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We first report on computations made using the GP/PARI package that show that the error term ∆(x) in the divisor problem is = M (x, 4) + O * (0.35 x 1/4 log x) when x ranges [1 081 080, 10 10 ], where M (x, 4) is a smooth approximation. The remaining part (and in fact most) of the paper is devoted to showing that |∆(x)| ≤ 0.397 x 1/2 when x ≥ 5 560 and that |∆(x)| ≤ 0.764 x 1/3 log x when x ≥ 9 995. Several other bounds are also proposed. We use this results to get an improved upper bound for the class number of an quadractic imaginary field and to get a better remainder term for averages of multiplicative functions that are close to the divisor function. We finally formulate a positivity conjecture concerning ∆(x).

Introduction

The object of this paper is to study for an explicit viewpoint the remainder term of the summatory function of the τ -function, where τ (n) denotes the number of (positive) divisors of n, i.e., to study (1.1) ∆(x) = n≤x τ (n) -x(log x + 2γ -1)

This function has been extensively studied, and the reader will find a good survey in [START_REF] Huxley | Subconvexity for the Riemann zeta-function and the divisor problem[END_REF]. It is known in particular that ∆(x) ε x 131/416+ε

for any ε > 0. We want to get fully explicit bounds of this shape here, and the best exponent we reach is 1/3 (see Theorem 1.2 below). Note that 131/416 = 0.314 • • • is not so much smaller than 1/3 = 0.333 • • • . Note further that Theorem 1.1 below gives an upper bound with a worse exponent, but which is better on a large range.

The divisor function has been studied from this viewpoint in several papers, and we quote here [START_REF] Linkovskiȋ | The lower and upper bound estimates of the mean values of numerical functions[END_REF], [START_REF] Riesel | On sums of primes[END_REF], [START_REF] Deshouillers | Sommes de diviseurs et structure multiplicative des entiers[END_REF] and [START_REF] Ramaré | On Snirel'man's constant[END_REF].

Here are our main results: This bound is also sharp since |∆(x)| > 0.80 x 1/3 log x when x = 9 994. This bound is of course asymptotically better than the one given by Theorem 1.1, but this latter one still prevails when x ≤ 59 576 122 384.

There are two usual paths to study ∆(x). That can be broadly described by either using a Voronoï-like formula as in [START_REF] Meurman | On the mean square of the Riemann zeta-function[END_REF], or using the fractional part-function, expanding it in a Fourier series and using exponential sums, and using for instance [START_REF] Bordellès | Explicit upper bounds for the average order of dn(m) and application to class number[END_REF]Lemma 8.4] (see also [START_REF] Cheng | Explicit estimates for the Riemann zeta function[END_REF] for similar material, as well as [6, section 8]). We use the first technique, but rely on an earlier paper of Voronoï where a very explicit result is proved.

We rely also on some rather extensive computations detailed in section 6 made with the help of the PARI/GP program (see [START_REF]version 2.4.3[END_REF]) and its auxiliary GP2C. One of the main problems with such extensive computations is always how to store them, since tables are difficult to use. We again use the Voronoï formula to get such a model and prove the following. Section 6 contains more bounds of this shape. Note that the constant 0.35 is very good and fairly stable, since, for instance ∆(x 0 ) -M (x 0 , 4) ≥ 0.289 x 1/4 0 log x 0 when x 0 = 9 137 256 975. A constant of 0.30 would require us to start at least at 2.7 • 10 9 which renders the preliminary computations difficult. It would valuable to extend Theorem 1.3 to a larger range.

We end this introduction by mentionning a curious conjecture upon which we stumbled: Thanks. Thanks are due to the referee for his/her very careful reading of the first version of this paper.

Two applications

An application to number fields. Let K/Q be a number field of degree n, class number h K , signature (r 1 , r 2 ) and let d K be the absolute value of its discriminant. We set b K to be a real number such that each ideal class contains a nonzero ideal

A satisfying N (A) b K √ d K ,
where N denotes the ideal-norm operator in K. It is well-known that one can take for b K the Minkoswki bound (4/π) r2 n!n -n . If K is an imaginary quadratic field, then the better bound b K = 3 -1/2 , due to Gauss, can be used instead of the Minkowski constant.

It has been shown by the second author of [START_REF] Bordellès | Explicit upper bounds for the average order of dn(m) and application to class number[END_REF] that the inequality

h K 2 2-n b K d 1/2 K log b 2 K d K n-1 (2.1)
holds for all number fields K subject to the condition d K 36b -2 K . In the case of real quadratic fields, using Dirichlet's analytic class number formula and precise estimates for L(1, χ) (where χ is the primitive real Dirichlet character attached to K) and the fundamental unit of K, Maohua Le [START_REF] Le | Upper bounds for class numbers of real quadratic fields[END_REF] proved that

h K d K /2.
A simpler proof of this bound has been provided by the third author in [START_REF] Ramaré | Approximate Formulae for L(1, χ)[END_REF]. Using Theorem 1.3 we deduce the following slight improvement of (2.1) in the case of imaginary quadratic fields. An application to averages of multiplicative functions. [START_REF] Ramaré | On Snirel'man's constant[END_REF]Lemma 3.2] proposes an automatic way of deriving an explicit bound for averages of multiplicative nonnegative functions that are close enough to a given model. The two models proposed are the constant function 1 and the divisor function. In this latter case, using this lemma requires an explicit bound for n≤t τ (n)/n and the above paper relies on [19, Lemma 1] (this is also the second part of [START_REF] Ramaré | On Snirel'man's constant[END_REF]Lemma 3.3]). We improve this lemma to the following. Corollary 2.2. We have, for all t > 0,

n≤t τ (n) n = 1 2 log 2 t + 2γ log t + γ 2 -γ 1 + O * (1.16/t 1/3 )
where γ 1 is the second Laurent-Stieljes constant -for instance [START_REF] Kreminski | Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants[END_REF] and [START_REF] Coffey | New results on the Stieltjes constants: asymptotic and exact evaluation[END_REF]. In particular, we have (2.2) γ 1 = -0.0728158454836767248605863758749013191377 + O * (10 -40 ).

