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Abstract

We improve the error term in the Bombieri asympotic sieve when the summation
is restricted to integers having at most two prime factors. This results in a refined
bilinear decomposition for the characteristic function of the primes that enables us
to get a best possible estimate for the trigonometric polynomial over primes.

Key words: Sieve; Bombieri asymptotic sieve; bilinear form.
AMS classification: 11N35 (primary), 11N36 (secondary)

1 Introduction

Since the discovery and systematic use of bilinear forms, our understanding
of primes has greatly improved. This technique enables one to translate our
knowledge of integers to the one of primes, and quite often, problems get re-
duced to finding a suitable bilinear form with which to write the characteristic
function of the primes. Such a bilinear form converts the problem to a corre-
sponding one over integers ranging an interval. However this decomposition of
the characteristic function of primes introduces divisor functions, amounting
to a loss of some power of LogX when working with primes ≤ X (in fact the
”trivial bound” is increased by such an amount). We produce here a family
of bilinear forms that do not have this feature; more precisely our divisors
will have a bounded number of prime factors. Moreover we shall completely
explicitate the dependence in this number of prime factors and further re-
duce their effect by using a preliminary sieving. We first choose an integer f

and write
∏∗
p≤y for a product over primes ≤ y and prime to f, and

∑∗
d≤y to
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denote a summation over integers d ≤ y and prime to f. We put Λ(t)(n) for
Λ(n)(Log n)t−1/(t− 1)! and study

Σν(f,X) =
∑∗

n≤X
Λ(2ν)(n)f(n) +

∑∗

n≤X
Λ(ν) ? Λ(ν)(n)f(n) (1)

for a fairly wide class of non-negative functions defined below. The dependence
on f is easily handled. The non-negativity assumption is much more drastic.
However, since we can close the set for which the asymptotic expression holds
under linear combination, we can also deal with complex-valued oscillating
functions that are bounded by an element of this class. We shall details some
applications in Corollary 30, 31 and 32. Let us mention here that Lemma 29
provides us with an asymptotic for the reference quantity Σν(1, X). A close
look at the proof will also reveal to the reader that the contribution coming
from Λ(2ν) is very close to the contribution of Λ(ν) ? Λ(ν).

Our course of action will be as follows. We will assume a simple ”model” f0 is
given for f (in a sense to be precised below) and show in Theorem 1 and 2 that
Σν(f0, X) is a good approximation to Σν(f,X). This part is better sketched
in subsection 2.1. In many problems the relevant expression with f0 may be
evaluated by different tools. We fail to evaluate this sum because the function
F that appears in (H1) below is too general for such a purpose.

Theorem 2 is quite sharp to describe the mean value of functions over integers
having at most two prime factors. In many cases however, one would like to
know the mean value of functions over primes only. Starting from Theorem 1,
two courses of actions are possible: using a tauberian argument or handle the
bilinear part as a remainder term. This is the path we follow in Theorem 3 in
order to bound ∑

n≤X
Λ(n)e(nα)

for a small α close to a rational with a small denominator.

1.1 Description of the properties required on f

The parameters X ≥ e20 and ν ≥ 1 are fixed throughout this paper. The
parameters D0 = X1−δ and z = Xδ are also fixed with some δ ≤ 1/(4ν). We
further assume that f has only prime factors less than z.

◦ To be able to sieve the sequence (f(n)), we need some regularity which we
express in the following form. For d prime to f, define∑∗

n≤y/d
f(dn) = σ(d)F (y) + rd(f, y)
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where the rd(f, y)’s are looked upon as error terms, σ is a multiplicative func-
tion and F is any function. We suppose given a ”simple” model f0 for f and
define rd(f0, y) again by∑∗

n≤y/d
f0(dn) = σ0(d)F (y) + rd(f0, y). (2)

These parameters are assumed to verify

|F (y)| ≤ F̂ (X) (y ≤ X), 0 ≤ σ(p), σ0(p) < 1,

∀n ≤ X, f0(n) ≤ B0F̂ (X)/X,∏∗
v≤p≤u

(1− σ(p))−1 +
∏∗

v≤p≤u
(1− σ0(p))−1 ≤ c

Log u

Log v
(2 ≤ v ≤ u)

(H1)

where c is a constant ≥ 2.

