ+O(κ), but with
exactly κLog κ+O(κ

√
Log κ). If we seek only this total number, we can also reach κLog κ+

O(κ). Our result furthermore ensures that these primes factors are fairly evenly distributed
among each factor n+ hi. As usual (with the exception of [7]), it is possible to ensure that
there are more than� N/(LogN)κ such κ-tuples below N , and we can further guarantee them
to be free of prime factors below Nη for a small but positive η. We concentrate on the simpler
situation, and on the novel aspects of the method we propose.

It is striking that the limit κLog κ should arise so vividly, and a partial explanation is
this, anticipating somewhat on what follows: the host sequence β(n) (see (1.2) and sections 2
and 4) has in its support many integers that indeed are such that (n+ h1) · · · (n+ hκ) has
(1 + o(1))κLog κ prime factors. Note that we are not able to produce integers in the support
of β(n) and such that (n+ h1) · · · (n+ hκ) has, say (2 + o(1))κLog κ prime factors. But it does
not rule out their existence either.

The traditional way to study this problem introduces the sequence of numbers

Π(h1,··· ,hκ)(n) =
∏

1≤i≤κ

(n+ hi) (1.1)

and looks for such numbers free of small prime factors. The so-called linearized approach
restricts n to primes and we can thus remove the factor n+ h1 = n from Π(h1,··· ,hκ)(n). This is
efficient when κ is small, but we will neglect it since we are interested at what happens when
κ goes to infinity. Our study relies on the quantity

Si((ad∗)d∗) =
∑
n≤N

( ∑
d∗|n+hi

ad∗

)
β(n) with β(n) =

( ∑
d|Π(h1,··· ,hκ)(n)

λd

)2

. (1.2)

This is a simple version of a more elaborate sum we will present later on, at (2.5). The coefficient
β(n) arises in this form in the Selberg sieve. Miech in [16] chooses precisely the one that is
chosen there, while Salerno in [21] and Greaves in [8, Section 7.3.2], following ideas of [2] and
of [24] both takes more elaborate versions, all explained thereafter.

The word “weight” being overloaded in this theory, we are in need of a stricter terminology.
We call β(n) the host sequence, while referring to the coefficient c(n) =

∑
d∗|n+hi

ad∗ as the
sieve coefficient. We will try to add a ∗ to what pertains to this coefficient. Two issues will
make matters somewhat more intricate: the construction of the usual Selberg coefficients β(n)
depends on yet another sequence which, at this level, will be called (and be treated as) a host
sequence. Secondly, we shall modify these Selberg coefficients by employing ... some weights!
The word weight will be reserved for these, except in the expression the weighted sieve. The
weighted sieve approach dealt with in this paper consists in showing that

∑
i Si((ad∗)d∗) is

non-negative for some sieve coefficients c(n) and a given host sequence β.
The choice of a proper family of host sequences will be fairly satisfactorily answered to in

this paper, but a proper choice of sieve coefficients remains hazy, though we will make some
progress. Concerning this coefficient, the traditional choice takes it in the form

c(n) = b−
∑

p≤P=Nθ,
p|Π(h1,··· ,hκ)(n)

1

thus restricting the sum to d∗ being 1 or a prime number.
Historically speaking, the first weighted sieve had been used by Kuhn in 1941 [14] to prove

that every interval [X,X +
√
X] contains numbers having at most 4 prime factors, provided

X be large enough.
At this level, we skip the choice of the host sequence. It is detailed in section 2 and 4.

Each choice depends on a large parameter Q and on a non-negative non-increasing function
w on [0,∞[ which furthermore is supposed to be continuous, piecewise differentiable with
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a bounded derivative and such that w(1) = 0. This choice, or rather the way to handle the
resulting coefficient, is the first novelty of this paper. The setting we create for them leads to
easy treatments, so easy that we are in a position to handle sieve coefficients c(n) that do not
only depend on prime divisors of Π(h1,··· ,hκ)(n) but also on divisors that have a given number
of prime factors. We will examine the functions w(t) = max(0, 1− t)ν for positive ν such that
but Log ν = o(Log2 κ), but we will attain the same bound κLog κ, so giving somewhat more
consistency to this barrier. We further consider a sequence: the characteristic function ar[P ]
of those integers that have exactly r prime factors, all distinct and all ≤ P , and 0 at any other
ones.

Theorem 1.2. For any non-negative integer r, any integer parameter κ and any parameter
τ > 0, there exists a bounded continuous function Gκ,r(t1, t2, τ) with the following property.
Let (h1, · · · , hκ) be an admissible κ-tuple, let Q ≥ 1 be a parameter and w be a function as
above. We consider the sum Si(ar[Q

τ ]) from (1.2) when β(n) is as above. We have

Si(ar[Q
τ ])

N/(LogQ)κ
= C (h1, · · · , hκ)

∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,r(t1, t2, τ)dt1dt2

+O
(
1/(LogQ)1/9

)
+O(Qrτ+2N−1(LogQ)κ)

where the constant C (h1, · · · , hκ) is given by

C (h1, · · · , hκ) =
∏
p≥2

(
1− #{h1, · · · , hκ mod p}

p

)(
1− 1

p

)−κ
.

A more general Theorem in proved in Theorem 14.1. The expression we find for Gκ,r(t1, t2, τ)
is fairly explicit but too complicated to get even the asymptotic dependence in κ. See (17.1)
and (18.1) in case r = 0 and r = 1. Let us summarize here the properties we prove:

(1) Gκ,r is symetrical in t1 and t2, i.e. Gκ,r(t1, t2, τ) = Gκ,r(t2, t1, τ).
(2) For any λ > 0, we have Gκ,r(t1, t2, τ) = λκGκ,r(t1/λ, t2/λ, τ/λ).
(3) Gκ,r(t1, 0, τ) = Gκ,r(0, t2, τ) = 0 and we extend Gκ,r(t1, t2, τ) to negative values of t1

and/or t2 by attributing it the value 0.
(4) Gκ,r is a bounded continuous function.
(5) When τ > 0, the following recursion formula holds:

τ
dGκ,r(t1, t2, τ)

dτ
= Gκ,r−1(t1, t2, τ)−Gκ,r−1(t1 − τ, t2, τ)

−Gκ,r−1(t1, t2 − τ, τ) + Gκ,r−1(t1 − τ, t2 − τ, τ). (1.3)

(6) When τ > 0, we have Gκ,0(t1, t2, τ) = min(t1, t2)κ.
The formula (14.2) offers a distinct approach, as it avoids any notion of derivative, but we

need to have access to the second derivative of Gκ,r: we do not know how to prove that it exists
in general. See (17.2) and (18.2) in case r = 0 and r = 1.

We will use sieve coefficients supported by products of two prime factors, in a general context;
prove a precise formula for a specific host sequence for products of two primes, and prove a
general but very cumbersome formula for general sieve coefficients supported by products of r
primes.

Final note: we restricted our attention in this work to prime κ-tuples and did not consider
the case of a general κ-dimensional sieve setting, but similar results are available, at least when
κ is an integer. We also did not try to rule out primes appearing with multiplicities. In fact,
we tried to stick to the simplest problem: the technique is still so heavy that we are not yet
able to do all what one would wish, even in this special situation.
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Notation: We assume that Q ≥ 2 and we set α = 1/LogQ, τ = (LogP )/(LogQ) as well as
R = LogP0 where P0 ≤ P will be introduced later. We also set ε = αR and Z = (LogQ)κ. We
use

Hm =
∑

1≤k≤m

1/k. (1.4)

The symbol + as an exponent will be used to avoid negative values: x+ = max(0, x) and
x+m = max(0, x)m. We close this part by a remark concerning one-dimensional integrals. We

use most often
∫
a≤t≤b f(t)dt and not

∫b
a
f(t)dt: the first one vanishes when b < a while, in such

a situation, the second one is commonly understood as −
∫a
b
f(t)dt.

2. The approach in the large

For an admissible shift (h1, · · · , hκ), we define

K(h1, · · · , hκ)d =
⋂

1≤i≤κ

(
Ud − hi

)
(with Ud = (Z/dZ)∗). (2.1)

When n lies in K(h1, · · · , hκ)d, then n+ hi falls in Ud, i.e. is prime to d, for all i from 1 to κ.
We proposed some time ago (see [20] and [19]) a geometrical approach that dispenses with

building an auxiliary polynomial, like Π(h1,··· ,hκ) above. The exposition will be made easier by
the following definition.

Definition 2.1. A collection (Kd)d≥1 is said to be a multiplicatively split compact set
when
(i) For each d ≥ 1, Kd is a subset of Z/dZ.
(ii) When d1 and d2 are co-prime, Kd1d2 is in one to one correspondance, via the Chinese

remainder map, with Kd1 ×Kd2 .
We further say that it is square-free when

(iii) If d1|d2 but both have the same prime factors, Kd2 is the reverse image of Kd1 through the
canonical surjection from Z/d2Z to Z/d1Z.

The main compact set we will consider is K(h1, · · · , hκ). Its definition (2.1) shows clearly that
it is multiplicatively split and square-free. We need another one, K∗, that will be successively
Ud − h1, Ud − h2, ..., Ud − hκ. In general we simply assume that
(H1) K is a multiplicatively split compact set;
(H2) K∗ is a square-free multiplicatively split compact set that contains K.
We associate to K∗ (and to any multiplicatively split compact set) its bordering system (L∗d)d≥1.
Each L∗d is the subset of Z/dZ defined by

– L∗1 = {1} and L∗d = ∅ when d is not square-free.
– When d1 and d2 are co-prime, L∗d1d2 is in bijection via the Chinese remainder map to
L∗d1 × L

∗
d2

.
– L∗p = Z/pZ \ K∗p.
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This may look complicated, but the situation clears when one looks at characteristic functions
(the expressions are valid whether the compact set K∗ be square-free or not):

11L∗d =
∏
pν‖d

(
11Kpν−1 − 11Kpν

)
= (−1)ω(d)

∑
δ|d

µ(d/δ)11Kδ (2.2)

and

11Kd =
∏
pν‖d

(
11− 11L∗p − · · · − 11L∗

pν

)
=
∑
δ|d

(−1)ω(δ)11L∗δ . (2.3)

We will also use the bordering system (Ld)d≥1 associated with K. Note that the condition
K∗ ⊃ K has the following consequence: when p is a prime number and a is a positive integer,
we have

11Kpa · 11L∗p = 11Kpa · (11− 11K∗p) = 0. (2.4)

Having this preparation at hand, we can present the main actor of this paper, namely the sum

S((ad∗)d∗ ;K,K∗) =
∑
n≤N

( ∑
d∗/n∈L∗d∗

ad∗

)( ∑
d/n∈Kd

λ]d

)2

. (2.5)

We assume that ad∗ vanishes when d∗ > D∗. The coefficients (λ]d)d are completely free for us
to choose. We simply assume that they vanish when d > Q, for some parameter Q. We need
some more material from sieve theory. We define the coefficients (λd)d by

λd = (−1)ω(d)
∑
d|`

λ]`. (2.6)

We have (see [19, (11.5)])

λ]d =
∑
d|`

µ(`/d)(−1)ω(`)λ` and
∑

d/n∈Kd

λ]d =
∑

d/n∈Ld

λd. (2.7)

In practice, the condition n ∈ Kd leads to easier treatment of the main term, while the λd’s
will be smaller, leading to a better treatment of the error term. We finally introduce the
multiplicative function

h(d) =
∏
pν‖d

( pν

|Kpν |
− pν−1

|Kpν−1 |

)
.

We need to handle averages of this function and we follow [10, Chapter 5] (see also [9]).
Condition (Ω1) therein is introduced in the fourth part of the first chapter, page 49, but it is
expedient to assume a much stronger hypothesis, namely

h(p)� κ/p. (H4)

Our main hypothesis on h is a slight simplification of what is called (Ω2(κ, L)) at the beginning
of [10, Chapter 5]. It reads ∑

p≤x

h(p) Log p

p
= κLog x+O(1). (H3)

Note that we will use the fact that κ is an integer in section 12. This implies classically that∑
δ≤x

h(δ) = A(Log x)κ +O((Log(2x))κ−1)

when x ≤ Q, by using [10, Lemma 5.3, 5.4] and Merten’s Theorem. We deduce from (H3) and
(H4) the following weaker form which will be easier to use:∑

δ≤x

h(δ) = A(Log x)κ +O(αZ). (1 ≤ x ≤ Q). (2.8)
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When K = K(h1, · · · , hκ), the constant A is equal to the constant C of Theorem 1.2. It is > 0
when (h1, · · · , hκ) is admissible, or, and this is an equivalent statement, when K(h1, · · · , hκ)
is non-empty.

3. Generalisation of a formula of Bombieri

The quantity (2.5) has a summation over four variables (n, d∗, d and d′). We take care here
of the summation over n. We set

γ(d∗) = |L∗d∗ |/d∗ (3.1)

as well as

S0((ad∗)d∗ ;K,K∗) =
∑
d∗,δ

γ(d∗)ad∗h(δ)

( ∑
δ|d,

(d,d∗)=1

|Kd|λ]d/d

)2

. (3.2)

Lemma 3.1. We have

S((ad∗)d∗ ;K,K∗) = NS0((ad∗)d∗ ;K,K∗)

+O
( ∑
d∗1 ,d2,d3

|ad∗1 ||λd2 ||λd3 ||L
∗
d1 ||Ld2 ||Ld3 |

)
.