Borrowing from Dirichlet

Let us first recall a result of Dirichlet.

Lemma 3.1 (Dirichlet). When x ≥ 1 is a real number, we have

∆(x) + 2 n≤ √ x ψ(x/n) ≤ 1 2 .
The proof we present is somewhat more complete than that of [1, Lemma 8.1], since we express R(x) below fully in terms of ψ 2 .

Proof. Set ψ 2 (t) = 1 2 ψ(t) 2 . We first notice that the function x → 1 8 +

x 1 ψ(t)dt is periodic of period 1, and that, when 0 ≤ y < 1

1+y 1 ψ(t)dt + 1 8 = y 0 (t -1 2 )dt + 1 8 = ψ 2 (y) = ψ 2 (1 + y)
and thus ψ 2 is an antiderivative of ψ. By Dirichlet's Hyperbola Principle and Euler-MacLaurin's Summation Formula we get

n x τ (n) = 2 n x 1/2 [x/n] - √ x 2 = 2x n x 1/2 1 n -2 n x 1/2 ψ x n + 1 2 -x + 2 √ xψ √ x -ψ √ x 2 - 1 4 = 2x log x 2 + γ - ψ ( √ x) √ x - ψ 2 ( √ x) x + 2 ∞ √ x ψ 2 (t) t 3 dt -2 n x 1/2 ψ x n + 1 4 -x + 2 √ xψ √ x -ψ √ x 2 = x (log x + 2γ -1) -2 n x 1/2 ψ x n + R(x),
where

R(x) = 1 4 -3ψ 2 √ x + 4x ∞ √ x ψ 2 (t) t 3 dt. The inequality 0 ψ 2 (t) 1/8 implies that 1 4 -3ψ 2 √ x 1 4 and 4x ∞ √ x ψ 2 (t) t 3 dt x 2 ∞ √ x dt t 3 = 1 4 ,
which concludes the proof.

Corollary 3.2. When x ≥ 1 is a real number, we have |∆(x)| ≤ √ x + 1 2 .

Auxiliary results

Let us start with a generic formula, valid for any sequence (ϕ n ). We define an abstract remainder term by

∆ ϕ (t) = n≤t ϕ n -(at log t + bt)
for some real numbers a and b. The following formula holds for any complex number s = 1:

(4.1) n≤T ϕ n n s = aT 1-s log T 1 -s + b(1 -s) -as (1 -s) 2 T 1-s + s(a -b(1 -s)) (1 -s) 2 + T -s ∆ ϕ (T ) + s T 1 ∆ ϕ (u)du/u s+1 .
This is most readily obtained by summation by parts.

From τ (•, D) to τ (•). The gcd condition in τ (•, D) is easily handled by using the Moebius function. Indeed, on using the following easily proved formula

(4.2) 1 1 (u,v,D)=1 = δ|u,δ|v, δ|D µ(δ),
we readily get, for T > 0,

n≤T τ (n, D) n s = δ|D µ(δ) δ|u, δ|v, uv≤T 1 (uv) s = δ|D µ(δ) δ 2s n≤T /δ 2 τ (n) n s .
On selecting s = 0, this leads to the asymptotic formula 

A(D) = δ|D µ(δ) δ 2 , B(D) = δ|D µ(δ) δ 2 (2γ -1 -2 log δ), while ∆(•, D) is expressed in terms of ∆(•) by (4.5) ∆(T, D) = δ|D µ(δ)∆(T /δ 2 ).
Some formulae with τ (n, D). We select a = A(D), b = B(D), s = 1/2 and s = 3/4 in formula (4.1) and quote explicitely:

(4.6) n≤T τ (n, D) n 1/2 = 2A(D)T 1/2 log T + 2(B(D) -A(D))T 1/2 + 2A(D) -B(D) + ∆(T, D) T 1/2 + 1 2 T 1 ∆(u, D)du u 3/2 ,
which is the case s = 1/2 from above. The case s = 3/4 reads

(4.7) n≤T τ (n, D) n 3/4 = 4A(D)T 1/4 log T + 4(B(D) -3A(D))T 1/4 + 12A(D) -3B(D) + ∆(T, D) T 3/4 + 3 4 T 1 ∆(u, D)du u 7/4 .
A generic integral. We note that, when s = 1, 2,

(4.8) t(log t + c) + d t s dt = log t + (s -2) -1 + c (2 -s)t s-2 + d (1 -s)t s-1 .
Proof. Take the derivative of the right-hand side and check it is the integrand.

Borrowing from Voronoï

The purely elementary method of Voronoï, which improves on the Dirichlet hyperbola formula by using triangles instead of rectangles beneath the hyperbola mn = x, yields the following result [21, pages 280-281].