We assume also an inequality in the other direction, namely:

Vσ0(z) ≤ c/Log z (H2)

where we use the definition (σ̃ being a generic multiplicative function)

Vσ̃(z) =
∏∗
p≤z

(1− σ̃(p)). (3)

The introduction of σ0 and f0 serve two purposes. The first problem we meet is
that the main terms are going to be difficult to compute; so much so that we do
not even attempt this evaluation but only show how to replace a difficult one
(with f) to a supposedly simpler one (with f0). In [6], the problem is handled
in a similar fashion by assuming the main term to simply vanish. The second
problem is the one of uniformity which becomes stringent when working with
the sequence (Λ(N − p))p≤N for instance. The sieve knows how to deal with
that, the key observation being that the one sided condition (22) is really what
is required: the parameters introduced usually diminish the left-hand side so
that c has some uniformity. The proof of Corollary 32 displays on an example
how all of that works. This takes care of the uniformity for the primes ≤ z.
For the larger ones, the main term with f0 still has to be computed; this main
term is a sum over integers prime to z.

One of the fundamental hypothesis we make concerns positivity

f ≥ 0 and f0 ≥ 0. (H3)

This will be crucial to use the sieve argument, but as we remarked above,
there is a workaround for oscillating functions; the proof of Theorem 3 uses
such a technique.
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We quantify the fact that rd(f, y) (resp. rd(f0, y)) is an error term with an
assumption on

R(f,D, r) =
∑∗

d≤D
τr(d) max

y≤X
|rd(f, y)|, (4)

where τr is the r-th divisor function. Our precise hypothesis is as follows:

R(f,D0, 2ν) +
Vσ(z)

Vσ0(z)
R(f0, D0, 2ν) ≤ AF̂ (X)/LogX. (H4)

Such an inequality may be tricky to verify when ν is a function of X and we
provide in (H9) a simpler hypothesis.

◦ To handle the difference from f to f0, we shall use

∆ =
∑

X≥pa,p≥z
|σ(pa)− σ0(pa)|. (5)

and we control the large values of σ0 by

∏∗
z≤p≤X

∑
a≥0

σ0(pa) ≤ c
LogX

Log z
. (H5)

In Lemma 21, we deduce from ∆ and (H5) a control on the large values of σ.

1.2 A first result

We start with a fairly raw result taht requires few hypotheses. It still contains
a preliminary sieving, which is easily removed in most cases. This of course
corresponds to the case f =

∏
p≤z p and we a priori do not need more nota-

tions. However, in the course of the proof, we will write
∑′

for a summation
restricted to integers having no prime factors below z. To maintain notational
consistency, we denote by Σ′ν(f,X) the sum Σ∗ν(f,X) when f =

∏
p≤z p.

Theorem 1 Assuming (H1)—(H5), we have

Σ′ν(f,X) =
Vσ(z)

Vσ0(z)
Σ′ν(f0, X) + (ρ+ ρ̃) · Vσ(z)

Vσ0(z)
F̂ (X)

(LogX)2ν−1

(2ν − 1)!

where  |ρ| ≤ (56ν2)ν
{
c2A+

(
C0(c)δ5ν + 41/δ∆

)
(c/δ)2ν

}
,

|ρ̃| ≤ B0(200ν2δ Log(1/δ))ν ,

provided that

ν2δ Log(1/δ) ≤ 1
6
, 2ν + 1 ≤ δ LogX, 20 ≤ LogX, 41/δ∆ ≤ 1

2
.
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C0(c) is defined in Lemma 3.3.

Note that when ν increases, Λ(ν) ?Λ(ν) tends to give more weight to the points
n = phqk with ph ∼ qk ∼

√
X.

1.3 A result without a preliminary sieving

We now turn to a more refined result, but which requires finer hypotheses. We
first need a mild control over the values taken by σ and σ0 on prime powers :

max(σ(ph)ph, σ0(ph)ph) ≤ c, (p ≤ z), (H6)

Such a hypothesis is a consequence when h = 1 of (H1) by taking u = v = p
there. It is sensible since (H1) corresponds to a sieve of dimension 1. The
hypothesis σ(ph) ≤ cp−h simply says that individual values do not vary in too
vaste a range. For σ0, we further assume that:

Vσ0(X
1/4) ≤ c/LogX. (H7)

Furthermore, the simplest treatment uses the following two bounds:

F̂ (X) ≥ z
√
Xδ−ν , max(‖f‖∞, ‖f0‖∞) ≤ B. (H8)

Theorem 2 Assuming (H1)—(H8), we have

Σν(f,X) =
Vσ(z)

Vσ0(z)
Σν(f0, X) + (ρ+ θ) · Vσ(z)

Vσ0(z)
F̂ (X)

(LogX)2ν−1

(2ν − 1)!

where 
|ρ| ≤ (56ν2)ν

{
A+

(
C0(c)δ5ν + 41/δ∆

)
(c/δ)2ν

}
,

|θ| �c A+ (B +B0)(200ν2δ Log(1/δ))ν

provided that

ν2δ Log(1/δ) ≤ 1
6
, 2ν + 1 ≤ δ LogX, 20 ≤ LogX, 41/δ∆ ≤ 1

2
.