Proof. We first revert to (Ld) on invoking (2.7) and get

S((ad∗)d∗ ;K,K∗) =
∑

d∗1 ,d2,d3

ad∗1λd2λd3
∑
n≤N,

n∈L∗d∗1
∩Ld2∩Ld3

1.

Note that L∗d∗1 ∩ Ld2 ∩ Ld3 vanishes when d∗1 is not square-free, or when there is a prime p
and two distinct powers a ≥ 1 and b ≥ 1 that divides respectively d2 and d3. The reader will
conclude that this set defines modulo [d∗1, d2, d3] a subset of cardinality at most |L∗d1 ||Ld2 ||Ld3 |.
Concerning the main term, we divide it by N and write it as

M =
∑

d∗1 ,d2,d3

ad∗1λd2λd3
|L∗d∗1 ∩ Ld2 ∩ Ld3 |

[d∗1, d2, d3]
.

It can be defined as the limit when N goes to infinity of S((ad∗)d∗ ;K,K∗)/N . To compute this
limit we use (2.7) and switch to the λ]d. This gives us

M =
∑

d∗1 ,d2,d3

ad∗1λ
]
d2
λ]d3

|L∗d∗1 ∩ Kd2 ∩ Kd3 |
[d∗1, d2, d3]

.

Note that Kd2 ∩ Kd3 = K[d2,d3]. We use equation (2.4) to introduce the condition (d∗1, d2d3) = 1.
This gives us

|L∗d∗1 ∩ Kd2 ∩ Kd3 |
[d∗1, d2, d3]

=
|L∗d∗1 |
d∗1

|Kd2 ∩ Kd3 |
[d2, d3]

.

We complete the separation of d2 and d3 via the diagonalisation process of Selberg, i.e. we
write

|Kd2 ∩ Kd3 |
[d2, d3]

=
|Kd2 ||Kd3 |
d2d3

∑
δ|d1,
δ|d2

h(δ).
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The Lemma follows readily.

This Lemma generalizes [2, Theorem 18]. This same formula occurs as [8, Section 7.3.1,
Lemma 1]. This is also [24, (5.6’)]. Our proof is much shorter than the initial one of Bombieri.
Greaves’s proof is also remarkably short and shares with the above one the fact of treating the
variable d∗1 in a distinct manner. Our switching between L and K as usual enables us to extend
the proof to the case when K is not assumed to be square-free.

4. A family of host sequences

It is time to narrow our family of host sequences. But to do so, we will first develop some
material to motivate our choice. Let M = lcm(d ≤ Q) and let us look at KM ⊂ Z/MZ. We
assume momentarily that the compact set satisfies the Johnsen-Gallagher condition (see [6],
[23], [20], [19]), i.e.

∀d ≤ Q,∀d|q,∀a ∈ Kd,
the number |{b ∈ Kq /b ≡ a[d]}| is independent of a. (JG)

Let us expand the characteristic function of KM in Fourier series:

11KM (n) =
∑

b mod M

(
1

M

∑
c∈KM

e(−bc/M)

)
e(bn/M)

=
∑
d|M

∑
a mod ∗d

(
1

M

∑
c∈KM

e(−ac/d)

)
e(an/d)

=
∑
d|M

∑
a mod ∗d

(
|KM |
M |Kd|

∑
c∈Kd

e(−ac/d)

)
e(an/d)

where we have used the Johnsen-Gallagher condition (see (JG)). We define

ψ∗d(n) =
∑

a mod ∗d

(
1

|Kd|
∑
c∈Kd

e(−ac/d)

)
e(an/d). (4.1)

These functions are, up to a multiplicative factor, the pseudo-characters introduced by Selberg
in 1973 (see [2], [17] as well as [13]). An L2 approximation of 11KM is thus given by

|KM |
M

∑
d≤Q

ψ∗d(n). (4.2)

It is also possible to define ψ∗d(n) by Moebius inversion since we readily verify that∑
d|q

ψ∗d =
q

|Kq|
11Kq . (4.3)

The coefficient q/|Kq| is somewhat mysterious and explained in [19, Section 9.4]. Inverting the
above equation leads to the definition

ψ∗d =
∑
q|d

µ(d/q)
q

|Kq|
11Kq . (4.4)

This definition is valid whether K verifies condition (JG) or not, and is thus the one we take
in general. Note that ψ∗d(n) = h(d) as soon as n belongs to Kd. As a consequence, the function∑

d≤Q

ψ∗d (4.5)



Page 8 of 40 O. RAMARÉ

is constant overKM . Squared, this is the usual Selberg coefficient up to a normalising coefficient.
The expression above calls immediately for a modification, namely∑

d≤Q

ζdψ
∗
d (4.6)

for some arbitrary coefficients (ζd)d≤Q. We readily find that∑
d≤Q

ζdψ
∗
d(n) =

∑
d≤Q

ζd
∑
q|d,
n∈Kq

µ(d/q)
q

|Kq|

=
∑

q/n∈Kq

q

|Kq|
∑
q|d≤Q

ζdµ(d/q)

so that we take

λ]q =
q

|Kq|
∑
q|d≤Q

ζdµ(d/q)/Z (4.7)

where Z is a size parameter. Note that, when d∗ is square-free and co-prime with δ,

Z
∑
δ|d,

(d,d∗)=1

|Kd|λ]d/d =
∑
δ|d,

(d,d∗)=1

∑
d|q≤Q

ζqµ(q/d) =
∑
δ|q

ζq
∑
δ|d|q,

(d,d∗)=1

µ(q/d).

Let us write q = δ`. It is obvious that ` is prime to d∗. Furthermore∑
δ|d|δ`,

(d,d∗)=1

µ(δ`/d) = µ(`)

(since only d = δ appears in this sum) which does not vanish only when µ2(`) 6= 0, i.e. `|d∗.
We define

Gd(Q) =
∑
f≤Q,

[f,d]≤Q

h(f)ζ[d,f ]. (4.8)

This leads to

λd = (−1)ω(d)Gd(Q)/Z. (4.9)

The usual normalisation Z = G1(Q) is not required here because all our quantities are
homogeneous with respect to Z. The next Lemma in a generalisation of [26]:

Lemma 4.1. When ζ ≥ 0 decreases on chains of multiples, the inequalities G`(Q`/d) ≤
Gd(Q) ≤ G`(Q) hold whenever `|d.

This has the nice consequence that |λd| ≤ G1(Q)/Z, while λ]d can be much bigger.

Proof: The condition [f, d] ≤ Q implies that [f, `] ≤ Q, which proves the first claim (notice
that h ≥ 0). In the other direction, let f be such that [f, `] ≤ Q. We have [f, d] ≤ [f, `](d/`)
and the Lemma follows readily. � � �

With such a choice of the λd’s, S0((ad∗)d∗ ;K,K∗) becomes

Z2S0((ad∗)d∗ ;K,K∗) =
∑
d∗,δ,

(d∗,δ)=1

γ(d∗)ad∗h(δ)

( ∑
`≤Q/δ,
`|d∗

µ(`)ζδ`

)2

. (4.10)
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To compare with earlier work, our family of parameters (ζd) has this name in [2] and [21].
Salerno in [21] chooses for ζd a step function with only two steps. Greaves in [8, Section 7.3.2,
(2.4)] calls this parameter y(d) and chooses a logarithmic smoothing of 11d≤Q. Selberg in [24,
(7.6), (7.9), (7.11)] uses weights that are similar to (4.11). The paper [7, (3.14)] uses also
a similar shape though the sum they study is somewhat different. Heath-Brown in [12, (4)]
determines λd directly, but the sum he studies differs notably from ours.

We shall further restrict our attention to weights of shape

ζd = w
( Log d

LogQ

)
= w(αLog d) (4.11)

for some non-negative non-increasing function w on (0, 1]. We further assume that w is
continuous with w(1) = 0, prolonged to (0,∞) by setting w(t) = 0 when t ≥ 1, piecewise

differentiable and such that w′ is bounded. These hypothesis ensure that w(t) = −
∫1

t
w′(u)du

which is what we need. We thus have

ζd = −
∫1

αLog d

w′(u)du. (4.12)

5. Two reduction steps

In this section, we first restrict d∗ to integers without any small prime factors. This step
may seem harmless and usual, but is in fact crucial; it will rid us of many constant terms in
asymptotic expressions and will enable us to disregard most of the coprimality conditions. This
introduces a parameter P0 (and later ε = (LogP0)/LogQ) which should disappear from the
main term. However showing that the limit of this main term as ε goes to zero exists is more
difficult than expected and will be the subject of the technical sections 12 and 13.

To restrict d∗, we limit our investigation to integers with fairly few divisors, as quantified by
(H5) below.

Our second step here will be to remove the coprimality condition (d∗, δ) = 1 from (4.10).

Lemma 5.1. Let d∗ > 1 be an integer and p be its smallest prime factor. We have, with
the choice given by (4.12), ∣∣∣∣ ∑

`′≤Q/δ,
`′|d∗

µ(`′)ζδ`′

∣∣∣∣ ≤ τ(d∗)‖w′‖∞αLog p.

Proof: Indeed, it is enough to consider the case when d∗ is square-free. Let us set d∗ = pd∗0.
We can dispense with the condition `′ ≤ Q/δ since it is included in w (for w(1) = 0). We thus
find that ∑

`′≤Q/δ,
`′|d∗

µ(`′)ζδ`′ =
∑
`′|d∗0

µ(`′)
(
ζδ`′ − ζδp`′

)
which gets majorized as announced. � � �

We assume that ∑
d∗

τ(d∗)2γ(d∗)|ad∗ | = o
(
LogQ

)
. (H5)

This hypothesis follows from (H7) below for the sequence ar[P ], the upper bound being
O((Log LogP )r).
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Removing the small prime factors of d∗ Getting rid of the small prime factors of d∗ will
simplify the computation of the main term, essentially by removing constant terms. Let P0 be
a parameter to be chosen later. We set

f0 =
∏
p≤P0

p. (5.1)

We find that, on invoking (H5),∣∣∣∣ ∑
δ,

(d∗,f0)6=1

γ(d∗)h(δ)ad∗

( ∑
`′≤Q/δ,
`′|d∗

µ(`′)ζδ`′

)2∣∣∣∣
≤ α2‖w′‖2∞Z(LogP0)2

∑
d∗

τ(d∗)2γ(d∗)|ad∗ | � ‖w′‖2∞αZ(LogP0)2.

This is more than enough. It is also O(‖w′‖2∞Z(Log LogP )r(LogP0)2) for the sequence ar[P ]
under (H7).

Removing the coprimality condition We now remove the condition (d∗, δ) = 1 in (4.10).
Indeed on using (H4), we find that∣∣∣∣∣ ∑

d∗,δ,
(d∗,f0)=1,
(d∗,δ)6=1

γ(d∗)h(δ)ad∗

( ∑
`′≤Q/δ,

(d∗,f0)=1,
`′|d∗

µ(`′)ζδ`′

)2
∣∣∣∣∣

≤ α2‖w′‖2∞
∑

P0<p≤P

Log2 p
∑
d∗,δ,

(d∗,f0)=1,
p|d∗,p|δ

γ(d∗)h(δ)|ad∗ |τ(d∗)2

� α2‖w′‖2∞
∑

P0<p≤P

Log2 p

p

∑
d∗,δ,

(d∗,f0)=1,
p|d∗,p|δ

γ(d∗)h(δ/p)|ad∗ |τ(d∗)2

� α2‖w′‖2∞Z
∑
d∗

(d∗,f0)=1

γ(d∗)|ad∗ |τ(d∗)2
∑
p|d∗

Log2 p

p
.

Note that d∗ has at most (LogD∗)/LogP0 prime factors and that we have assumed that
αLogD∗ � 1. As a consequence, the bound above is

� ‖w′‖2∞Z2α(LogP0)/P0.

We set

Z2S
(1)
0 ((ad∗)d∗≤D∗) =

∑
d∗,δ,

(d∗,f0)=1

γ(d∗)h(δ)ad∗

( ∑
`′≤Q/δ,
`′|d∗

µ(`′)ζδ`′

)2

(5.2)

and we can replace S0((ad∗)d∗≤D∗) by S
(1)
0 ((ad∗)d∗≤D∗) up to an error term of size at most

(up to a multiplicative constant)

‖w′‖2∞Zα
(
(LogP0)2 + (LogP0)/P0

)
� ‖w′‖2∞Zα(LogP0)2. (5.3)
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6. Summing over δ

We open the square in (5.2) to get

Z2S
(1)
0 ((ad∗)d∗≤D∗) =

∑
d∗,

(d∗,f0)=1

γ(d∗)ad∗
∑

`1,`2|d∗
µ(`1)µ(`2)

∑
δ

h(δ)ζ`1δζ`2δ

=

∫
0≤t1,t2≤1

w′(t1)w′(t2)
∑
d∗,

(d∗,f0)=1

γ(d∗)ad∗
∑

`1,`2|d∗
µ(`1)µ(`2)

∑
δ≤min(Qt1/`1,Qt2/`2)

h(δ)dt1dt2

on invoking (4.12). We appeal to (2.8) at this level. This leads to an error term which is:

� αZ‖w‖21
∑
d∗,

(d∗,f0)=1

γ(d∗)τ(d∗)2|ad∗ | = o(‖w′‖21Z)

by (H5). We have thus approximated Z2S
(1)
0 ((ad∗)d∗≤D∗) up to an error term of size o(‖w′‖21Z)

by

Z2S
(2)
0 ((ad∗)d∗≤D∗)

= A
∑

`1,`2≤D∗,
(`1`2,f0)=1

µ(`1)µ(`2)Θ(`1, `2)
∑
d∗,

(d∗,f0)=1,
[`1,`2]|d∗

γ(d∗)ad∗ (6.1)

with

Θ(`1, `2) =

∫
0≤t1,t2≤1

w′(t1)w′(t2) Log+κ min(Qt1/`1, Q
t2/`2)dt1dt2 (6.2)

and where Log+κ x = (Log max(1, x))κ.