Lemma 5.1. When x ≥ 1, T ≥ 1 and D ≥ 1 are real numbers, we have

|∆(x)| ≤ 19 12 n≤T τ (n, D) + √ x 4T + √ T 6 n≤T τ (n, D) √ n + 3x 1/4 4 n≤T τ (n, D) n 3/4 + T 6 + x T + 7 4
where τ is defined in (1.2).

Comparing with [22, page 209, Théorème] and [23, page 429, paragraphe 49, théorème I], or with [START_REF] Ivić | The Riemann zeta-function. The theory of the Riemann zeta-function with applications[END_REF] or [START_REF] Meurman | On the mean square of the Riemann zeta-function[END_REF], we see that, in case D = 1, one can asymptotically dispense with the first two sums at the cost of a O ε (x ε ) for any ε > 0, and that the constant 3/4 in front of the third sum can be reduced to 1/(π √ 2). The advantage of the above lemma relies in its range of validity. The parameter D (or the fact that we can replace the τ -function by the number of coprime divisors) is a distinct feature of the above bound. We shall select D = 6, reducing the total bound by a factor about (1

-1 4 )(1 -1 9 ) = 2/3.
Proof. The paper [START_REF] Voronoï | Sur un problème de calculs des fonctions asymptotiques[END_REF] contains the required estimates, but the following notes may be helpful to the reader: equation ( 17) of page 280 contains the function F which is generally defined in equation ( 1) at the very beginning of the paper; it is also given at the beginning of section 26, page 275. To read equation ( 17) the reader will need equation [START_REF] Kreminski | Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants[END_REF], page 279, which contains the definition of R. This definition comes in fact from [START_REF] Rao | An integral involving the remainder term in the Piltz divisor problem[END_REF], page 271.

Voronoï continues by bounding τ by τ (see equation ( 19) and ( 20) of [21, pages 280, 281]). On using (4.6) and (4.7) and shortening A(D) and B(D) to A and B respectively, we reach

(5.1) |∆(x)| ≤ T 12 (23A log T + 23B -19A + 2) + 3(xT ) 1/4 (A log T + B -3A) + x T A log T 2 + B -A 2 + 1 + 36A -9B 4 x 1/4 + 2A -B 4 √ x T + 2A -B 6 √ T + G(D, x, T ), with (5.2) G(D, x, T ) = 7 4 + 7 + (xT -3 ) 1/4 + (xT -3 ) 1/2 ∆(D, T ) 4 + √ x 8T + √ T 12 T 1 ∆(D, u)du u 3/2 + 9x 1/4 16 T 1 ∆(D, u)du u 7/4 .
The introduction of the parameter D in Lemma 5.1 will be numerically interesting. We will use only small D's, such as 1, 2 or 6.

Numerically comparing ∆ with a model

We need to compute values of ∆(x) for fairly large x. The first idea is to compute it directly, take its absolute value, divide it by √ x and look for the point when it is less than a given bound, say 0.5. The drawback of this method is that one would have to redo all the computations with the bound 0.3. To avoid that, one can store the value on short enough ranges, say every 5 • 10 7 , but we would have to store these tables and they would be very bulky to use in computations. Musing on this idea, we readily discover that a better idea would be to compare ∆(x) with a model and bound the resulting error term. This is a very general idea, and one that we have already used in [START_REF] Ramaré | Primes in arithmetic progressions[END_REF]Theorem 2]; the difficulty is always to guess a proper model. However this issue is easily solved here, since a model is provided to us by the Voronoï formula. We define (6.1)

M (x, M ) = x 1/4 π √ 2 m≤M τ (m) m 3/4 cos 4π √ mx -π 4 .
We look for numerical bounds for

|∆(x) -M (x, M )|/[x 1/4 log x]
for some small M . Note that M (x, M ) is anyway of size x 1/4 in that case. We have found that, when M = 1 or M = 4, the function x 1/4 is too small to evaluate |∆(x)-M (x, M )| while x 1/4 log x seems just too large. The bounds obtained are however better when subtracting M (x, 1), and even better when subtracting M (x, 4). The computations necessitate some care. For x ∈ [N, N + 1), we consider the function

(6.2) f (x) = n≤N τ (n) -x log x + (2γ -1)x -M (x, M ) /[x 1/4 log x].
We find that, with S = n≤N τ (n),

x 1/4 log x f (x) = - S 4x - S x log x - 3 log x -6γ + 3 4 + 2γ -1 log x + m≤M √ 2τ (m) m 1/4 x 1/4 sin 4π √ mx -π 4 - 1 √ 2π log x m≤M τ (m) m 3/4 x 3/4 cos 4π √ mx -π 4 .
Since S ≥ 2x -1, we are sure this derivative is non-positive when

3 log x -6γ + 5 ≥ 1 x + 4 x log x + 8γ + 4 log x + m≤M 4 √ 2τ (m) m 1/4 x 1/4 + 2 √ 2 π log x m≤M τ (m) m 3/4 x 3/4 .
The difference between the left-hand side and the right-hand side is an increasing function, from which it follows immediately that there exists an integer N 0 (M ) such that, when

N ≥ N 0 (M ), the function x → (∆(x) -M (x, M ))/[x 1/4 log x] is non-increasing in each interval [N, N + 1)
. The parameter M being fixed, N 0 (M ) is a fixed (and small) value, and for instance N 0 (1) = 2 and N 0 (4) = 5 (We find that, in case M = 4, f (x) < 0 when x ≥ 11.062, and is not an integer). Finding the maximum of |∆(x) -M (x, M )|/[x 1/4 log x] below this value can be automated, but it is more expedient, as well as less error-prone, to simply plot the function in each of the remaining unit intervals.