Comparing with [8], our result is better in that the error term is (essentially)
(ν2δ Log(1/δ))ν while it was (essentially) δ Log(1/δ) in the aforementioned
paper.
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1.4 A simpler hypothesis on the remainder term

Hypothesis (H4) may be troublesome due to the uniformity required in ν. We
prove in section 6 that it can be replaced by

∀d ≤ D0, max
y≤X

(|rd(f, y)|, |r(f0, y)|) ≤ CF̂ (X)/d,

R(f,D0, 1) +
Vσ(z)

Vσ0(z)
R(f0, D0, 1) ≤ A′F̂ (X)/Log2X

(H9)

in which case we can take A =
√
C(2 LogX)4ν2A′.

1.5 A sum over primes

When studying prime numbers, it is often useful to have some information
about their distribution in arithmetic progressions. We first introduce a nota-
tion: for a sequence f , real numbers X and X ′ ∈]X, 2X] and α on the torus,
we put

S(f ;α) =
∑

X<n≤X′
f(n)e(nα). (6)

By using only combinatorial arguments, we shall prove

Theorem 3 For X ≥ 1, Log q ≤ 1
50

(LogX)1/3 and α = a/q + β with |β| ≤
qX−1 exp((LogX)1/3) and a prime to q, we have∑

p≤X
Log p e(pα)� X

√
q/φ(q).

All constants are explicit. We now discuss the optimality of Theorem 3. As-
suming the Riemann hypothesis for L-functions, one would get

|S(Λ; a/q)| �
(
µ2(q)

φ(q)
+
√
q2/X LogX

)
X (7)

while by using the prime number Theorem for the modulus q and assuming
that there exists a Siegel’s zero at 1− δ̃, we get

|S(Λ; a/q)| ∼
√
q

φ(q)
X1−δ̃.

Thus multiplying our bound by a function of q which goes to 0 would improve
on our effective knowledge of Siegel’s zero, and in this sense it is optimal.
It also improves on [3] in the main term as well as in the range in β. Let
us note here that in [13] we can already find a proof of an upper bound for
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|S(Λ; a/q)|/X that has the main characteristic of this one: it is independant of
X, goes to zero when q remains smaller than a power of LogX and is obtained
via the bilinear form technique; use Theorem 2b of chapter IX therein with
ε = 2 Log q/Log LogX – the upper bound obtained is about X ·(Log q)10/

√
q.

The range in β is amply sufficient for applications but a much shorter one
would not do.

1.6 Notations

We write
∑′

for a summation restricted to integers free of prime factors ≤ z.
The function f0 should be a good model for f . More precisely, define

∑′

n≤y/d
w(n)f(dn) =

Vσ(z)

Vσ0(z)

∑′

n≤y/d
w(n)f0(dn) + rd,z(w, y) (8)

where w is a weight. We further define

f̄ = f − Vσ(z)

Vσ0(z)
f0. (9)

For D ≥ 1, we set
∑∗

d≤D
τr(d) max

y≤X
|rd,z(w, y)| = Rz(w, f̄ ,D, r),∑′

d≤D
τr(d) max

y≤X
|rd,z(w, y)| = R′z(w, f̄ ,D, r).

(10)

There exist relationships between these quantities, and it is the topic of the
third section to show how to control them in terms of some R(f0, D

′, r) and
R(f,D′, r).

To avoid typographical work, we set

MT = F̂ (X)
(LogX)2ν−1

(2ν − 1)!

Vσ(z)

Vσ0(z)
. (11)

As a matter of notations, we shall use either standard ones (in particular p
shall always stand for a prime number) or define them when required but for
two exceptions : we write a ≡ b[q] to say that a is congruent to b modulo q and
the notation f = O∗(g) to mean that |f | ≤ g. Though we shall not compute
every constant implied in O-symbols, some of them are easy enough to get and
displays clearly the dependence of the constants on the various parameters.
We finally use Log to denote the natural logarithm.
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1.7 Comments and acknowledgements

This paper started as a collaboration with Henryk Iwaniec, and we completed
the main frame around 1997. It was presented partially in talks, and we some-
how forgot about it. The recent papers [4] and [6] made us believe that it
would be a good idea to make this work available. Note in particular that in
[6], the sequence f is essentially assumed to be of ”dimension” 2, where the
dimension comes from (H1): the upper bound we assume is c(Log u/Log v)κ

where κ = 1 is (an upper bound of) the dimension.