7. The influence of K∗

The influence of the compact set K∗ in (6.1) is contained in the function γ. In our main
application, we will have γ(p) = 1/p, but we can encompass a more general case without much
more difficulty. We assume there exists κ′ > 0 such that∑

d∗/(d∗,f0)=1

∣∣∣∣γ(d∗)− κ′ω(d∗)

d∗

∣∣∣∣τ(d∗)2|ad∗ | = O(1/R). (H6)

We could put o(1) (i.e. a function that goes to 0 when P0 and P tend to infinity) instead of

O(1/R), but we would be blocked at section 13. Hypothesis (H6) implies that S
(2)
0 ((ad∗)d∗≤D∗)

equals S
(3)
0 ((ad∗)d∗≤D∗) up to an error term of size O(‖w′‖2∞/(RZ)), where

Z2S
(3)
0 ((ad∗)d∗≤D∗)

= A
∑

`1,`2≤D∗,
(`1`2,f0)=1

µ(`1)µ(`2)Θ(`1, `2)
∑
d∗,

(d∗,f0)=1,
[`1,`2]|d∗

κ′ω(d∗)ad∗/d
∗

(7.1)
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8. Some lemmas on classical sums over primes

To save on typography, in this section, a sum with a ∗ superscript is restricted to all its
prime variables to be > P0. We define classically

li(x) =

∫x
2

dt

Log t
. (8.1)

This function is sometimes called the Eulerian logarithmic integral and should not be confused
with the logarithmic integral Li, see [1, 5.1.3], from which it differs by a constant. We prove
some more results than necessary, but the general case is not much more difficult than the
special one we shall require, and these estimates prepare the ground for not only using ar[P ]
but the sequence of square-free integers ≤ P that have exactly r prime factors, each of them
being more than P0.

8.1. A general result

In dimension 1, we set

W (φ, t) = max
P0≤y≤t

(
|φ(y)|+ Log y

y

∫y
P0

x|φ′(x)|dx
Log x

)
(8.2)

while, in dimension ν, we set Wν(φ, t) to be

max
P0≤y1,··· ,yν≤t,
y1y2···yν≤t

(
|φ(y1, · · · , yν)|+

∑
1≤j≤ν

Log yj
yj

∫yj
P0

x|Dj(φ, y1, · · · , yν ;x)|dx
Log x

)
where Dj(φ, y1, · · · , yν ;x) denotes ∂φ/∂yj(y1, · · · , yj−1, x, yj+1, · · · , yν).

Lemma 8.1. Let φ be a continuous function C1 per pieces. For every B ≥ 1, we have∑∗

p≤t

φ(p) =

∫ t
P0

φ(t)dt

Log t
+OB

(
tW (φ, t)

RB Log t

)
.

Proof. Let us denote by E the (inside of the) error term above.∑∗

p≤t

φ(p) =
∑∗

p≤t

(
−
∫ t
p

φ′(x)dx+ φ(t)

)

= (li(t)− li(P0))φ(t)−
∫ t
P0

(li(x)− li(P0))φ′(x)dx+O(E)

=

∫ t
P0

φ(t)
dt

Log t
+O(E).

Lemma 8.2. Let φ(x1, x2, · · · , xν) be a continuous function over R+ν which is C1 by piece.
We have, for every B ≥ 1,∑∗

p1···pν≤t

φ(p1, · · · , pν) =

∫
P0≤x1,··· ,xν≤t,

x1···xν≤t

φ(x1, · · · , xν)dx1 · · · dxν
Log x1 · · ·Log xν

+OB
( t(Log Log t)ν−1

RB Log t
Wν(φ, t)

)
.
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Proof. We proceed by induction.
Here is the induction step. We write t = T ′T ′′ and it is enough to select T ′ = T ′′ =

√
t. Let

Sν+1(φ, t) be the sum to evaluate. The Dirichlet hyperbola principle gives us

Sν+1(φ, t) =
∑∗

p1p2···pν≤T ′
S1(φ(p1, · · · , pν , ·), t/(p1p2 · · · pν))

+
∑∗

pν+1≤T ′′

(
Sν(φ(·, · · · , ·, pν+1), t/pν+1)− Sν(φ(·, · · · , ·, pν+1), T ′)

)
. (8.3)

Concerning the first sum, say Σ1, we use Lemma 8.1 to get

Σ1 =

∫ t
P0

Sν(φ(·, · · · , ·, xν+1,min(T ′, t/xν+1))
dxν+1

Log xν+1

+OB
( ∑∗

p1···pν≤T ′

t

RBp1 · · · pν Log T ′′
Wν+1(φ, t)

)
.

The error term is admissible. We use the induction hypothesis on the main term, say Σ1,1, and
get

Σ1,1 =

∫ t
P0

∫
P0≤x1,··· ,xν≤min(T ′,t/xν+1),

x1···xνxν+1≤t

φ(x1, · · · , xν , xν+1)
∏

1≤i≤ν+1

dxi
Log xi

+OB
(∫ t

P0

t

xν+1 Log T ′ Log xν+1

(Log Log t)ν−2

RB
Wν+1(φ, t)dt

)
.

The error term is again admissible. We handle the other part in pretty much the same manner
and get the claimed lemma.

Lemma 8.3. Let φ(x1, x2, · · · , xν) be a continuous function over R+ν which is C1 by piece.
We have, for every B ≥ 1,∑∗

p1···pν≤t

φ(p1, p2, · · · , pν)

p1 · · · pν
=

∫
P0≤x1,x2,··· ,xν≤t,

x1x2···xν≤t

φ(x1, x2, · · · , xν)dx1 · · · dxν
x1 · · ·xν Log x1 · · ·Log xν

+OB
( (Log Log t)ν−1

RB
Wν(φ, t)

)
.

8.2. Application

Theorem 8.1. We have, with R = LogP0 and for every B ≥ 1,∑
p1p2···pν≤t,
P0<p1,··· ,pν

1 =
t

Log t
Aν

(Log t

R

)
+OB

( t(Log Log t)ν−1

RB Log t

)
where Aν is a C∞[ν,∞[-function such that Aν(u) = 0 when u ≤ ν and

0 ≤ Aν(u)�ν (Log u)ν−1, 0 ≤ A′ν(u)�ν (Log u)ν−1/u

It is defined recursively by

Aν+1(u) =

∫u−1

ν

Aν(v)
udv

v(u− v)
=

∫u−1

ν

(Aν(v)

v
+
Aν(v)

u− v

)
dv. (8.4)

We have, when u ≥ 1,

A1(u) = 1
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and when u ≥ 2,

A2(u) = 2 Log(u− 1).

Theorem 8.2. We have, when ν ∈ {1, 2, 3} and for every B ≥ 1:∑
p1···pν≤t,
p1,··· ,pν>P0

1

p1 · · · pν
= ν!Fν

( Log t

LogP0

)
+OB

( (Log Log t)ν

RB

)
where Fν is given when h ≥ ν by:

F1(h) = Log h,

F2(h) =
∫h

2
Log(v − 1)dvv ,

F3(h) = 1
3

∫h−1

2
Log(v − 1) Log(h− v)dvv .

We further set F0(h) = 1.

A direct approach (without using Theorem 8.1) seems to give one less Log Log t in the error
term. This is irrelevant for our applications.

9. Specialisation of ad∗ and summing over d∗

The expression (7.1) for our main term still contains three variables, `1, `2 and d∗, and we
discuss here our treatment of the variable d∗. We have to restrict ad∗ to ar[P ] to do so. To
simplify notations, we tag our summation signs with a ? to indicate that all the prime factors
of the variables therein are within (P0, P ]. We add the simplistic hypothesis

γ(p)� 1/p,∑
p≥P0

∣∣∣γ(p)− κ′

p

∣∣∣ = O(1/LogP0).
(H7)

Hypotheses (H5) and (H6) are then trivially verified. Since LogP
LogP0

= τ/ε, we find that∑
d∗,

(d∗,f0)=1,
m|d∗

κ′ω(d∗)ad∗/d
∗ =

κ′r

m

Log(τ/ε)r−ω(m)

(r − ω(m))!
+O(Log(τ/ε)r−ω(m)/(mP0))

(this is valid even if ω(m) = r) where H = (LogP )/R. As a consequence, and replacing `1 of
`0`1 and `2 by `0`2 with gcd(`0`1, `0`2) = `0, we find that

Z2S
(3)
0 (ar[P ]) =

Aκ′r
∑?

`0,`1,`2,
ω(`0`1`2)≤r

µ(`1)µ(`2)µ2(`0`1`2)

`0`1`2
Θ(`0`1, `0`2)

Log(τ/ε)r−ω(`0`1`2)

(r − ω(`0`1`2))!

+O
(
Z Log(τ/ε)2r/P0

)
.

10. Summing over `0, `1 and `2

We only have the last three variables `0, `1 and `2 to take care of. The fact that the weight
w is kept general complicates things somewhat but in fact selecting w(t) = max(0, 1− t) would
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not lead to notoriously simpler expression. Let us define

G (0)
s (P ) =

∑?

`0,`1,`2,
ω(`0`1`2)=s

µ(`1)µ(`2)µ2(`0`1`2)

`0`1`2
Θ(`0`1, `0`2).

On recalling (6.2), we find that

G (0)
s (P ) = (LogQ)κ

∫
0≤t1,t2≤1

w′(t1)w′(t2)G (1)
s (t1, t2, P )dt1dt2

with

G (1)
s (t1, t2, P ) =∑?

`0`1≤Qt1
`0`2≤Qt2 ,
ω(`0`1`2)=s

µ(`1)µ(`2)µ2(`0`1`2)

`0`1`2
min(t1 − αLog(`0`1), t2 − αLog(`0`2))κ. (10.1)

Lemma 8.3 is tailored to handle this sum. We thus find that

G (1)
s (t1, t2, P ) = ∑

b+c+d=s

(−1)c+d

b!c!d!

∫
P0≤x1,··· ,xb≤P

∫
P0≤y1,··· ,yc≤P

∫
P0≤z1,··· ,zd≤P

min(t1 − αLog(
∏
i xi
∏
i yi), t2 − αLog(

∏
i xi
∏
i zi))

+κ
∏
i dxi

∏
i dyi

∏
i dzi∏

i(xi log xi)
∏
i(yi log yi)

∏
i(zi log zi)

+OB
( (Log LogP )s−1

RB

)
.

This calls for a several changes of variables, which when done, lead to

G (1)
s (t1, t2, P ) =

∑
b+c+d=s

(−1)c+d

b!c!d!
G

(2)
b,c,d(t1, t2, ε, τ) +OB

( (Log LogP )s−1

RB

)
where

G
(2)
b,c,d(t1, t2, ε, τ) =

∫
ε≤u1,··· ,ub≤τ

∫
ε≤v1,··· ,vc≤τ

∫
ε≤w1,··· ,wd≤τ

(min(t1 − Σivi, t2 − Σiwi)− Σiui)
+κ
∏
i dui

∏
i dvi

∏
i dwi∏

i ui
∏
i vi
∏
i wi

. (10.2)

We thus find that S
(3)
0 (ar[P ])) equals S

(4)
0 (ar[P ]) up to an error term of size

OB((Log LogP )r/(RBZ)), where

ZS
(4)
0 (ar[P ])

= Aκ′r
∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,r(t1, t2, ε, τ)dt1dt2
(10.3)

and

Gκ,r(t1, t2, ε, τ) =
∑

a+b+c+d=r

(−1)c+d

a!b!c!d!
G

(2)
b,c,d(t1, t2, ε, τ) Log(τ/ε)a. (10.4)

This quantity depends on P0, while the quantity we computed is independent from it. This
problem is cleared in the subsequent sections.
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11. Average decay rate of the Fourier transforms of piecewise affine linear functions on Rn

This part is due to D.S. Ramana [18] whom we thank warmly for his input as well as for
the authorization to reproduce his argument below.

A k-simplex in Rn is the convex hull of k + 1 affine linearly independent points in Rn, where
k and n are integers. If a simplex P is spanned by a set S then the simplices spanned by the
proper subsets of S are called the faces of P .