Numerical experiments show that M (x, 1) is already a good model! For small values, we find that When the maximum have been attained at the end of the interval [N, N + 1), the program has attached a minus sign at the back of the data "Where". We have used the function MajoreDelta between 1 and 10 10 below. The code for the function Output will be easily guessed by the reader. It can also be obtained by sending a mail request to the third named author of this paper. We have converted this function into a C-program and have compiled it with GP2C via the command gp2c -g ModeleDelta-special.gp > MajoreDelta-special.gp.c

This step speeds the computations by a large factor (about 10). We then started GP with the option -p 10000000000 and installed the compiled functions as described in the GP2C manual.

Here is the table obtained, each entry requiring at the beginning nearly 40 minutes (on a desktop computer). When modeling the error term by x 1/4 , the local maxima happened to be slowly increasing, which is why we multiplied by an additionnal log x obtaining these slowly decreasing local maxima.

Increasing M yields better results, though the improvement is slow to become noticeable. See section 14 for a detailed output. Here are the main corollaries, beside Theorem 1.3, that arise from these computations: Here is the counterpart of Theorem 1.3, when using M (x, 1) as a model. Going below x = 3 does not make much sense: if we extend the range to cover [START_REF] Cheng | Explicit estimates for the Riemann zeta function[END_REF][START_REF] Coffey | New results on the Stieltjes constants: asymptotic and exact evaluation[END_REF], the constant 0.9 when M = 4 becomes 1.7, and we anyway cannot reach x = 1, because our upper bound vanishes (since log 1 = 0) but not the difference. A similar remark applies to the case M = 1.

Numerically comparing ∆(x) to √ x

It is easy to use the bounds of the previous section to compare ∆(x) with √ x when x is somewhat large. The results are then most easily extended to smaller values of x by short computations. We have used the function MajoreDelta with beg = 1, and D = 1 of the following routine: {MajoreDelta(beg, end, OnFile = 0, verbose = 1, TexFormat = 0, whentotell = 5*10^7) = local(maximum = 0, maxloc = 0, ou = beg, ouloc = beg, aux, startat = 1, sommeou, sommeouloc, side, sideloc, somme = 0, ad = 1, bd = 2*Euler-1, begloc, endloc);

for(n = startat, beg-1, somme += numdiv(n)); for(k = 0, ceil((end-beg)/whentotell-1), begloc = beg + k*whentotell; endloc = min(begloc + whentotell, end)- Here are some more corollaries:

(7.1)    max 59 200<x≤10 10 |∆(x)|/ √ x ≤ 0.175, max 7 880 000<x≤10 10 |∆(x)|/ √ x ≤ 0.101, max 1.8•10 7 <x≤10 10 |∆(x)|/ √ x ≤ 0.05
Looking for the bound 0.5, we find that Lemma 7.1. When 1 981 ≤ x ≤ 10 10 , we have |∆(x)| ≤ 0.482 x 1/2 .

Bounding two integrals with ∆

We consider here, for σ > 1, the integral (8.1)

I(D, T, σ) = T 1 ∆(D, u)du u σ
with the aim of bounding I(D, T, 3/2) and I(D, T, 7/4) explicitly. We abbreviate I(1, T, σ) by I(T, σ). We define, for σ > 1,

(8.2) κ(D, σ) = δ|D µ(δ) δ 2(σ-1) ζ(σ -1) 2 σ -1 + δ|D µ(δ) δ 2 -2 log δ -1 2-σ + 2γ -1 2 -σ and (8.3) I (D, T, σ) = 1 2iπ c +i∞ c -i∞ δ|D µ(δ) δ 2(s+1-σ) ζ 2 (s)T s ds s(s -σ + 1) for 0 < c < σ -1. Lemma 8.1. We have, when σ ∈]1, 2[, I(D, T, σ) = κ(D, σ) + I (D, T, σ) T σ-1
. This shows that I(D, T, σ) tends to a limit when T goes to infinity (on selecting for instance c = (σ -1)/2). Note that κ(1, 3/2) = 0.57413324 • • • , which numerically fits, and that κ(1, 7/4) = 0.40765213 • • • .

Proof. We start with the case D = 1. We define (8.4)

I 0 (T, σ) = T 1 n≤u τ (n)du u σ .
We rewrite this function as follows:

I 0 (T, σ) = n≤T τ (n) T n du u σ = n≥1 τ (n) n σ-1 f σ (n/T ),
where

(8.5) f σ (v) =    1 v dw w 2-σ = 1 -v σ-1 σ -1 when v ≤ 1; 0 when v ≥ 1.
We consider the Mellin transform of f σ

(8.6) fσ (s) = ∞ 0 f σ (v)v s-1 dv = 1 s(s + σ -1) which is readily computed, so that (8.7) f σ (v) = 1 2iπ 2+i∞ 2-i∞ fσ (s)v -s ds.

This gives us

I 0 (T, σ) = 1 2iπ 2+i∞ 2-i∞ n≥1 τ (n) n s+σ-1 fσ (s)T s ds = 1 2iπ 2+i∞ 2-i∞ ζ 2 (s + σ -1) T s ds s(s + σ -1)
.