I then started to update and complete our initial work. Henryk Iwaniec does
not wish anymore to appear as an author, since to his opinion, the input to this
work is not distributed enough among the former co-authors. I could express
thanks to him for interesting discussions, but that would be lessening far too
much his contribution to this work.

I end this part by thanking the referee for his/her very thorough reading of
this paper.

2 Diamond & Steinig identity and some further notations

In their elementary proof of the Prime Number Theorem with a good remain-
der term in 1970, Diamond & Steinig introduced a generalisation of Selberg’s
identity. We are mainly concerned in this part with creating a confortable en-
vironment for using these identities as bilinear forms, their main default lying
in the fact that they are not easy to write.

Let us fix an integer ν ≥ 1.

When k1, k2 . . . , km are integers, we define the function L(k1, . . . , km) by

L(k1, . . . , km) = Log ? · · ·?Log ?Log2 ? · · ·?Log2 ? · · ·?Logm ? · · ·?Logm, (12)

while µk denotes the k-fold convolution power of µ.

Let us denote by K = K(ν) the set of all 2ν-tuples (k1, . . . , k2ν) satisfying

{
k1 + · · ·+ k2ν = k ≤ ν,

k1 + 2k2 + · · ·+ 2νk2ν = 2ν.
(13)

A generic element of K will be denoted by k and its length (i.e.
∑
ki) by k.
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Let us also define the functions c and w over K by
c(k) =

(−1)k−1(k − 1)!

k1! . . . k2ν !
,

w(k) =
1

1!k1
· 1

2!k2
. . .

1

(2ν)!k2ν
.

(14)

We denote by H = H(ν) the set of all 2ν-tuples (k′1, . . . , k
′
ν , k
′′
1 , . . . , k

′′
ν) satisfy-

ing {
k′1 + · · ·+ k′ν + k′′1 + · · ·+ k′′ν = k′ + k′′ ≤ ν,

k′1 + · · ·+ νk′ν = k′′1 + · · ·+ νk′′ν = ν.
(15)

A generic element of H will be denoted by h = (k′,k′′) and its length by h.
The functions c̄ and w̄ are defined on H by

c̄(h) =
(−1)k

′−1(k′ − 1)!

k′1! . . . k′ν !

(−1)k
′′−1(k′′ − 1)!

k′′1 ! . . . k′′ν !
,

w̄(h) =
1

1!k
′
1
· 1

2!k
′
2
. . .

1

ν!k′ν
· 1

1!k
′′
1
· 1

2!k
′′
2
. . .

1

ν!k′′ν
.

(16)

After these preparations, the identity under question reads:

Lemma 4 (Diamond & Steinig)

Λ(2ν) + Λ(ν) ? Λ(ν)

= 2ν
∑
k∈K

c(k)w(k)µk ? L(k) + ν2
∑
h∈H

c̄(h)w̄(h)µh ? L(k′) ? L(k′′).

This Lemma follows from an identity of the shape

1

(2ν − 1)!

(
ζ ′

ζ

)(2ν−1)

+

 1

(ν − 1)!

(
ζ ′

ζ

)(ν−1)


2

=
P (1, ζ, . . . , ζ(2ν))

ζν
(17)

where P is a polynomial with integer coefficients. The key here is that ζ
appears on the denominator with a power ν and not 2ν.

We shall often use the following short form

Λ(2ν) + Λ(ν) ? Λ(ν) =
∑
`̀

a(`̀)µ` ? L(`̀) (18)

Finally, we write µk,T for the function defined by

µk,T (m) =

{
µk(m) if m ≤ T,

0 otherwise.
(19)
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2.1 A more precise sketch of the proof

We said that our plan is to prove that Σν(f0, X) is a good approximation to
Σν(f,X). As a matter of fact, we use the assumed level of distribution given
by hypothesis (H9) and the fact that σ is close to σ0 to show that∑

n≤X

∑
`̀

a(`̀)(µ`,T ? L(`̀))(n)f̄(n)

is small. Here T is a truncation parameter that we will choose later so large
that ∑

n≤X

∑
`̀

a(`̀)(|µ` − µ`,T | ? L(`̀))(n)
(
f(n) +

Vσ(z)