The union of the faces of a simplex is called the boundary of the simplex. The complement
in a simplex of its boundary is called its interior. When the simplex is an n-simplex in Rn, its
boundary and interior are same its boundary and interior as a subset of the topological space
Rn.

By a simplicial complex in Rn we shall mean a finite family K of simplexes such that every
face of a simplex in K is also in K and the intersection of any two simplexes A and B in K is a
face of both A and B. This implies, in particular, that interiors of distinct simplices in K are
disjoint. The union of the simplexes in a simplicial complex K is denoted by |K|. A compactly
supported complex valued function on Rn is said to piecewise affine linear if its support is
contained in |K|, for some simplicial complex K, and if its restriction to any simplex in K is
affine linear.

Theorem 11.1. If n is an integer ≥ 1 and f is a continuous compactly supported complex
valued function on Rn that is piecewise affine linear on a simplicial complex K we then have
that, the Fourier transform f̂ of f satisfies∫

Rn

‖x‖n|f̂(x)|
Log(2 + ‖x‖)n+1

dx�Mm , (11.1)

where M is the essential supremum of ‖∇f‖ on |K|, m is the number of n-simplexes in K and
implicit constant depends only on n.

The Fejér kernel in dimension 1 shows that the power n is optimal.
We will infer this Theorem from (ii) of Theorem 2.1 of [3], which gives the average rate of

decay of the Fourier transform of the characteristic function of a polyhedron, by an application
of the divergence theorem.

Preliminaries Let us verify that in any simplicial complex K every (n− 1)-simplex of K is
either the common face of exactly two n-simplexes of K or lies on the boundary of |K|.

For any (n− 1)-simplex F in Rn there is a unique affine linear form H such that F lies on the
(affine) hyperplane defined by H(x) = 0. By abuse of notation, we call the half-spaces defined
by the inequalities H(x) ≥ 0 and H(x) ≤ 0 the sides of F . Now suppose that P and P ′ are
n-simplexes in Rn whose intersection is an (n− 1)-simplex F that is a face of both P and P ′.
If both these simplexes lie on the same side of F , their interiors have a non-empty intersection.
Indeed, there are n+ 1 affine linear forms Hi and H ′i such that P , respectively P ′, is the set of
x in Rn that satisfy Hi(x) ≥ 0, resp. H ′i(x) ≥ 0, for 1 ≤ i ≤ n+ 1. Suppose that H1 = H ′1 and
that the face F lies on the hyperplane determined by these linear forms. Let p be a point in the
interior of F . Then F is the unique face of either P or P ′ that contains p. Thus x = p satisfies
the inequalities Hi(x) > 0 and H ′i(x) > 0 for all i ≥ 2. These strict inequalities define an open
set U in Rn that contains p. Since p lies on the boundary of the open half-space determined
by H1(x) > 0, U has a non-empty intersection V with this half-space. Plainly, V is contained
in the interior of both P and P ′. It follows that if P and P ′ are n-simplexes of a simplicial
complex and if they have a common face F that is an (n− 1)-simplex, then, since their interiors
do not intersect, P and P ′ must necessarily lie on distinct sides of the face F . This implies that
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an (n− 1)-simplex F can be the common face of no more than two n-simplexes of a simplicial
complex.

Let us now suppose that F is an (n− 1)-simplex that is the face of a unique n-simplex P
of a simplicial complex K. Let p be a point in the interior of F . Suppose that p lies in the
interior of |K| and let U be any open ball in Rn centered at p and contained in |K|. Since p
lies on the boundary of P , the intersection V of U with the complement of P in Rn is a non-
empty open subset of Rn. Since V is contained in the complement of P in |K|, it follows that
this complement has a non-empty interior and therefore contains an n-simplex whose interior
intersects U . Since the number of n-simplexes in K is finite, we see on taking for U any open
ball in a decreasing sequence of such balls centered at p and contained in |K| that there is an
n-simplex P ′ contained in K, distinct from P , and containing p. Since p is in the interior of
F this means that F is a face of P ′, contradicting our hypothesis on F . Thus every point in
interior of F lies on the boundary of |K| and consequently F lies on the boundary of |K| as
well, as required.

Finally, we recall the divergence theorem. If v is a C1 function from an open set Ω in Rn to
R, its gradient is the function from Ω into Rn defined by t 7→ ( ∂v∂t1 , . . . ,

∂v
∂tn

) and is denoted by

∇v. If v is a C1 function from an open set Ω into Rn, its divergence is the function from Ω
into R defined by t 7→ ∂v

∂t1
+ . . .+ ∂v

∂tn
and is denoted by ∇ · v. Please note the presence of the

“·” symbol.
Let F be an (n− 1)-simplex F that is the face of an n-simplex P in Rn. Suppose that F lies

on a hyperplane H in Rn determined by the relation 〈t, c〉+ a = 0, for some c of norm 1 in Rn
and some a in Rn. If P lies on the side given by 〈t, c〉+ a ≤ 0 then the unit outward normal
nF to F is defined to be c. When P lies on the other side of F we set nF = −c.

Suppose that P is an n-simplex in Rn and v(t1, . . . , tn) is a C1 function from an open
neighbourhood of P into Rn. Then the divergence theorem is the relation∫

P

∇ · v dt1dt2 . . . dtn =
∑

F∈F(P )

∫
F

〈v, nF 〉 dSF (11.2)

where F(P ) denotes the set of (n− 1) simplexes that are the faces of P , nF denotes the unit
outward normal and dSF denotes the element of (n− 1) dimensional surface measure for each
such face F . To describe dSF in terms of a parametrisation (co-ordinate chart) of a given face
F ∈ F(P ) of a simplex P , let φ from Rn−1 to the hyperplane containing F be a parametrisation.
Then from [22, page 86] we have

dSF =

√
det((Dφ)

t
(Dφ))dt1dt2 . . . dtn−1 . (11.3)

If g is an orthogonal matrix that transports nF to the vector (0, 0, . . . , 0, 1) and let a in Rn be
such that t 7→ gt+ a is an affine linear isomorphism from the co-ordinate plane tn = 0 to the
hyperplane containing F , the composing this map with the embedding t 7→ (t, 0) from Rn−1

onto the co-ordinate hyperplane tn = 0, we get a parametrisation φ. With this parametrisation
we have

dSF = dt1dt2 . . . dtn−1 , (11.4)

since Dφ is given by the matrix of n− 1 columns and n rows whose columns are the first n− 1
columns of g, which is orthogonal. Let us note that since φ is affine linear, φ−1(F ) is a simplex
in Rn−1.

Proof of Theorem 11.1 We begin by noting that if φ(t) and f(t), with t = (t1, t2, . . . , tn)
are C1 functions on an open set in Rn then at any point t in this open set with ∇(φ(t)) 6= 0
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we have

∇ ·
(
∇φ
‖∇φ‖2

f(t)e(φ(t))

)
= 2πif(t)e(φ(t)) +∇ ·

(
∇φ
‖∇φ‖2

f(t)

)
e(φ(t)). (11.5)

We apply the above relation with φ(t) = 〈x, t〉, where x 6= 0 is a given point in Rn. Then ∇φ
is x and we have from (11.5) that

2πif(t)e(〈x, t〉) = ∇ ·
(

x

‖x‖2
f(t)e(〈x, t〉)

)
− 〈x,∇f〉
‖x‖2

e(〈x, t〉) . (11.6)

Let P denote any n-simplex in K. We then integrate the above relation over P and sum over
all n-simplexes P in K. On now recalling that the support of f is in |K|, that the interiors
of distinct simplexes in K are disjoint and that the complement in K of the union of the
n-simplexes in K is of measure zero, we conclude that

2πif̂(x) =
∑
P∈K

∫
P

∇ ·
(
xf(t)

‖x‖2
e(〈x, t〉)

)
dt−

∑
P∈K

∫
P

〈x,∇f〉
‖x‖2

e(〈x, t〉)dt . (11.7)

The divergence theorem in the form given, for example, by [22, Théorème 6.10.10, page 365],
applied to each P in K gives the following expression for the left hand side of (11.7).∑

P∈K

∫
P

∇ ·
(
xf(t)

‖x‖2
e(〈x, t〉)

)
dt =

∑
P∈K

∑
F∈F(P )

∫
F

〈x, nF 〉
‖x‖2

f(t)e(〈x, t〉)dSF . (11.8)

where, for each n-simplex in K, we have written F(P ) to denote the set of (n− 1)-simplexes in
K that are faces of P and used nF for the unit outward normal, dSF for the surface measure
of a given face F in F(P ).

Let F be an (n− 1)-simplex in K. If F is a common face of n-simplexes P and P ′ and nF
is the unit outward normal to F as a face of P then the unit outward normal to F as a face
of P ′ is −nF . We have already seen that F can be a common face of exactly two n-simplexes
in K. Since f is a continuous function, it follows that the sum of the contributions to the right
hand side of (11.8) from F that are common faces of pairs of n-simplexes is zero. If F is not
the common face of two n-simplexes, it must necessarily lie on the boundary of |K|, where f
vanishes, since it is continuous and its support is in |K|. Thus the left hand side of (11.7) is
zero. This proof is in fact the adaptation in several variables of the usual one concerning the
Fejér kernel (1− |t|)+: to show that its Fourier transform is small enough, we use integration
by parts and show the integrated term vanishes because of continuity.

Turning to the second term on the right hand side of (11.7), we note that since f is piecewise
linear on K, ∇f is a constant on each P . Moreover, the Cauchy-Schwarz inequality gives
|〈x,∇f〉| ≤ ‖x‖‖∇f‖ ≤M‖x‖. It now follows from (11.7) and the triangle inequality that

2π|f̂(x)| ≤ M

‖x‖
∑
P∈K

∣∣∣∣∫
P

e(〈x, t〉)dt
∣∣∣∣ . (11.9)

This equation yields a good bound for f̂(x) when x is not orthogonal to any P , or close to be
so, but fails in that case. We need an L1 estimate, and in that case, the measure of the set of
“bad cases” is small enough. We proceed to give a rigorous content to this remark. Integrating
(11.9) over Rn and passing to polar co-ordinates, i.e., recalling that Rn = R+ × Sn−1(R) and
applying Fubini’s theorem, we deduce that∫

Rn

‖x‖n|f̂(x)|
Log(2 + ‖x‖)n+1

dx

�M
∑
P∈K

∫∞
0

λn−1

Log(2 + λ)n+1

∫
Sn−1(R)

∣∣∣∣∫
P

e(〈λσ, t〉)dt
∣∣∣∣ dσdλ (11.10)
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where dσ is the surface measure on Sn−1(R). From (ii), Theorem 2.1 of [3], as also from [25,
pages 124-125], we have for any simplex P in K that∫

Sn−1(R)

∣∣∣∣∫
P

e(〈λσ, t〉)dt
∣∣∣∣ dσ � log(1 + λ)n−1

(1 + λ)n
. (11.11)

On substituting this bound into (11.10) and integrating over λ we conclude the proof of the
theorem except for one detail - it is necessary to check that the method of proof in [3] gives us
(11.11) with an implied constant that depends only on n. This is easily seen by following the
argument on pages 257-259 of [3], which is an induction on n through an application of the
divergence theorem to the integral over P in (11.11), and remarking that, for any n ≥ 1, the
left hand side of (11.11) is invariant when P is transformed by affine isometries of Rn.

12. Using a Fourier transform

We define

ft1,t2,κ(u, v, w) = max(0,min(t1 − |u| − |v|, t2 − |u| − |w|))κ, (12.1)

and ft1,t2 = ft1,t2,1. We expand ft1,t2 as a Fourier transform, and we need to bound this Fourier
transform uniformly in t1 and t2. It is possible to get such a proof on relying on the special
form of f . Indeed Maxima [15] (which we have used via its graphical interface wxMaxima [27])
tells us that (with X = 2πx, Y = 2πy, Z = 2πz and t3 = t2 − t1)

XY Zf̂t1,t2(x, y, z) =

4Y (Z +X − Y )(Z +X + Y ) cos(t3Z + t1X)
−4Y (Z −X − Y )(Z −X + Y ) cos(t3Z − t1X)
+4X(Z −X − Y )(Z +X − Y ) cos(t2Z + t1Y )
−4X(Z −X + Y )(Z +X + Y ) cos(t2Z − t1Y )

(Z −X − Y )(Z +X + Y )(Z −X + Y )(Z +X − Y )
(12.2)

and

f̂t1,t2(x, y, z) =

16 cos(t3Z) cos(t1X)− 16 cos(t2Z) cos(t1Y )
−8(Z2 + Y 2 −X2) sin(t3Z) sin(t1X)/(ZX)
−8(Z2 − Y 2 +X2) sin(t2Z) sin(t1Y )/(ZY )

(Z −X − Y )(Z +X + Y )(Z −X + Y )(Z +X − Y )
. (12.3)

This last expression has the advantage of showing clearly what happens when X, Y or Z is
close to 0. Such a proof is however clumsy at best, rather lengthy and would not support any
slight change in the initial function. In the course of this study, I formulated a conjecture that
has been since proved by D.S. Ramana [18] and whose proof we reproduced in section 11.
Having this at hand, the general case is readily handled.