The poles of the integrand are in 2 -σ (a double pole), in 0 (a simple pole) and in 1 -σ (a simple pole). Note that, in the vicinity of s = 2 -σ, we have

ζ 2 (s + σ -1) = 1 (s + σ -2) 2 + 2γ s + σ -2 + O(1)
and that

T s s(s + σ -1) = T 2-σ 2 -σ 1 + (s + σ -2) log T - 1 2 -σ -1 + O((s + σ -2) 2 )
so that

ζ 2 (s + σ -1)T s s(s + σ -1) = T 2-σ 2 -σ 1 (s + σ -2) 2 + 1 s + σ -2 log T - 1 2 -σ -1+2γ +O(1).
The Cauchy Residue Theorem yields:

I 0 (T, σ) = T 2-σ 2 -σ log T - 1 2 -σ -1 + 2γ + ζ(σ -1) 2 σ -1 + 1 2iπ c+i∞ c-i∞ ζ 2 (s + σ -1) T s ds s(s + σ -1)
for any 1 -σ < c < 0. We need the condition c > 1 -σ to ensure the convergence of the integral. Indeed, we know that

|ζ 2 (a + ib)| (|b| + 2) -(1-a) log 2 (|b| + 2)
when 0 ≤ a ≤ 1. Better bounds are known, but the size of |ζ 2 (a+ib)| can indeed be as large as |b|, and this implies that we can ensure the convergence of the integral only when c > 1 -σ.

Let us remark here that

T 1 u(log u + 2γ -1) u σ du = T 2-σ log T + (σ -2) -1 + 2γ -1 2 -σ - (σ -2) -1 + 2γ -1 2 -σ .
The Lemma follows readily when D = 1. For a general D, we appeal to (4.5), and deduce that (8.8) I(D, T, σ) = δ|D µ(δ) δ 2(σ-1) I(T /δ 2 , σ) -

1 1/δ 2 log u + 2γ -1 u σ-1 du .
We notice that (8.9)

1 1/δ 2 log u + 2γ -1 u σ-1 du = (σ -2) -1 + 2γ -1 2 -σ - (σ -2) -1 + 2γ -1 -2 log δ (2 -σ)δ 2(2-σ)
We need to bound I (T, 1/2) and I (T, 3/4) explicitly.

Lemma 8.2. We have 22 ). Proof. Let us first compute the derivative of I (T, σ) with respect to σ. We readily find that

I (T, 3/2) = I (T, 7/4) + 1 2 + O * ( 9 2 /T 0.
I (T, σ) = -1 2iπ c +i∞ c -i∞ ζ 2 (s)T s ds s(s -σ + 1) 2 = -1 4(σ -1) 2 - 1 2iπ - 1 4 +i∞ - 1 4 -i∞ ζ 2 (s)T s ds s(s -σ + 1) 2 .
At this level, we employ the functional equation of the Rieman zeta function in the form:

(8.10) ζ(s) = 2 s π s-1 sin(πs/2)Γ(1 -s)ζ(1 -s)
to get, when σ ∈ [3/2, 7/4], and with c = -δ > -1/4

1 2iπ -δ+i∞ -δ-i∞ ζ 2 (s)T s ds s(s -σ + 1) 2 . ≤ ζ(1 + δ) 2 T δ π 3+2δ) 2 2δ ∞ 0 | sin(π(-δ + iy)/2)Γ(1 -δ + iy)| 2 dy |δ + iy||(δ -1 4 ) + iy| 2
.

On selecting δ = 0.22, we compute that

I (T, σ) = -1 4(σ -1) 2 + O * (18/T 0.22 ).
First, we use GP to produce the following bounds. Proof. This is obtained by using the function MajoreResteJ.

Let us now evaluate I(T, 7/4) by using Lemma 3.1.

Lemma 8.4. We have max T ≥1 T 1/4 |κ(7/4) -I(T, 7/4)| ≤ 4.000 001.

Proof. We find that, on using This question is surprising as some positivity mecanism seems hidden. A proof (or disproof) assuming GRH would also be welcome. The range [3/2, 7/4] may be extended, but σ = 2 seems to have a special status. The reader will understand the conjecture stated in the introduction on noticing that I(∞, σ) = κ(σ). We mention here the papers [18, (2.2)], [START_REF] Ivić | On the integral of the error term in the Dirichlet divisor problem[END_REF] and [START_REF] Furuya | Dirichlet series obtained from the error term in the Dirichlet divisor problem[END_REF] where the Dirichlet series ∞ 1 ∆(u)du/u s is studied.

Proof. A numerical computation using the GP calculator and the function MajoreJ below shows that max 1≤T ≤10 7 |I(T, 7/4)| ≤ 0.4077 and, on using Lemma 8.4, the Lemma follows readily. Proof. We have, by Lemma 8.1 and 8.2 22 ). We appeal to Lemma 8.4 or to Lemma 8.5 to bound the third summand. A numerical computation using the GP calculator shows that max 1≤T ≤10 7 |I(T, 3/2)| ≤ κ(3/2).

I(T, 3/2) = κ(3/2) + I (T, 3/2) T 1/2 = κ(3/2) + 1 2T 1/2 + I (T, 7/4) T 1/2 + O * ( 9 2 /T 0.22 ) = κ(3/2) + 1 2T 1/2 + T 1/4 I(T, 7/4) -κ(7/4) + O * ( 9 2 /T 0.

A first bound

We use Corollary 3.2 with D = 1 to get Proof. The right-hand side of inequality (10.2) divided by x 1/3 log x is decreasing and then increasing.

|G(x, T )| ≤ 7 4 + 7 + (xT -3 ) 1/4 + (xT -3 ) 1/2 √ T + 1 2 4 + √ x 8T + √ T 12 T 1 ∆(u)du u 3/2 + 9x 1/4
The third bound of Theorem 1.1 is a further consequence of this bound.