Vσ0(z)
f0(n)

)
is indeed an error term. The fact that ` is bounded above by ν is essential
in this part. If we were to carry out this programm, we would reach an error
term for this part of size

�ν MT ·
(

Log3(X/T )

LogX

)ν
thus forcing us to take X/T rather small. However the preliminary sieving
reduces the above term (see (29)) to

�ν MT ·
(

Log3(X/T )

δ2 Log3X

)ν

and thus enables us to take X/T as a power of Xδ. (We take X/T to be
(Xδ)ν

2 Log(1/δ) in (32)). The treatment of the main term, which is already
rather intricate due to the iterated convolutions, is made even more intricate
by this preliminary sieving. This treatment accounts in fact for most of the
length of the paper.

3 Some preliminary estimates

Lemma 5 For fixed k0 and ν ≥ 1, we have

∑
h∈H
h=k0

|c̄(h)| ≤
∑
k∈K
k=k0

|c(k)| = 1

k0

(
2ν − 1

k0 − 1

)
.

Proof. The equality comes from computing the coefficient of Y 2νXk0 in
(1 +XY +XY 2 + · · ·+XY 2ν)2ν in two different ways (cf between (5.10) and
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(5.11) in [5]). Indeed, a direct expansion yields

(1 +XY +XY 2 + · · ·+XY 2ν)2ν

=
∑

0≤k1,··· ,k2ν≤2ν

(
2ν

k1, · · · , k2ν

)
Xk1+k2+···+k2νY k1+2k2+···+2νk2ν

while :

(1 +X(Y + Y 2 + · · ·+ Y 2ν))2ν =

(
1 +

XY

1− Y

)2ν

+O(Y 2ν+1)

=
∑
k≥0

(
2ν

k

)
(XY )k

∑
j≥0

(
k − 1 + j

k − 1

)
Y j +O(Y 2ν+1)

(with the convention
(
−1
−1

)
= 1 and

(
−1+j
−1

)
= 0 when j ≥ 1). This leads to

∑
0≤k1,··· ,k2ν≤2ν,
k1+k2+···+k2ν=k,

k1+2k2+···+2νk2ν=2ν

(
2ν

k1, · · · , k2ν

)
=

(
2ν

k

)(
2ν − 1

k − 1

)

from which our claim follows easily. The inequality is easy. � � �

Lemma 6 For k in K, w(k) ≤ 2−ν, and for h in H, w̄(h) ≤ 2−ν.

Proof. We want to get the minimum of

S =
2ν∑
j=1

j∑
`=1

kj Log `

under
∑
jkj = 2ν and

∑
kj ≤ ν. Introducing the variables K` =

∑2ν
j=` kj, we

solve easily this problem. The other inequality follows from this one. � � �

Lemma 7

2ν
∑
k∈K
|c(k)w(k)|+ ν2

∑
h∈H
|c̄(h)w̄(h)| ≤ (ν + 2)2ν−1.

Proof. By Lemma 5 and 6, the LHS of Lemma 7 is not more than

2ν + ν2

2ν

ν∑
k0=1

(
2ν − 1

k0 − 1

)
1

k0

≤ 2ν + ν2

2ν

∫ 1

0
(1 + t)2ν−1dt ≤ (ν + 2)2ν−1

hence the result. � � �
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Lemma 8 We have Vσ(z)/Vσ0(z) ≥ 1/(2c2).

Proof. By (H1), we get Vσ(z) ≥ Log 2
cLog z

≥ 1/(2cLog z) and (H2) concludes.
� � �

Lemma 9 We have n! = (2πn)1/2(n/e)neθ+/(12n) for n ≥ 1 and some θ+ ∈
]0, 1[

Cf [5, (2.9)].

Lemma 10 When ν ≥ 1, we have (2ν − 1)!/(ν − 1)!2 ≤
√
ν22ν−3

2 .

This follows readily from [5, (2.10)].

Lemma 11 We have τr(p
a) ≤ 1

2
(e(1 + r/A))A whenever a ≤ A.