Lemma 12.1. We have∫
x,y,z

∣∣f̂t1,t2,κ(x, y, z)
∣∣(1 + |x|)α(1 + |y|)α(1 + |z|)αdxdydz � 1

provided α ∈ [0, 1/3), and uniformly in t1 and t2 belonging to [0, 1]2. Note furthermore that
ft1,0,κ = f0,t2,κ = 0.

Proof. We show that the convolution of any two functions that verify this inequality still
verify this inequality. This will establish the required estimate by induction, the initial step
being provided by Theorem 11.1 and the remark that we can bound |f̂t1,t2(x, y, z)| by 1 when
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x2 + y2 + z2 ≤ 1. This is however immediate by using the inequality

(1 + |h|)α � (1 + |u|)α + (1 + |h− u|)α.

On expressing ft1,t2,κ in terms of its Fourier transform, we find that the function

G
(2)
b,c,d(t1, t2, ε, τ) is equal to∫
x,y,z

f̂t1,t2,κ(x, y, z)

∫
ε≤u1,··· ,ub≤τ

∫
ε≤v1,··· ,vc≤τ

∫
ε≤w1,··· ,wd≤τ

=
∏
i

e(xui)dui
ui

∏
i

e(yvi)dvi
vi

∏
i

e(zwi)dwi
wi

dxdydz

=

∫
x,y,z

f̂t1,t2,κ(x, y, z)E(ε, τ, x)bE(ε, τ, y)cE(ε, τ, z)ddxdydz

with

E(ε, τ, x) =

∫
ε≤u≤τ

e(xu)du

u
= Log

τ

ε
+ E0(ε, τ, x), (12.4)

where

E0(ε, τ, x) =

∫
ε≤u≤τ

e(xu)− 1

u
du. (12.5)

The change of variable u 7→ v = xu shows that E0(ε, τ, x) is bounded in absolute value by
O(Log(2 + |x|)). Replacing E by E0 yields the following formula:

G
(2)
b,c,d(t1, t2, ε, τ) =

∫
x,y,z

f̂t1,t2,κ(x, y, z)
∑

`,m,n≥0

(
b

`

)(
c

m

)(
d

n

)
(

Log
τ

ε

)b+c+d−`−m−n
E`,m,n(ε, τ, x, y, z)dxdydz

with the simplification:

E`,m,n(ε, τ, x, y, z) = E0(ε, τ, x)`E0(ε, τ, y)mE0(ε, τ, z)n. (12.6)

This leads to (since H = τ/ε)

Gκ,r(t1, t2, ε, τ) =

∫
x,y,z

f̂t1,t2,κ(x, y, z)
∑

a+b+c+d=r

(−1)b

a!b!c!d!

∑
`,m,n≥0(

b

`

)(
c

m

)(
d

n

)(
Log

τ

ε

)r−`−m−n
E`,m,n(ε, τ, x, y, z)dxdydz.

It is almost immediate to replace E0(ε, τ, ·) by E0(0, τ, ·), by using Lemma 12.1 and the bound

E0(0, τ, t)− E0(ε, τ, t)� min(εt, Log(2 + |t|)).

We also need to note that, when H ≥ 1,∫
x,y,z,
|x|≥H

∣∣f̂t1,t2(x, y, z)
∣∣(1 + |x|)1/4 Log(2 + |x|)dxdydz � 1

which gives us the bound∫
x,y,z,
|x|≥H

∣∣f̂t1,t2(x, y, z)
∣∣Log(2 + |x|)dxdydz � 1/H1/4
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The same bound holds true with the condition |x| ≥ H replaced by |y| ≥ H or |z| ≥ H. We
thus get∫

x,y,z

f̂t1,t2,κ(x, y, z)(E0(ε, τ, x)− E0(0, τ, x))E`−1,m,n(ε, τ, x, y, z)dxdydz

�
∫
x,y,z,
|x|≤H

+

∫
x,y,z,
|x|≥H

· · ·

�
∫
x,y,z,
|x|≤H

εH3/4|x|1/4
∣∣f̂t1,t2,κ(x, y, z)E`−1,m,n(ε, τ, x, y, z)

∣∣dxdydz
+

∫
x,y,z,
|x|≥H

Log(2 + |x|)
∣∣f̂t1,t2,κ(x, y, z)E`−1,m,n(ε, τ, x, y, z)

∣∣dxdydz
� εH3/4 +H−1/4.

We select H = 1/ε and repeat the argument for each factor. This leads to

Gκ,r(t1, t2, ε, τ) =

∫
x,y,z

dxdydzf̂t1,t2,κ(x, y, z)
∑

a+b+c+d=r

(−1)b

a!b!c!d!

∑
`,m,n≥0(

b

`

)(
c

m

)(
d

n

)(
Log

τ

ε

)r−`−m−n
E`,m,n(0, τ, x, y, z) +O

(
(Log ε)rε1/4

)
. (12.7)

There cannot be any dependence of the main term in ε. It means that each coefficient of
Log(τ/ε)d for positive d has to vanish. This is not so obvious because of two obstructions: P0

has to be somewhat large but restricted in size with respect to P ; furthermore, the limit has
to be taken in some Lp-sense. We treat both problems one after another in the next section.

13. A divertimento

We have found that∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,r(t1, t2, ε, τ)dt1dt2 =
S(4)Z

(−1)rA

+OB
( (Log LogP )r

RB
+

Log(τ/ε)2r

P0
+ α2(Log LogP )r(LogP0)2 +

1

R

)
.

Let us constrain τ to be bounded: 1 ≤ τ ≤ T . We bound above 1/P0 by 1/RB , and H by LogP ,
then replace LogP0 by εLogQ. We set q′ = LogQ, select B = 1 and get that the error term
above is

�T
(Log q′)r

εq′
+ ε2(Log q′)r +

1

εq′
�T

1

εq
+ ε2(Log q)r �T

1

εq
+ ε2q

with q = q′/(Log q′)r. We have thus at our disposal two functions f and g such that

|f(ε)− g(q)| � 1

εq
+ ε2q (13.1)

when q goes to infinity and ε goes to 0. We infer below from this hypothesis that f has a limit
when ε goes to 0.

Lemma 13.1. Let δ > 0. When 1/δ ≤ εq ≤ δ/ε, we have

1

εq
+ ε2q ≤ 2δ.
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Proof. Set x = εq. The last inequality is verified if and only if

1− 2δx+ εx2 ≤ 0.

The discriminant of this trinomial is 4δ2 − 4ε ≥ 0, for otherwise the interval we consider is
empty. The variable x has to lie between the two roots:

δ −
√
δ2 − ε
ε

=
1

δ +
√
δ2 − ε

≤ 1

δ
and

δ

ε
≤ δ +

√
δ2 − ε
ε

.

The Lemma follows readily.

Lemma 13.2. When ε2/δ2 ≤ ε′ ≤ ε ≤ 1, we have |f(ε)− f(ε′)| ≤ 4δ.

Proof. Let q = δ/ε2. We have |f(ε)− g(q)| ≤ 2δ. On another hand, 1/δ ≤ ε′q ≤ δ/ε′, and
thus |f(ε′)− g(q)| ≤ 2δ. The triangle inequality concludes.

We select δ = 2
√
ε. Let ε′ ∈]0, ε]. There exists a non-negative integer k such that 4−k−1ε <

ε′ ≤ 4−kε. We write the difference f(ε′)− f(ε) as

f(ε′)− f(4−kε) + f(4−(k−1)ε)− f(4−(k−2)ε) + · · ·+ f(ε/4)− f(ε).

We can thus bound the difference by 8(2−k + · · ·+ 1)
√
ε ≤ 16

√
ε. The function f verifies

Cauchy’s criterion in the neighborhood of 0 and thus admits a limit there, as wanted.
As a conclusion, we can restrict the summation in (12.7) to r + c− `−m− n = 0. This

means a = 0, ` = b, m = c and n = d, and thus we have∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,r(t1, t2, ε, τ)dt1dt2 =

∫
0≤t1,t2≤1

w′(t1)w′(t2)

∫
x,y,z

dxdydz

f̂t1,t2,κ(x, y, z)
∑

b+c+d=r

(−1)b

b!c!d!
Eb,c,d(0, τ, x, y, z) +O

(
(Log ε)rε1/4

)
.

This equality is valid for every w′ bounded, and say continuous (measurable would do). We
have assumed w′ to be non-positive only to have an easy bound on λd, but this hypothesis
is otherwise irrelevant. By polarization, we extend it to w′1(t1)w′2(t2) for any two distinct
functions w′1 and w′2. The relation holds also for linear combinations of such (elementary tensor)
products, which happen to be dense in L2([0, 1]2). Indeed each monomial is an elementary
tensor product and Weierstrass approximation Theorem applies; this enables us to extend our
relation from w′1 ⊗ w′2 to any continuous function over [0, 1]2. Such functions are dense in any
Lp for 1 ≤ p ≤ ∞ and this is enough to show that

Gκ,r(t1, t2, ε, τ) +O
(
(Log ε)rε1/4

)
=∫

x,y,z

f̂t1,t2,κ(x, y, z)
∑

b+c+d=r

(−1)c+d

b!c!d!
Eb,c,d(0, τ, x, y, z)dxdydz. (13.2)

We have finally reached the existence of the following function:

Gκ,r(t1, t2, τ) = lim
ε→0

Gκ,r(t1, t2, ε, τ) =∫
x,y,z

f̂t1,t2,κ(x, y, z)
∑

b+c+d=r

(−1)c+d

b!c!d!
Eb,c,d(0, τ, x, y, z)dxdydz. (13.3)

This expression has also the following consequences:
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Lemma 13.3. The function Gκ,r(t1, t2, τ) is symmetrical in t1 and t2. Moreover, we have
Gκ,r(0, t2, τ) = 0.

14. A general formula for weights carried on integers with r prime factors

We can take the limit as ε goes to 0 in(13.3) and eliminate the Fourier transform, getting

Gκ,r(t1, t2, τ) = lim
ε→0

∑
b+c+d=r

∑
B⊂{1,··· ,b},
C⊂{1,··· ,c},
D⊂{1,··· ,d}

(−1)b+|B|+|C|+|D|

b!c!d!

∫
ε≤u1,··· ,ub≤τ,
ε≤v1,··· ,vc≤τ,
ε≤w1,··· ,wd≤τ

(min(t1 −
∑
i∈C vi, t2 −

∑
i∈D wi)−

∑
i∈B ui)

+κ
∏
i dui

∏
i dvi

∏
i dwi∏

i ui
∏
i vi
∏
i wi

. (14.1)

This formula is explicit. We can also take the limit as ε goes to 0 in (13.3) (replace ε by ε), or,
after the same manipulation, in (10.4). It also reveals the following property:

Lemma 14.1. We have Gκ,r(t1, t2, τ) = τκGκ,r(t1/τ, t2/τ, 1).

This leads to the main Theorem, namely

Theorem 14.1. We have, when P = Qτ , and with S0 being defined in (3.2),

(LogQ)κS0(ar[P ];K,K∗) =

Aκ′r
∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,r(t1, t2, τ)dt1dt2 +O
(
‖w′‖2∞(LogQ)−1/9

)
where Gκ,r is the bounded continuous function given above.

The error term O
(
(LogQ)−1/9

)
is achieved by selecting LogP0 =

√
LogQ. It is uniform in

τ between 1 and some fixed bound, say T (the error term depending on T ). It depends on K
and on K∗. We have not tried to optimize the exponent 1/9.

Conjecture 1. The function Gκ,r is twice continuously differentiable in the domain 0 ≤
t1 ≤ t2 ≤ τ .

We can split the domain of integration in (14.1), once B, C and D are fixed, into sub-
domains in which the expression (min(t1 −

∑
j∈C vj , t2 −

∑
k∈D wk)−

∑
i∈B ui)

+κ reduces to
a polynomial. This implies conditions like∑

i∈B
ui ≤ t2 −

∑
k∈D

wk ≤ t1 −
∑
j∈C

vj .

In front of such a condition, we would fix the ui’s when i ∈ B, then the wk’s when k ∈ D and
finally the vj ’s when j ∈ C. The remaining variables are in fact independent. We would then
(try to) resolve each singularity by using Lemma 20.1. This is the process we will follow when
r = 0, 1 and 2. If this program carries through, then the conjecture would be true. But we are
not sure additional conditions would not pop in. Note that a discussion as to whether t1 ≤ t2
comes in immediately when D = C = ∅. It is also necessary to handle the second condition
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above:

t2 − t1 +
∑
j∈C

vj ≤ −
∑
k∈D

wk.

When t2 − t1 < 0, this condition would compete with the non-negativity conditions on the
wk’s. This discussion justifies the conjecture.

Note that the expression (14.1) implies that this function is twice continuously differentiable
per pieces. Assuming this conjecture and recalling that Gκ,r(0, t2, τ) vanishes, we find that∫

0≤t1≤t2≤1

w′(t1)w′(t2)Gκ,r(t1, t2, τ)dt1dt2

=

∫1

0

w′(t2)

[
0 +

∫ t2
0

(w(t2)− w(t1))
dGκ,r(t1, t2, τ)

dt1
dt1

]
dt2

=

∫1

0

w′(t2)

∫ t2
0

(w(t2)− w(t1))
dGκ,r(t1, t2, τ)

dt1
dt1dt2.