Second round

We can try to use our better estimates to improve on the final result. The next Lemma indeed improves on Lemma 8.5, but the global improvement is of no consequence.

Lemma 11.1. We have max T ≥1 T 1/4 |κ(7/4) -I(T, 7/4)| ≤ 1.83.

Proof. For T ≤ 10 7 = T 0 , this follows from Lemma 8.3. For larger T 's, we use (10.2) to show that |κ(D, 7/4) -I(D, T, 7/4)| is not more than ∞ T 0.764u 1/3 log u -4.505u 1/3 + 4.755u 1/4 + 10.30u 

h K ≤ m b K √ d K τ (m).
On invoking Theorem 1.1 we get

h K d K 12 log d K + d K 3 2γ -1 -log √ 3 + 0.961 d K 3 -1/4
, and it is easily seen that 2γ -1 -log √ 3 + 0.961 (d K /3) -1/4 < 0

Theorem 1 . 1 . 2 .Theorem 1 . 2 .

 11212 When x ≥ 1, we have |∆(x)| ≤ 0.961 x 1/2 . When x ≥ 1 981, we have |∆(x)| ≤ 0.482 x 1/2 . When x ≥ 5 560, we have |∆(x)| ≤ 0.397 x 1/These bounds are sharp, since |∆(x)| > 0.5 x 1/2 when x = 1 980 while |∆(x)| > 0.4 x 1/2 when x = 5 559. When x ≥ 9 995, we have |∆(x)| ≤ 0.764 x 1/3 log x.

Theorem 1 . 3 .

 13 For all x ∈ [3, 10 10 ] we have ∆(x) = M (x, 4) + O * 0.9 x 1/4 log x and for all x ∈ [1 081 080, 10 10 ], we have ∆(x) = M (x, 4) + O * 0.35 x 1/4 log x .

Conjecture 1 . 4 .

 14 For all T ≥ 1, we have ∞ T ∆(u)du u 7/4 ≥ 0. See section 8 for more background on this conjecture.Notation. We use the Landau-like notation f = O * (g) to say that |f | ≤ g. We use ψ(x) = x -[x] -1/2, where [x] is the integer part of x. We shall also need the multiplicative D, where (u, v, D) denotes the gcd of u, v and D.

(4. 3 )

 3 n≤T τ (n, D) = A(D)T log T + B(D)T + ∆(T, D)where A(D) and B(D) are defined by(4.4) 

  {MajoreDelta(beg, end, bigM = 1, N0M = 2, OnFile = 0, verbose = 1, TexFormat = 0, whentotell = 5*10^7) = local(maximum = 0, maxloc = 0, ou = beg, ouloc = beg, begloc, endloc, startat = 1, sommeou, sommeouloc, side, sideloc, somme = 0, aux, coef = 1/Pi/sqrt(2), previouscostimescoef, previousmt); whentotell = max(beg + whentotell, N0M) -beg;for(n = startat, max(beg, N0M)-1, somme += numdiv(n));if(N0M > end, print("Range is too low, N0( ", bigM,") being ", N0M); return(),);for(k = 0, ceil((end-beg)/whentotell-1), begloc = max(beg + k*whentotell, N0M); endloc = min(beg + (k+1)*whentotell, end)-1; maxloc = 0; previouscostimescoef = cos(Pi*(4*sqrt(begloc)-0.25))*coef; previousmt = begloc*(log(begloc)+(2*Euler-1)); for(n = begloc, endloc, somme += numdiv(n); aux = abs((somme-previousmt)/n^(1/4) -previouscostimescoef)/log(n); if(aux > maxloc, maxloc = aux; ouloc = n; sommeouloc = somme; sideloc = 1,); previousmt = (n+1)*(log(n+1)+(2*Euler-1)); previouscostimescoef = cos(Pi*(4*sqrt(n+1)-0.25))*coef; aux = abs((somme-previousmt)/(n+1)^(1/4) -previouscostimescoef)/log(n+1); if(aux > maxloc, maxloc = aux; ouloc = n+1; sommeouloc = somme; sideloc = -1,)); if(verbose, Output(1, begloc, endloc, maxloc, ouloc, sommeouloc, sideloc, OnFile, TexFormat),); if(maxloc > maximum, maximum = maxloc; ou = ouloc; sommeou = sommeouloc; side = sideloc,); ); if(verbose, Output(1, max(beg, N0M), end, maximum, ou, sommeou, side, OnFile, TexFormat),); return([somme, maximum]);}

Corollary 6 . 1 .

 61 For each x ∈ [1 440, 10 10 ], we have ∆(x) = M (x, 1) + O * 0.45x 1/4 log x and we can replace M (x, 1) by M (x, 4) in this equality. Moreover for x ∈ [2 017, 10 10 ] ∆(x) = M (x, 4) + O * 0.44x 1/4 log x .

Corollary 6 . 2 .

 62 For each x ∈ [4 221 010, 10 10 ], we have ∆(x) = M (x, 1) + O * 0.35x 1/4 log x . Corollary 6.3. For each x ∈ [3, 10 10 ], we have ∆(x) = M (x, 1) + O * x 1/4 log x .

Lemma 8 . 3 .max 1 260≤T ≤10 000 000 T 1 / 4

 83100014 We have max 1≤T ≤100 000 T 1/4 |I(T, 7/4) -κ(7/4)| ≤ 0.302 and also |I(T, 7/4) -κ(7/4)| ≤ 0.00979

( 3 . 1 ) 4 .Lemma 8 . 5 .Lemma 8 . 6 .Question 8 . 7 .