Proof. Indeed, we have

τr(p
a) =

(
r − 1 + a

r − 1

)
≤ e1/12

√
2π

r

r + a

√
r + a

ra

(r + a)r+a

rraa

≤ e
1/12

√
2π

√
r

(r + a)a
(1 + r/a)a(1 + a/r)r ≤ ea(1 + r/A)A/2

since x 7→ (1 + r/x)x is increasing; indeed the derivative of its logarithm is

Log(1 + r/x)− r/x

1 + (r/x)

and Log(1 + y) ≥ y/(1 + y) for y ≥ 0 (the derivative of the difference is ≥ 0).
� � �

Lemma 12 We have τr(`m) ≤ τr(`)τr(m).

Proof. This submultiplicativity is classical. We can establish it by showing
that τr(p

u+v) ≤ τr(p
u)τr(p

v) for every prime p. Let A(w) be the set of r-
tuples such that a1 + · · · + ar = w. We simply want to build an injective
map from A(u + v) into A(u) × A(v). There are several way to achieve that,
and for instance, we can associate to (a1, · · · , ar) ∈ A(u+ v) the two r-tuples
(a′1, · · · , a′r) ∈ A(u) and (a1 − a′1, · · · , ar − a′r) ∈ A(v) where

a′1 = min(a1, u), a′2 = min(a2, u− a′1), a′3 = min(a3, u− a′1 − a′2), · · ·
· · · a′r = min(ar, u− a′1 − a′2 − · · · − a′r−1).

� � �
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Lemma 13 We have

∑
n≤N

τr(n)2/n ≤
(∑
n≤N

1/n
)r2

.

Proof. Indeed and on using Lemma 12, we find that

∑
n≤N

τr(n)2

n
=
∑
n≤N

τr(n)

n

∑
n1n2···nr=n

1 ≤
∑

n1n2···nr≤N

τr(n1)τr(n2) · · · τr(nr)
n1n2 · · ·nr

≤
(∑
n≤N

τr(n)/n
)r
≤
(∑
n≤N

1/n
)r2

and the Lemma readily follows. � � �

The following Lemma is not essential but will help in keeping our estimates
explicit, and thus, hopefully, more understandable.

Lemma 14 For 300 ≤ a ≤ b, we have∏
a<p≤b

(1− 1/p)−1 ≤ 1.04(Log b)/Log a.

Proof. We use inequalities (3.25) and (3.28) from [12], to get that∏
a<p≤b

(1− 1/p)−1 ≤ c1(Log b)/Log a

with

c1 =

(
1 +

1

2 Log2 b

)(
1− 1

2 Log2 a

)−1

.

A numerical application concludes. � � �

Let us recall the following lemma (this is th 01 of [9]):

Lemma 15 Let H be a non-negative multiplicative function verifying

(1)
∑
p≤yH(p) Log p ≤ αy for y ≥ 0,

(2)
∑
p

∑
a≥2H(pa)p−a Log(pa) ≤ β.

Then, for x > 1, we have∑
n≤x

H(n) ≤ (α + β + 1)
x

Log x

∑
n≤x

H(n)/n.

We use it to prove:

13



Lemma 16 For r ≥ 1 and z ≥ 300, we have

∑′

n≤N
τr(n) ≤ N 3r(LogN)r/(Log z)r, and

∑′

n≤N

τr(n)

n
≤ 3r(LogN)r+1/(Log z)r.

This Lemma gives the correct order of magnitude in N and z.

Proof. To use Lemma 15, note that τr(p) = ` while τr(p
a) =

(
r−1+a
r−1

)
. This

leads to

∑
a≥2

τ`(p
a)p−a Log(pa) =

Log p

p

∑
a≥2

r

(
r + a− 1

r

)
p−(a−1)

=
Log p

p
r

(
1

(1− p−1)r+1
− 1

)

≤ Log p

p2

r(r + 1)

(1− p−1)r+1
≤ r(r + 1)2r+1 Log p

p2
.

As a consequence, we reach

∑′

n≤N
τr(n)� N

LogN
2rr2

∏
z<p≤X

(1− 1/p)−r ≤ N

LogN
r2(2.08)rδ−r

where we used Lemma 14 to estimate the product over the primes. We conclude
by noticing that r2(2.08)r ≤ 3r. The second estimates follows readily from the
above lines. � � �

Lemma 17 Let m ≤M be an integer with no prime factor ≤ z. The following
upper bound holds true for `̀ in K or in H:

L(`̀)(m) ≤ τ`(m)

(
eLogm

2ν

)2ν

/w(`̀).

(Replace w(`̀) by w̄(`̀) in case `̀ ∈ H).