We use a second integration by parts, with respect to t2, and integrate the factor w′(t2)(w(t2)−
w(t1)) as 1

2 (w(t2)− w(t1))2. On using the facts that w(1) = 0 we reach this way a main formula:∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,r(t1, t2, τ)dt1dt2

=

∫1

0

w(t1)2 dGκ,r(t1, 1, τ)

dt1
dt1

− 1
2

∫
0≤t1,t2≤1

(w(t2)− w(t1))2 d
2Gκ,r(t1, t2, τ)

dt1dt2
dt1dt2.

(14.2)

Proof of Theorem 1.2

We restrict our attention to K = K(h1, · · · , hκ). As already noted at the end of section 2, the
constants A and C are then equal and strictly positive. We select, for each i in {1, · · · , κ}, the
additional compact set K∗ = U − hi, so that κ′ = 1. Theorem 1.2 is thus simply a rewriting in
this special case of Theorem 14.1 since

Si
(
ar[Q

τ ]
)

= S
(
ar[Q

τ ];K(h1, · · · , hκ),U − hi
)
.

15. On a generalisation of the Euler beta function

We consider the family of functions defined, for every k ≥ 0 and every real number a, b > 0,
by

Bk(a, b) = (−1)k
∫1

0

ta−1(1− t)b−1 Logk(1− t)dt ≥ 0. (15.1)

We will need to evaluate this function for k = 1 and k = 2 but it is easier to take a general
path. When k = 0, we have

B(a, b) = B0(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (15.2)

We notice that for non-negative z < b, by the Lebesgue dominated convergence Theorem, we
have ∑

k≥0

Bk(a, b)zk

k!
=

∫1

0

ta−1(1− t)b−1
∑
k≥0

(−z Log(1− t))k

k!
dt = B(a, b− z). (15.3)



ON LONG κ-TUPLES WITH FEW PRIME FACTORS Page 25 of 40

As a consequence, we find that:

Lemma 15.1.

Bk(a, b) =
dk

dzk
B(a, b− z)

∣∣∣
z=0

.

We recall the definition of the digamma function:

ψ(x) = Γ′(x)/Γ(x). (15.4)

We recall the following Lemma that we take from [1, 6.3.2, 6.4.2, 6.4.3]:

Lemma 15.2. When m ≥ 1 and n ≥ 1 are integers, we have

ψ(m)(n) = (−1)m+1m!
(
−ζ(m+ 1) +

∑
1≤c≤n−1

1

cm+1

)
.

In case m = 0, the same formula holds but with −γ instead of −ζ(1).

Lemma 15.1 leads to the following recursive formula:

Lemma 15.3. When k ≥ 0, we have

Bk+1(a, b) =
∑

0≤≤m≤k

(
k

m

)
Bk−m(a, b)(−1)m+1

(
ψ(m)(a+ b)− ψ(m)(b)

)
.

Proof. We appeal to Lemma 15.1 to infer that

B1(a, b− z)
B(a, b− z)

= ψ(a+ b− z)− ψ(b+ z).

We then use Leibniz law concerning the k-th derivative of a product and evaluate the resulting
expression at z = 0 to get our Lemma.

As a consequence, we find that

Lemma 15.4. When a and b are positive integers, we have

B1(a, b) = (Ha+b−1 −Hb−1)B(a, b).

Lemma 15.5. When a and b are positive integers, we have

B2(a, b) =
(

(Ha+b−1 −Hb−1)2 +
∑

b≤c≤a+b−1

1

c2

)
B(a, b).

Proof. We have by Lemma 15.3

B2(a, b) = B1(a, b)(Ha+b−1 −Hb−1) +B(a, b)
∑

b≤c≤a+b−1

1

c2

and the Lemma follows readily.
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16. Derivatives with respect to τ

On using (10.4) and (10.2), we readily find that

τ
dGκ,r(t1, t2, ε, τ)

dτ
= Gκ,r−1(t1, t2, ε, τ)−Gκ,r−1(t1 − τ, t2, ε, τ)

−Gκ,r−1(t1, t2 − τ, ε, τ) + Gκ,r−1(t1 − τ, t2 − τ, ε, τ) (16.1)

and the same holds with ε = 0 which is (1.3). This gives us the following formula

∫
t1,t2

w′(t1)w′(t2)
dGκ,r(t1, t2, τ)

dτ
dt1dt2 =∫

t1,t2

(w′(t1)− w′(t1 + τ))(w′(t2)− w′(t2 + τ))
Gκ,r−1(t1, t2, τ)

τ
dt1dt2.

(16.2)

We can then apply (14.2) or (18.2) when r − 1 = 1. There are two ways to introduce the
derivative with respect to κ. The first one, that initiated this line of enquiries, consists in
adding a differentiable weight W (Log max(p1, · · · , pr)) to ar[P ]. We then see that we can let
this weight approximate the step function 11x≤LogP . There is however a much simpler way by
directly noticing that

Gκ,r(t1, t2, τ0) =

∫ τ0
0

dGκ,r(t1, t2, τ)

dτ

since Gκ,r(t1, t2, 0) = 0.

17. Special case r = 0

We use (10.3) together with (10.4) and (10.2) and get

Gκ,0(t1, t2, τ) = min(t1, t2)κ. (17.1)

We find that ∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,0(t1, t2, τ)dt1dt2 = κ

∫1

0

w(t)2tκ−1dt. (17.2)

Proof. The following lines are straightforward:∫
0≤t1≤t2≤1

w′(t1)w′(t2)tκ1dt1dt2 =

∫ t1
0

w′(t1)

∫1

t1

w′(t2)dt2t
κ
1dt1

= −
∫ t1
0

w′(t1)w(t1)tκ1dt1 =
κ

2

∫ t1
0

w(t1)2tκ−1
1 dt1

as required.

18. Special case r = 1

A general expression We again use (10.3) together with (10.4) and (10.2) and get, when
t1 ≤ t2,

Gκ,1(t1, t2, ε, τ) = tκ1 Log(τ/ε)−
∫ τ
ε

max(0,min(t1, t2 − w))κdw

w
.
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On discussing on the size of τ and letting ε go to zero, we get the following expression:

Gκ,1(t1, t2, τ) = tκ1 Log
τ

t2 − t1
−

∫max(τ,t2)

t2−t1

(t2 − w)κdw

w
(18.1)

where the integral is not taken in the algebraical sense, i.e. it vanishes when τ < t2 − t1.

An integral form for the associated distribution: We can eliminate Gκ,1 altogether from
our expressions by appealing to (14.2):

∫
0≤t1,t2≤1

w′(t1)w′(t2) Gκ,1(t1, t2, τ)dt1dt2/κ =∫
0≤t<1,
1−t≤τ

w(t)2tκ−1 Log
τ

1− t
dt

+

∫
0≤t1<t2≤1,
t2−t1≤τ

(w(t2)− w(t1))2

t2 − t1
tκ−1
1 dt1dt2.

(18.2)

Note that the right-hand side is a sum of two non-negative terms, so that no cancellations
between them may occur. Note further that we have added the condition t1 < t2 on the right-
hand side while no such condition appears on the left-hand one.

Proof. We use the (18.1) and readily get

dGκ,1(t1, 1, τ)

dt1
= κtκ−1

1 Log
τ

1− t1
,

as well as

d2Gκ,1(t1, 1, τ)

dt1dt2
=

κtκ−1
1

t2 − t1
when t2 − t1 ≤ τ and vanishes otherwise.

19. Special case r = 2

An integral form for the associated distribution: We first note that, when τ0 > 0:∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,2(t1, t2, τ0)dt1dt2

=

∫ τ0
0

∫
0≤t1,t2≤1

w′(t1)w′(t2)
dGκ,2(t1, t2, τ)

dτ
dt1dt2dτ

At this stage, we employ (16.2):∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,2(t1, t2, τ0)dt1dt2

=

∫ τ0
0

∫
0≤t1,t2≤1

(w′(t1)− w′(t1 + τ))(w′(t2)− w′(t2 + τ))Gκ,1(t1, t2, τ)dt1dt2
dτ

τ
.
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We then use (18.2) and reach∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,2(t1, t2, τ0)dt1dt2/κ =∫ τ0
0

∫
0≤t<1,
1−t≤τ

(w(t)− w(t+ τ))2tκ−1 Log
τ

1− t
dt
dτ

τ

+

∫ τ0
0

∫
0≤t1<t2≤1,
t2−t1≤τ

(w(t2)− w(t2 + τ)− w(t1) + w(t1 + τ))2

t2 − t1
tκ−1
1 dt1dt2

dτ

τ
.

(19.1)

20. A useful Lemma

Here is a trivial Lemma that we will use over and over again:

Lemma 20.1. We have

(x− y)κ − xκ

y
= −

∑
1≤`≤κ

(x− y)κ−`x`−1.

This Lemma is one of the reasons why we have to assume κ to be an integer. When r is 0, 1 or
2, this is the sole reason. When r is arbitrary, we represent in section 12 a function depending
on κ as a convolution product of κ factors, and this again requires κ to be an integer.

Proof. Indeed, we first note that∑
1≤`≤κ

uκ−`+1v`−1 = uκ
1− (v/u)κ

1− (v/u)
= u

uκ − vκ

u− v

where we select u = x− y and v = y.

21. Special case w(t) = (1− t)+ν and r ≤ 2

We select here w(t) = (1− t) and compute the main terms when r = 0, 1 and r = 2. Let us
start with a simple consequence of (17.2).

Lemma 21.1. When w(t) = (1− t)+ν with ν ≥ 1, and τ > 0, we have

ν2

∫
0≤t1,t2≤1

(1− t1)ν−1(1− t2)ν−1Gκ,0(t1, t2, τ)

κ
dt1dt2 = B(2ν + 1, κ).

In case r = 1, we have formula (18.2).

Lemma 21.2. When w(t) = (1− t)+ν and τ ≥ 1, we have

ν2

∫
0≤t1,t2≤1

(1− t1)ν−1(1− t2)ν−1Gκ,1(t1, t2, τ)

κ
dt1dt2

=
(
Hκ+2ν − 2H2ν + 2Hν

)
B(2ν + 1, κ).
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Proof. Let us call momentarily I the integral to compute. We start with (18.2), getting:

I = B1(κ, 2ν − 1) +

∫
0≤t1≤t2≤1

((1− t1)ν − (1− t2)ν)2

t2 − t1
tκ−1
1 dt2dt1.

We then expand one (1− t1)ν − (1− t2)ν via Lemma 20.1:

I = B1(κ, 2ν + 1) +
∑

1≤k≤ν

∫
0≤t1≤t2≤1

(1− t1)2ν−k(1− t2)k−1tκ−1
1 dt2dt1

−
∑

1≤k≤ν

∫
0≤t1≤t2≤1

(1− t1)ν−k(1− t2)ν+k−1tκ−1
1 dt2dt1

= (H2ν+κ − 2H2ν + 2Hν)B(2ν + 1, κ)

on using Lemma 15.4. The Lemma follows readily.

We reach the main difficulty of this part, whose proof will take much of our energy. The
reader will see that the proof is lengthy but essentially straightforward.

Lemma 21.3. When w(t) = (1− t)+ν , we have

ν2

∫
0≤t1,t2≤1

(1− t2)ν−1(1− t1)ν−1 Gκ,2(t1, t2, 1)

κ ·B(2ν + 1, κ)
dt1dt2

= 1
2Hκ+2ν(Hκ+2ν − 4H2ν + 4Hν) +O(Log(2ν)).

The proof starts by (19.1). We then appeal to (22.1) and (22.7) that are proven in next
section. We have already noted that K(ν) = 1

2 Log2 ν +O(Log ν). We shuffle the terms around
and get the Lemma.

22. Proof of Lemma 21.3: usage of (19.1) when τ0 = 1 and r = 2

We use (19.1) with τ0 = 1 and w(t) = (1− t)+ν . In the first term, the condition 1 ≤ t+ τ
implies that −w(t+ τ) = 0. On using Lemma 21.1 and Lemma 21.2, we find that this first
term equals 1

2B2(κ, 2ν + 1) i.e. by Lemma 15.5:∫1

0

∫
0≤t<1,
1−t≤τ

((1− t)ν − (1− t− τ)+ν)2tκ−1 Log
τ

1− t
dt
dτ

τ

= 1
2

(
(H2ν+κ −H2ν)2 +

∑
2ν+1≤c≤2ν+κ

1

c2

)
B(2ν + 1, κ). (22.1)

Concerning the second term, there are several ranges to consider, according to the location of
1− τ with respect to t1 and t2.

22.1. When t2 ≤ 1− τ :

Remember that we should also have t2 ≤ t1 + τ . We use Lemma 20.1 and the decomposition:

(1− t2)ν − (1− t2 − τ)ν

τ
− (1− t1)ν − (1− t1 − τ)ν

τ
=∑

1≤k≤ν

[
(1− t2)ν−k(1− t2 − τ)k−1 − (1− t1)ν−k(1− t1 − τ)k−1

]
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as well as

(1− t2)ν − (1− t1)ν

t2 − t1
− (1− t2 − τ)ν − (1− t1 − τ)ν

t2 − t1
=

−
∑

1≤`≤ν

[
(1− t2)ν−`(1− t1)`−1 − (1− t2 − τ)ν−`(1− t1 − τ)`−1

]
.