 314858687 and noticing that I(∞, 7/4) = κ(7/4), |κ(7/4) -I(T, 7/4)| ≤ Lemma 8.3 takes care of the small values of T . Once Lemma 9.3 has been established, we will have access to the following improvement: We have max T ≥1 T 1/4 |κ(7/4) -I(T, 7/4)| ≤ 1.90. See Lemma 11.1 for a further improvement. We have max T ≥1 |I(T, 7/4)| ≤ 0.479.The computations we ran make us think plausible that I(T, 3/4) ≤ κ(3/4). We formulate the following general question: Is is true that, for σ ∈ [3/2, 7/4], we have ∀T ≥ 1, I(T, σ) ≤ κ(σ) ?

Lemma 8 . 8 .

 88 We have max T ≥1 |I(T, 3/2)| ≤ 4.71. This bound is fairly poor since we believe that |I(T, 3/2)| ≤ κ(3/2) = 0.574 • • • . Once Lemma 9.3 will be established, we will have access to the following improvement: Lemma 8.9. We have max T ≥1 |I(T, 3/2)| ≤ 2.61.

Proof. 2 (σ - 2 ) 2 .Lemma 10 . 6 .Lemma 10 . 7 .

 222106107 We use, when T ≥ T 0 = 10 7 and, on using Lemma 9.4, |I(D, T, 7/4)| ≤ |I(D, T 0 , 7/4)| + using Lemma 10.3 concludes the proof. Lemma 10.5. We have, for all T ≥ 1, |I(2, T, 3/2)| ≤ 3.91.We have, for all T ≥ 1, |I(6, T, 3/2)| ≤ 5.98.Proof. We reuse (8.8), together with (8.9), to writeI(D, T, σ) = δ|D µ(δ)I(T /δ 2 , σ) δ 2(σ-1) -δ|D µ(δ) δ 2(σ-1) (σ -2) -1 + 2γ -1 2 --1 + 2γ -1 -2 log δ 2 -σ .This leads to I(D, T, 3/2) = δ|D µ(δ)I(T /δ 2 , 3/2) δ -2(2γ -3) φ(D) D + B(D) -4A(D). We get, by appealing to Lemma 8.2 I(D, T, 3/2) = κ(D, 3/2) φ(D) D + δ|D µ(δ)I # (T /δ 2 , 3/2) 56 T 0.72 + δ|D µ(δ)T 1/4 (I(T /δ 2 , 7/4) -κ(7use a direct computation with T and c from (9.1) and get, with D = 6: (10.2) |∆(x)| ≤ 0.764x 1/3 log x -4.505x 1/3 + 4.755x 1/4 + 10.30x 1/6 + 7/4. As a consequence: When x ≥ 421, we have |∆(x)| ≤ 0.688 x 1/2 . Proof. Use the above inequality (10.2) when x ≥ 10 9 , Lemma 7.1 when x ≥ 1981 and MajoreDelta otherwise. When x ≥ 9 995, we have |∆(x)| ≤ 0.764 x 1/3 log x.

T 1 / 2 .

 12 This function is decreasing, and takes a value ≤ 1.83 at T = 10 7 . We thus get max T ≥1 |I(2, T, 3/2)| ≤ 3.79 and max T ≥1 |I(2, T, 3/2)| ≤ 5.79 We use MajDelta with T and c from (9.1) and get, with D = 6: (11.1) |∆(x)| ≤ 0.764x 1/3 log x -4.505x

  K is the absolute value of its discriminant. If d K

			108, then we
	have		
	h K	d K 12	log d K .
	d	h K	B K
	311	19	29
	1559	51	83
	149159 597 1328
	300119 781 1994

Corollary 2.1. Let K = Q √ -d be an imaginary quadratic field with d > 0 squarefree and d Examples. In what follows, we set B K = d K /12 log d K , where K is an imaginary quadratic subfield of the cyclotomic field Q(ζ d ) where ζ d is a primitive d-th root of unity. The computations has been made using PARI system.

  Here is the table obtained, each entry requiring at the beginning about ten minutes and about twenty-five at the end (on a desktop computer).

				1;	
	maxloc = 0;				
	for(n = begloc, endloc,			
	somme += numdiv(n);			
	/* The function with 'somme' fixed is decreasing */
	aux = abs(somme-n*(ad*log(n)+bd))/sqrt(n);	
	if(aux > maxloc, maxloc = aux; ouloc = n;	
	sommeouloc = somme; sideloc = 1,);	
	aux = abs(somme-(n+1)*(ad*log(n+1)+bd))/sqrt(n+1);
	if(aux > maxloc, maxloc = aux; ouloc = n+1;	
	sommeouloc = somme; sideloc = -1,));	
	if(verbose, Output(begloc, endloc, maxloc, ouloc,	
		sommeouloc, sideloc, OnFile, TexFormat),);
	if(maxloc > maximum,			
	maximum = maxloc; ou = ouloc;		
	sommeou = sommeouloc; side = sideloc,));	
	if(verbose, Output(beg, end, maximum, ou,	
		sommeou, side, OnFile, TexFormat),);
	return([somme, maximum]);}			
	Beginning	End	Max ≤	Where	Sum there
	1	50 000 001	0.960695	12	35
	50 000 001	100 000 001	0.070919	82882820	1523997698
	100 000 001	150 000 001	0.058336	135408288	2556270358
	150 000 001	200 000 001	0.058275	165765640	3162894841
	200 000 001	250 000 001	0.048470	219367470	4247106335
	250 000 001	300 000 001	0.047795	253159920	4937622542
	300 000 001	350 000 001	0.049268	302325156	5950196787
	350 000 001	400 000 001	0.041915	353687040	7016569614
	400 000 001	450 000 001	0.044068	403507656	8058104197
	450 000 001	500 000 001	0.043468	479524060	9658927478
	500 000 001	550 000 001	0.039691	529621200	10720648283
	550 000 001	600 000 001	0.040632	562282656	11415433396
	600 000 001	650 000 001	0.039443	639685376	13069360680
	650 000 001	700 000 001	0.041340	660261970	13510663499
	700 000 001	750 000 001	0.035375	728973036	14988837355
	750 000 001	800 000 001	0.033995	768928275	15851410875
	800 000 001	850 000 001	0.037986	838474560	17357704112
	850 000 001	900 000 001	0.036950	855884040	17735695879
	900 000 001	950 000 001	0.035765	921729600	19168468472
	950 000 001	1 000 000 001	0.036828	959528080	19993096164