Proof. Indeed, we have to write m as a product

m =
∏

1≤i≤ν

∏
1≤j≤`i

mi,j

where `1, `2, · · · , `2ν define `̀ and thus verify

∑
1≤i≤2ν

i`i = 2ν,
∑

1≤i≤2ν

`i = ` ≤ ν.

14



Since Log 1 = 0, we have to count only the mi,j’s that are > 1 and thus ≥ z.
We set mi,j = zαi,j so that

(Log z)−2νL(`̀)(m)/τ`(m) ≤
∏

1≤i≤2ν

∏
1≤j≤`i

αii,j = exp
∑

1≤i≤2ν

∑
1≤j≤`i

iLogαi,j

and we should maximize the sum containing the Logαi,j’s under the conditions

αi,j ≥ 1,
∑
i,j

αi,j = A ≤ (Logm)/Log z.

We can use Lagrange multipliers, forgetting the individual lower bounds, and
prove that we should have αi,j = i/λ for a fixed λ. We readily discover that
λ = 2ν/A and thus that

L(`̀)(m)/τ`(m) ≤
(

Logm

2ν

)2ν∏
i

ii`i ≤
(

Logm

2ν

)2ν∏
i

(eii!)`i

since Lemma 9 implies that (i/e)i ≤ i!. We conclude easily. � � �

When using the above Lemma, we will replace Lemma 7 by the following one,
which we prove in the same way:

Lemma 18

2ν
∑
k∈K
|c(k)|+ ν2

∑
h∈H
|c̄(h)| ≤ (ν + 2)22ν−1.

4 Inter-relations between different error terms

Our aim is to derive estimates for

∑′

n≤X/d
w(n)f(dn)

where w is a weight to be precised. When this weight is intricate, obtaining the
main term for the above sum in terms of similar expression for f is difficult,
hence the introduction of f0. Recall that f̄ = f − Vσ(z)

Vσ0 (z)
f0.

If g is a C1-function over [1, X], we define

‖g′‖1 =
∫ X

1
|g′(t)|dt, ‖g‖∞ = max

1≤t≤X
|g(t)|, ‖g‖ = max(‖g′‖1, ‖g‖∞). (20)

15



4.1 Smooth weights

Lemma 19 When w is a C1-function over [1, X], we haveRz(w, f̄ ,D, r) ≤ 3‖w‖Rz(1, f̄ , D, r),

R′z(w, f̄ ,D, r) ≤ 3‖w‖R′z(1, f̄ , D, r).

Proof. By summation by parts we get

∑′

n≤y/d
w(n)f̄(dn) =

∫ y/d

1
w′(t)

∑′

t<n≤y/d
f̄(dn)dt+ w(1)

∑′

n≤y/d
f̄(dn)

≤
(
|w(1)|+ 2

∫ X

1
|w′(t)|dt

)
max
t≤X
|rd,z(1, t)|

as required. � � �

4.2 Divisor-like weights

Let w1, . . . , wk be k C1-functions over [1, X]. We consider the weight w =
w1 ? · · · ? wk. We put

‖w‖ = ‖w1‖ . . . ‖wk‖.

Lemma 20 We have, when 1 ≤ D ≤ X,{
Rz(w, f̄ ,X(D/X)k, r) ≤ 3(2k − 1) · Rz(1, f̄ , D, r + k − 1)‖w‖,
R′z(w, f̄ ,X(D/X)k, r) ≤ 3(2k − 1) · R′z(1, f̄ , D, r + k − 1)‖w‖

Proof. Put D(w) = X(D/X)k. We use induction over k ≥ 1. The case k = 1
is treated in Lemma 19. Let us prove Lemma 20 to hold for k if it holds for
k − 1. We put w = w1 ? · · · ? wk−1 and apply Dirichlet hyperbola formula to
get, with MN = y/d,

∑′

mn≤y/d
w(n)wk(m)f̄(dnm) =

∑′

n≤N
w(n)

∑′

m≤y/dn
wk(m)f̄(dnm)

+
∑′

m≤M
wk(m)

∑′

N<n≤y/dm
w(n)f̄(dmn).