We multiply both and get this product to equal −(A1 −A2 −A3 +A4) where

A1 =
∑

1≤k,`≤ν

(1− t2)2ν−k−`(1− t2 − τ)k−1(1− t1)`−1, (22.2)

A2 =
∑

1≤k,`≤ν

(1− t1)ν−k+`−1(1− t1 − τ)k−1(1− t2)ν−`, (22.3)

A3 =
∑

1≤k,`≤ν

(1− t2)ν−k(1− t2 − τ)ν−`+k−1(1− t1 − τ)`−1, (22.4)

and

A4 =
∑

1≤k,`≤ν

(1− t1)ν−k(1− t1 − τ)k−1+`−1(1− t2 − τ)ν−`. (22.5)

We consider each summand separately.

22.1.1. Contribution of A1 Notice first that∫
t2−t1≤τ≤1−t2

A1dτ =
∑

1≤k,`≤ν

1

k
(1− t2)2ν−k−`(1− t1)`−1(1 + t1 − 2t2)k.

This also means that t2 ≤ (1 + t1)/2, otherwise the range of integration is empty. This upper
bound is always larger than t1. We thus get∫ (1+t1)/2

t1

∫1−t2

t2−t1
A1dτdt2 =

∑
1≤k,`≤ν

1

k
(1− t1)`−1

∫ (1+t1)/2

t1

(1− t2)2ν−k−`(1 + t1 − 2t2)kdt2.

Concerning the inner integral, note that∫ (1+t1)/2

t1

(1− t2)2ν−k−`(1 + t1 − 2t2)kdt2

= 2k
∫ (1−t1)/2

0

(1− t1
2

+ t3

)2ν−k−`
tk3dt3

= 2k
(1− t1

2

)2ν−`+1
∫1

0

(1 + t)2ν−k−`tkdt

and this means we can write∫ (1+t1)/2

t1

∫1−t2

t2−t1
A1dτdt2 = K1(ν)(1− t1)2ν
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for some coefficient K1(ν). An expression of this coefficient is obtained by setting t1 = 0:

K1(ν) =

∫1/2

0

∫1−t2

t2

∑
1≤k,`≤ν

(1− t2)2ν−k−`(1− t2 − τ)k−1dτdt2

=
∑

1≤k,`≤ν

1

k

∫1/2

0

(1− t2)2ν−k−`(1− 2t2)kdt2

≤
∑

1≤k,`≤ν

1

k

∫1/2

0

(1− t2)2ν−`dt2 ≤ Hν(H2ν −Hν)

22.1.2. Contribution of A2 We proceed as above and first integrate in τ∫
t2−t1≤τ≤1−t2

A2dτ =
∑

1≤k,`≤ν

1

k
(1− t1)ν−k+`−1

[
(1− t2)k − (t2 − t1)k

]
(1− t2)ν−`.

We next notice that∫ (1+t1)/2

t1

∑
1≤k,`≤ν

1

k
(1− t1)ν−k+`−1(1− t2)ν+k−`dt2

=
∑

1≤k,`≤ν

1

ν + k − `+ 1
(1− t1)ν−k+`−1(1− 2−(ν+k−`+1))(1− t1)ν+k−`+1.

Concerning the other part, we first notice that∫1

t1

(t2 − t1)k(1− t2)ν−`dt2 = (1− t1)ν−`+k+1B(k + 1, ν − `+ 1).

As a conclusion, there exists a coefficient K2(ν) such that∫1

0

∫ (1+t1)/2

t1

∫1−t2

t2−t1
A2dτdt2t

κ−1
1 dt1 = K2(ν)B(2ν + 1, κ).

We get an expression of this coefficient by specializing t1 = 0:

K2(ν) =

∫1/2

0

∫1−t2

t2

∑
1≤k,`≤ν

(1− τ)k−1(1− t2)ν−`dτdt2

=

∫1/2

0

∑
1≤k,`≤ν

1

k
((1− t2)k − tk2)(1− t2)ν−`dt2

=

∫1/2

0

∑
1≤k,`≤ν

1

k
(1− t2)ν+k−`dt2 +O∗

( ∑
1≤k,`≤ν

1

2kk(ν − `+ 1)

)
=

∑
1≤k,`≤ν

1

k(k + `)
+O(Log ν).

Furthermore ∑
1≤k,`≤ν

1

k(k + `)
=

∑
1≤k,`≤ν

1

`

(1

k
− 1

k + `

)
= H2

ν −
∑

1≤k,`≤ν

1

`(k + `)

so that

K2(ν) = 1
2H

2
ν +O(Log ν).
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22.1.3. Contribution of A3 The quantity A3 is defined in (22.4). We start with an auxiliary
formula:

Lemma 22.1.∫y
x

(1− t)h(y − t)bdt =
∑

0≤g≤h

(−1)gh!b!

(b+ g + 1)!(h− g)!
(y − x)b+1+g(1− x)h−g.

Proof. Let us call I(h, b) the integral to evaluate. The formula is correct when h = 0. We
readily get

I(h, b) =

[
−(1− t)h (y − t)b+1

b+ 1

]y
x

− h

b+ 1

∫y
x

(1− t)h−1(y − t)b+1dt

= (1− x)h
(y − t1)b+1

b+ 1
− h

b+ 1
I(h− 1, b+ 1).

We use the above Lemma to get:

∫1−t2

t2−t1
A3dτ =

∑
1≤k,`≤ν

(1− t2)ν−k
∫1−t2

t2−t1
(1− t1 − τ)`−1(1− t2 − τ)ν−`+k−1dτ

=
∑

1≤k,`≤ν

(1− t2)ν−k
∫1−t2+t1

t2

(1− τ)`−1(1− t2 + t1 − τ)ν−`+k−1dτ

=
∑

1≤k,`≤ν
0≤g≤`−1

(−1)g(`− 1)!(ν − `+ k − 1)!

(ν − `+ k + g)!(`− 1− g)!
(1 + t1 − 2t2)ν−`+k+g(1− t2)ν−k+`−1−g

=
∑

1≤k,`≤ν
0≤g≤`−1

(−1)g+`+1(`− 1)!(ν − `+ k − 1)!

(ν − 1 + g + k)!g!
(1 + t1 − 2t2)ν−1−g+k(1− t2)ν−k+g.

Our next step is to carry out the integration over t2:

∫ (1+t1)/2

t1

∫1−t2

t2−t1
A3dτdt2 =

∑
1≤k,`≤ν
0≤g≤`−1

(−1)g+`+1(`− 1)!(ν − `+ k − 1)!

(ν − 1 + g + k + b)!g!

∫ (1+t1)/2

t1

(1 + t1 − 2t2)ν−1−g+k(1− t2)ν−k+gdt2 = K3(ν)(1− t1)2ν

for some coefficient K3(ν). Finally

∫1

0

∫1−t1

0

∫1−τ

t1

A3dt2dτt
κ−1
1 dt1 = K3(ν)B(2ν + 1, κ).
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We again recover an expression of K3(ν) by specializing t1 = 0:

K3(ν) =

∫1/2

0

∫1−t2

t2

∑
1≤k,`≤ν

(1− t2)ν−k(1− t2 − τ)ν−`+k−1(1− τ)`−1dτdt2

=

∫1

1/2

∫ t2
1−t2

∑
1≤k,`≤ν

tν−k2 (t2 + τ − 1)ν−`+k−1τ `−1dτdt2

≤
∫1

1/2

∫ t2
1−t2

∑
1≤k,`≤ν

t2ν−`−1
2 τ `−1dτdt2 ≤

∫1

1/2

∫ t2
1−t2

∑
1≤k,`≤ν

tν−k2 τν+k−2dτdt2

≤ Hν
(
H2ν−1 −Hν−1

)
.

22.1.4. Contribution of A4 The argument is routine now. We first note that∫1−t2

t2−t1
A4dτ =

∑
1≤k,`≤ν

(1− t1)ν−k
∫1−t2

t2−t1
(1− t1 − τ)k−1+`−1(1− t2 − τ)ν−`dτ

The next integration leads to∫ (1+t1)/2

t1

∫1−t2

t2−t1
A4dτdt2 = K4(ν)(1− t1)2ν

with

K4(ν) =

∫1/2

0

∫1−t2

t2

∑
1≤k,`≤ν

(1− τ)k+`−2(1− t2 − τ)ν−`dτdt2

=

∫1

0

∑
1≤k,`≤ν

(1− τ)k−1+`−1

ν − `+ 1

(
(1− τ)ν−`+1 − (1− τ −min(τ, 1− τ))ν−`+1

)
dτ

≤
∫1

0

∑
1≤k,`≤ν

(1− τ)ν+k−1

ν − `+ 1
dτ = Hν(H2ν −Hν).

22.2. When 0 ≤ t1 ≤ 1− τ ≤ t2 ≤ t1 + τ :

These conditions implies that t1 ≥ min(0, 1− 2τ) and thus τ ≥ (1− t1)/2. We use
Lemma 20.1 and the decomposition:

(1− t2)ν − (1− t1)ν + (1− t1 − τ)ν

τ
=

(1− t2)ν

τ
−
∑

1≤k≤ν

(1− t1)ν−k(1− t1 − τ)k−1

as well as

(1− t2)ν − (1− t1)ν + (1− t1 − τ)ν

t2 − t1
=

(1− t1 − τ)ν

t2 − t1
−
∑

1≤`≤ν

(1− t2)ν−`(1− t1)`−1
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and get that their product is equal to C1 − C2 − C3 + C4, with

C1 =
(1− t2)ν

τ

(1− t1 − τ)ν

t2 − t1

=
(1− t2)ν

t2 − t1
(1− t1)ν

τ
−
∑

1≤k≤ν

(1− t1)ν−k(1− t1 − τ)k−1 (1− t2)ν

t2 − t1

=
(1− t1)2ν

τ(t2 − t1)
−
∑

1≤k≤ν

(1− t2)ν−k
(1− t1)ν+k−1

τ

−
∑

1≤k≤ν

(1− t1)ν−k(1− t1 − τ)k−1 (1− t1)ν

t2 − t1

+
∑

1≤k,`≤ν

(1− t1)ν−k+`−1(1− t1 − τ)k−1(1− t2)ν−`

= C1,1 − C1,2 − C1,3 + C4,

say; we further have

C2 =
(1− t2)ν

τ

∑
1≤`≤ν

(1− t2)ν−`(1− t1)`−1,

then

C3 =
(1− t1 − τ)ν

t2 − t1

∑
1≤k≤ν

(1− t1)ν−k(1− t1 − τ)k−1,

and finally

C4 =
∑

1≤k,`≤ν

(1− t1)ν−k+`−1(1− t1 − τ)k−1(1− t2)ν−`.

22.2.1. Contribution of C4 We first notice that∫ t1+τ

1−τ
C4dt2 =

∑
1≤k,`≤ν

1

ν − `+ 1
(1− t1)ν−k+`−1(1− t1 − τ)k−1τν−`+1

−
∑

1≤k,`≤ν

1

ν − `+ 1
(1− t1)ν−k+`−1(1− t1 − τ)ν−`+k.

Our next step is to carry out the integration over τ , getting∫1−t1

(1−t1)/2

∫ t1+τ

1−τ
C4dt2dτ =∫1−t1

(1−t1)/2

∑
1≤k,`≤ν

1

ν − `+ 1
(1− t1)ν−k+`−1(1− t1 − τ)k−1τν−`+1dτ

−
∑

1≤k,`≤ν

1

(ν − `+ 1)(ν − `+ k + 1)
(1− t1)2ν

+
∑

1≤k,`≤ν

1

(ν − `+ 1)2ν−`+k+1(ν − `+ k + 1)
(1− t1)2ν .

Concerning the inner integrals, we note that∫1−t1

(1−t1)/2

(1− t1 − τ)k−1τν−`+1dτ = (1− t1)ν−`+1+kB[(k, ν − `+ 2)
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with

B[(a, b) =

∫1

1/2

(1− t)a−1tb−1dt. (22.6)

As a conclusion, there exists a coefficient K10(ν) such that∫1

0

∫1−t1

(1−t1)/2

∫ t1+τ

1−τ
C4dt2dτt

κ−1
1 dt1 = K10(ν)B(2ν + 1, κ).

As before, we get an integral representation of K10(ν) by selecting t1 = 0:

K10(ν) =

∫1

1/2

∫ τ
1−τ

∑
1≤k,`≤ν

(1− τ)k−1(1− t2)ν−`dτdt2

=

∫1

1/2

∑
1≤k,`≤ν

(1− τ)k−1 τ
` − (1− τ)`

`
dτ

=

∫1

1/2

∑
1≤`≤ν

τ `−1

`
(1− (1− τ)ν)dτ −

∑
1≤k,`≤ν

1

2k+``(k + `)
� 1.

22.2.2. Contribution of C1 We have written C1 = C1,1 − C1,2 − C1,3 + C4 and we study
each term individually. We first handle C1,1. We notice that:∫ t1+τ

1−τ

(1− t1)2ν

τ(t2 − t1)
dt2 =

(1− t1)2ν

τ
Log

τ

1− τ − t1
.