  [START_REF] Ramaré | Approximate Formulae for L(1, χ)[END_REF] Lemma 10.4. We have, for all T ≥ 1, |I(2, T, 7/4)| ≤ 0.953.We have, for all T ≥ 1, |I(6, T, 7/4)| ≤ 0.163.

									1	T	∆(u)du u 7/4 .
	We appeal to Lemma 8.6 and 8.8 to get		
	|G(x, T )| ≤ 7 4 + 7 + (xT -3 ) 1/4 + (xT -3 ) 1/2 + 4.71 √ T + 1 2 4 √ 8T x	+	√ 12 T	+ 0.479	9x 1/4 16	.
	We select (9.1)	T =	√	357 6	+	3 2	-4/3	x 1/3 = cx 1/3

  1/3 + 4.755x 1/4 + 10.11x 1/6 + 7/4, which is a very modest improvement. 12. Proof of Corollary 2.1 Since ζ K (s) ≤ ζ(s) n for every s > 1 and every number field of degree n (see [14, Chapter 7, Corollary 3]), we find that (since n = 2 here)

We have |∆(x)| > 0.48x 1/2 when x = 4032.

Taking advantage of D

We can now use Lemma 8.9 and also use the parameter D. A direct computation gives us the following bounds.

Lemma 10.1. We have max 1≤x≤10 7 |∆(2, x)| ≤ 0.883 x 1/2 .

We have max 1≤x≤10 7 |∆(6, x)| ≤ 0.927 x 1/2 . Lemma 10.2. We have max x≥1 |∆(2, x)| ≤ 0.883 x 1/2 . We have max x≥1 |∆(6, x)| ≤ 0.950 x 1/2 .

Proof. We use (4.5) together with Lemma 9.4 when available, as well as Lemma 10.1 for the smaller values.

Lemma 10.3. We have

We have also I(6, 10 7 , 3/2) = -0.056667 + O * (10 -6 ).

Proof. We use the PARI/GP package. as soon as d K 108.

Proof of Corollary 2.2

An integration by parts yields

for constants A = 2γ and B = γ 2 -γ 1 . By Theorem 1.1, we find that

which is not more than 1.16 provided t be larger than 236. We readily write a routine to complete the proof. Below are some partial results.

Interval R(t) ≤ [0,1] 1.16 [START_REF] Bordellès | Explicit upper bounds for the average order of dn(m) and application to class number[END_REF][START_REF] Cheng | Explicit estimates for the Riemann zeta function[END_REF] 0.60 [START_REF] Cheng | Explicit estimates for the Riemann zeta function[END_REF][START_REF] Coffey | New results on the Stieltjes constants: asymptotic and exact evaluation[END_REF] 0.57 [START_REF] Coffey | New results on the Stieltjes constants: asymptotic and exact evaluation[END_REF][START_REF] Deshouillers | Sommes de diviseurs et structure multiplicative des entiers[END_REF] 0.72 [START_REF] Deshouillers | Sommes de diviseurs et structure multiplicative des entiers[END_REF][START_REF] Furuya | Dirichlet series obtained from the error term in the Dirichlet divisor problem[END_REF] 0.48

Interval R(t) ≤ [START_REF] Furuya | Dirichlet series obtained from the error term in the Dirichlet divisor problem[END_REF][START_REF] Granville | Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients[END_REF] 0.48 [START_REF] Granville | Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients[END_REF][START_REF] Huxley | Subconvexity for the Riemann zeta-function and the divisor problem[END_REF] 0.74 [START_REF] Huxley | Subconvexity for the Riemann zeta-function and the divisor problem[END_REF][START_REF] Ivić | The Riemann zeta-function. The theory of the Riemann zeta-function with applications[END_REF] 0.43 [START_REF] Ivić | The Riemann zeta-function. The theory of the Riemann zeta-function with applications[END_REF][START_REF] Ivić | On the integral of the error term in the Dirichlet divisor problem[END_REF] 0.61 [START_REF] Ivić | On the integral of the error term in the Dirichlet divisor problem[END_REF][START_REF] Kreminski | Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants[END_REF] 0.52

Tables

We give the values obtained at some points, so that future authors can check their and our results. We can also start computations anew from one of these points. These computations have taken about ten days on a decent computer. It is not apparent here, but the maxima have all been attained at the beginning of the intervals [N, N + 1), for the program would otherwise have attached a minus sign at the back of the data "Where".