Consequently, we find that∫1−t1

(1−t1)/2

∫ t1+τ

1−τ
C1,1dt2dτ = (1− t1)2ν

∫1−t1

(1−t1)/2

Log
τ

1−t1
1− τ

1−t1

dτ

τ

= (1− t1)2ν

∫1

1/2

Log
τ

1− τ
dτ

τ

and thus there exists a constant K5 such that∫1

0

∫1−t1

(1−t1)/2

∫ t1+τ

1−τ

(1− t1)2ν

τ(t2 − t1)
dt2t

κ−1
1 dt1 = K5B(2ν + 1, κ).

We now handle the contribution of C1,2. We start by noticing that:∫ t1+τ

1−τ
C1,2dt2 =

∑
0≤k≤ν−1

(1− t1 − τ)ν−k

ν − k
(1− t1)ν+k

τ
−
∑

1≤k≤ν

τν−k

ν − k + 1
(1− t1)ν+k−1

= Hν
(1− t1)2ν

τ
−

∑
0≤k≤ν−1,
1≤`≤ν−k

(1− t1 − τ)ν−k−`

ν − k
(1− t1)ν+`+k−1 −

∑
1≤k≤ν

τν−k(1− t1)ν+k−1

ν − k + 1
.

Hence we can write∫1−t1

(1−t1)/2

∫ t1+τ

1−τ
C1,2dt2dτ = Hν(1− t1)2ν Log 2−

∑
1≤k≤ν,

1≤`≤ν−k+1

(1− 2−(ν−k+2−`))(1− t1)2ν

(ν − k + 1)(ν − k + 2− `)

−
∑

1≤k≤ν

1− 2−(ν−k+1)

(ν − k + 1)2
(1− t1)2ν

= K6(ν)(1− t1)2ν
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for some coefficient K6(ν). We get an integral expression for K6(ν) by selecting t1 = 0:

K6(ν) =

∫1

1/2

∫ τ
1−τ

∑
1≤k≤ν

(1− t2)ν−kdt2
dτ

τ
=

∫1

1/2

∑
1≤k≤ν

τk − (1− τ)k

k

dτ

τ
≤ π2/6.

We turn our attention to C1,3, first getting:∫ t1+τ

1−τ
C1,3dt2 =

∑
1≤k≤ν

(1− t1)2ν−k(1− t1 − τ)k−1 Log
τ

1− τ − t1
.

We note that∫1−t1

(1−t1)/2

∑
1≤k≤ν

(1− t1)2ν−k(1− t1 − τ)k−1 Log
τ

1−t1
1− τ

1−t1
dτ

=

∫1

1/2

∑
1≤k≤ν

(1− τ)k−1 Log
τ

1− τ
dτ(1− t1)2ν

Furthermore, we have

K7(ν) =

∫1

1/2

∑
1≤k≤ν

(1− τ)k−1 Log
τ

1− τ
dτ

=

∫1/2

0

∑
1≤k≤ν

τk−1 Log
τ

1− τ
dτ =

∑
1≤k≤ν

1

k

∫1/2

0

τk
(1

τ
+

1

1− τ

)
dτ � 1.

As a conclusion, we find that∫1

0

∫1−t1

(1−t1)/2

∫ t1+τ

1−τ
C1,3dt2dτt

κ−1
1 dt1 = K7(ν)B(2ν + 1, κ).

22.2.3. Contribution of C2 We handle the integration with respect to t2 at the beginning,
obtaining∫ t1+τ

1−τ
C2dt2 =

∑
1≤`≤ν

1

2ν − `+ 1
τ2ν−`(1− t1)`−1

−
∑

1≤`≤ν

1

2ν − `+ 1

(1− t1 − τ)2ν−`+1

τ
(1− t1)`−1

=
∑

1≤`≤ν

1

2ν − `+ 1
τ2ν−`(1− t1)`−1 −

∑
1≤`≤ν

1

2ν − `+ 1

(1− t1)2ν

τ

+
∑

1≤`≤ν,
1≤k≤2ν−`+1

1

2ν − `+ 1
(1− t1 − τ)2ν−`+1−k(1− t1)k+`−2.

As before, we conclude from these lines that there exists a coefficient K8(ν) such that∫1−t1

(1−t1)/2

∫ t1+τ

1−τ
C2dt2dτ = K8(ν)(1− t1)2ν .

On setting t1 = 0 in the above equation, we get

K8(ν) =

∫1

1/2

∫ τ
1−τ

∑
1≤`≤ν

(1− t2)2ν−`dt2
dτ

τ
=

∫1

1/2

∑
1≤`≤ν

(1− τ)2ν−`+1 − τ2ν−`+1

2ν − `+ 1

dτ

τ
� 1.
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As a conclusion, we find that∫1

0

∫1−t1

(1−t1)/2

∫ t1+τ

1−τ
C2dt2dτt

κ−1
1 dt1 = K8(ν)B(2ν + 1, κ).

22.2.4. Contribution of C3 Notice first that∫ t1+τ

1−τ
C3dt2 =

∑
1≤k≤ν

(1− t1)ν−k(1− t1 − τ)ν+k−1 Log
τ

1− t1 − τ

and then integrate aver τ , getting∫1−t1

(1−t1)/2

∫ t1+τ

1−τ
C3dt2dτ

=
∑

1≤k≤ν

(1− t1)ν−k
∫1−t1

(1−t1)/2

(1− t1 − τ)ν+k−1 Log
τ

1−t1
1− τ

1−t1
dτ

=
∑

1≤k≤ν

∫1

1/2

(1− τ)ν+k−1 Log
τ

1− τ
dτ(1− t1)2ν .

Our conclusion is that there exists a coefficient K9(ν) such that∫1

0

∫1−t1

(1−t1)/2

∫ t1+τ

1−τ
C3dt2dτt

κ−1
1 dt1 = K9(ν)B(2ν + 1, κ).

We again recover K9(ν) by using the expression above with t1 = 0 and get

K9(ν) =
∑

1≤k≤ν

∫1

1/2

(1− τ)ν+k−1 Log
τ

1− τ
dτ =

∑
1≤k≤ν

1

2ν+k−1

∫1

1/2

Log
τ

1− τ
dτ � 1.

22.3. When 1− τ ≤ t1:

We use
(1− t2)ν − (1− t1)ν

t2 − t1
= −

∑
1≤`≤ν

(1− t2)ν−`(1− t1)`−1.

We get next∫1

t1

∑
1≤`≤ν

(1− t2)ν−`(1− t1)`−1((1− t1)ν − (1− t2)ν)dt2 =

∑
1≤`≤ν

(1− t1)2ν 1

ν − `+ 1
−
∑

1≤`≤ν

(1− t1)2ν 1

2ν − `+ 1

and∫1

1−t1

∫1

t1

∑
1≤`≤ν

(1− t2)ν−`(1− t1)`−1((1− t1)ν − (1− t2)ν)dt2
dτ

τ
=

− (2Hν −H2ν)(1− t1)2ν Log(1− t1)

so that∫1

0

∫1

1−t1

∫1

t1

∑
1≤`≤ν

(1− t2)ν−`(1− t1)`−1((1− t1)ν − (1− t2)ν)dt2
dτ

τ
tκ−1
1

= (2Hν −H2ν)B1(κ, 2ν + 1) = (2Hν −H2ν)(Hκ+2ν −H2ν)B(κ, 2ν + 1).
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22.4. Collecting the various contibutions

We have proved that (with w(t) = (1− t)+ν)∫1

0

∫
0≤t1<t2≤1,
t2−t1≤τ

(w(t2)− w(t2 + τ)− w(t1) + w(t1 + τ))2

t2 − t1
tκ−1
1 dt1dt2

dτ

τ

=
(
K(ν) + (2Hν −H2ν)(Hκ+2ν −H2ν)

)
B(κ, 2ν + 1). (22.7)

with

K(ν) = −K1(ν) +K2(ν) +K3(ν)−K4(ν)

+K5 −K6(ν)−K7(ν)−K8(ν)−K9(ν) + 2K10(ν).

Note that, when ν is fixed, like ν = 1, the dependence in κ appears already clearly. The material
above leads to an evaluation of K(ν): we have shown that K1(ν), K3(ν), K4(ν), K10(ν), K6(ν),
K7(ν), K8(ν) and K9(ν) are all bounded by O(Log ν). Furthermore, the constant K2(ν) is
1
2 Log2 ν +O(Log ν) so that the same evaluation holds true for K(ν).

23. On prime κ-tuples. Proof of Theorem 1.1

We select parameters P = Nβ and Q = P with 2(β + 1) < 1. Working with Q = P 1/τ0 for
some parameter τ0 to be chosen would in fact lead to the same bound. We set B = dβ−1e. We
consider

S =
∑

1≤i≤κ

(
∆0Si(a0[P ]) + 2USi(a1[P ])− U2(2Si(a2[P ]) + Si(a1[P ]))

)
(23.1)

where U = ϑ/Hκ+2 for some general real parameter ϑ. On recalling (1.2) and after some
shuffling, we find that

S =
∑
n≤N

β(n)
∑

1≤i≤κ

(
∆0 + 1−

(
1− U

∑
{
p|n+hi,
p≤P

1

)2)
.

Let us now evaluate the sum S when w(t) = (1− t)+ i.e. we take ν = 1. By Theorem 1.2, and
because of our choice of P and Q, the sum S goes to infinity as soon as∑

1≤i≤κ

∫1

0

∫1

t1

(
∆0Gκ,0(t1, t2, 1) + (2U − U2)Gκ,1(t1, t2, 1)− 2U2Gκ,2(t1, t2, 1)

)
dt1dt2

is at least η, for some strictly positive η independent on N , P and Q, but which may depend
on κ. We appeal to Lemma 21.1, 21.2 and 21.3 and get that the required inequality holds when
∆0 + 2ϑ(1− ϑ(2Hκ+2)−1)(1−H−1

κ+2)− ϑ2(1− 2H−1
κ+2 + 2BH−2

κ+2) ≥ η, on writing the right-
hand side of Lemma 21.3 in the form 1

2Hκ+2(Hκ+2 − 2) + B. Hence, the following inequality
is to be fulfilled:

∆0 ≥ η − 2ϑ+ ϑ2 +
2ϑ

Hκ+2
+
ϑ2(B− 1)

H2
κ+2

.

We select η = 1/H2
κ+2 and

∆0 = −2ϑ+ ϑ2 +
2ϑ

Hκ+2
+

1 + ϑ2(B− 1)

H2
κ+2

. (23.2)
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We denote by ∞(N) a function that goes to infinity with N . With the choice (23.2), there are
∞(N) many integers n such that

κ(∆0 + 1)H2
κ+2 −

∑
1≤i≤κ

(
Hκ+2 − ϑω(n+ hi;P )

)2
> 0

where ω(m;P ) denotes the number of prime factors of m that are not more than P counted
without multiplicity. The quantity 1 + ∆0 goes to zero only with the choice ϑ = 1. We continue
with this choice. We replace Hκ+2 by Log κ as follows. Put Θκ = Hκ+2 − Log κ = O(1). We
expand the quantity above as∑

1≤i≤κ

[(
Log κ− ω(n+ hi;P )

)2
+ 2
(
Hκ+2 − ω(n+ hi;P )

)
Θκ −Θ2

κ

]
.

We treat the second sum by using Cauchy. Our last task is to replace ω(m;P ) by ω(m). We
first notice that an integer m ≤ N can have at most B prime factors > P , which implies that
ω(m) ≥ ω(m;P ) ≥ ω(m)−B. We set Eκ(m;P ) = ω(m)− ω(m;P ) and use the decomposition:∑

1≤i≤κ

[(
Log κ− ω(n+ hi)

)2
+ 2
(
Hκ+2 − ω(n+ hi)

)
Eκ(n+ hi;P ) + Eκ(n+ hi;P )2

]
.

We again treat the second sum by using Cauchy. We finally select P = Q = N2/9 and the
Theorem 1.1.
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Bordeaux, 13:559–581, 2001.

21. S. Salerno. A note on Selberg sieve. Acta Arith., 45(4):279–288, 1986.
22. L. Schwartz. Analyse IV. Collection Enseignement des Sciences, Hermann, 1993.
23. A. Selberg. Remarks on multiplicative functions. Lectures Notes in Mathematics (Berlin), 626:232–241,

1976.



Page 40 of 40 ON LONG κ-TUPLES WITH FEW PRIME FACTORS

24. A. Selberg. Sifting problems, sifting density, and sieves. In D. Goldfeld” ”K.E. Aubert, E. Bombieri, editor,
Number Theory, Trace Formulas and Discrete Groups, pages 467–484, Oslo, 1987. Academic Press, San
Diego London.

25. M. Tarnopolska-Weiss. On the number of lattice points in a compact n-dimensional polyhedron.
Proceedings of the American Mathematical Society, 74(1):124–127, 1979.

26. J.E. van Lint and H.E. Richert. On primes in arithmetic progressions. Acta Arith., 11:209–216, 1965.
27. Wxmaxima.sourceforge.net. wxMaxima, a GUI for the Maxima System. Technical Report Version 0.8.5,

2010. http://wxmaxima.sourceforge.net/.

Olivier Ramaré
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