Assuming dN ≤ D and dM ≤ D(w), we get

rd,z(w?wk, y) =
∑′

n≤N
w(n)rdn,z(wk, y)+

∑′

m≤M
wk(m)(rdm,z(w, y)−rdm,z(w,Ndm))

16



We take M = D(w)/d and get

∑∗

d≤D(w?wk)

τr(d) max
y≤X
|rd,z(w ? wk, y)| ≤

∑∗

d≤D(w?wk)

τr(d)
∑∗

n≤X/D(w)

|w(n)|max
y≤X
|rdn,z(wk, y)|

+ 2
∑∗

d≤D(w?wk)

τr(d)
∑∗

m≤D(w)/d

|wk(m)| max
y≤X
|rdm,z(w, y)|

which in turn is not more than

∑∗

`≤D
τr ? |w|(`) max

y≤X
|r`,z(wk, y)|+ 2

∑∗

`≤D(w)

τr ? |wk|(`) max
y≤X
|r`,z(w, y)|.

Now note that

τr ? |w|(`) ≤ ‖w1‖∞ . . . ‖wk−1‖∞τr+k−1(`)

so that our remainder term is not more than

3

{
‖wk‖‖w1‖ . . . ‖wk−1‖+2(2k−1)‖w1‖ . . . ‖wk−1‖‖wk‖∞

}
Rz(1, f̄ , D, r+k−1)

from which the first inequality of the Lemma follows readily. The proof of the
second inequality is similar. � � �

4.3 Sieve weights

We first need a Lemma to connect σ(d) and σ0(d).

Lemma 21 When ∆ ≤ (e+ erδ)−1/δ, where ∆ is defined in (5), we have

∑′

d≤X
τr(d)|σ(d)− σ0(d)| ≤ 2∆(e+ erδ)1/δ(c/δ)r

Proof. We get the following inequality by mimicking the proof given sec-
tion 15 of [8]:

|σ(d)− σ0(d)| ≤
∑
pa‖d
|σ(pa)− σ0(pa)|max(σ(d/pa), σ0(d/pa)).

We then write

17



Ur(|σ − σ0|) =
∑′

d≤D
τr(d)|σ(d)− σ0(d)|

≤
∑′

d≤D
τr(d)

∑
pa‖d
|σ(pa)− σ0(pa)|max(σ(d/pa), σ0(d/pa))

≤∆ max τr(p
a)

∑′

d≤D/z
τr(d) max(σ(d), σ0(d)).

Notice that, by Lemma 11 and on noticing that a ≤ 1/δ:

τr(p
a) =

(
r − 1 + a

r − 1

)
≤ (e+ erδ)1/δ/2.

We furthermore write

max(σ(d), σ0(d)) ≤ |σ(d)− σ0(d)|+ σ0(d)

so that

Ur(|σ − σ0|) ≤ ∆(e+ erδ)1/δUr(|σ − σ0|) + ∆(e+ erδ)1/δUr(σ0).

Our bound on ∆ enables to infer from the above that

Ur(|σ − σ0|) ≤ 2∆(e+ erδ)1/δUr(σ0).

Next we write

Ur(σ0) ≤
∏

z<p≤D
(1 +

∑
a≥1

σ0(pa))r ≤ (c/δ)r (21)

by (H5) and the Lemma follows readily. � � �

Let z̃ ≥ 1 be a real number and P (z̃) = P (z̃, f) =
∏∗
p≤z̃ p. We take w(n) = 1

when (n, P (z̃)) = 1 and 0 otherwise. We first recall a well-known Lemma (cf
for instance [7, Lemma 5]).

Lemma 22 (Fundamental Lemma) Let M ≥ 2 and z̃ ≥ 1 be two real
parameters. There exist two sequences (λ+

m), (λ−m) with the following properties:

λ+
1 = λ−1 = 1, |λ+

m|, |λ−m| ≤ 1, λ+
m = λ−m = 0 when m > M.

For any n for which (n, P (z̃)) 6= 1,∑
m|n

λ−m ≤ 0 ≤
∑
m|n

λ+
m,

while
∑
m|n λ

−
m =

∑
m|n λ

+
m = 1 when (n, P (z̃)) = 1. For any multiplicative

function σ̃ verifying 0 ≤ σ̃ < 1 and

∏∗
v≤p≤u

(1− σ̃(p))−1 ≤ c̃
Log u

Log v
(2 ≤ v ≤ u), (22)
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we have

∑
m|P (z̃)

λ+
mσ̃(m)≤ (1 + C0(c̃)e−(LogM)/Log z̃)

∏∗
p≤z̃

(1− σ̃(p)),

∑
m|P (z̃)

λ−mσ̃(m)≥ (1− C0(c̃)e−(LogM)/Log z̃)
∏∗
p≤z̃

(1− σ̃(p)),

where C0(c̃) is a number which depends only on the constant c̃.

Lemma 23 For D0 ≥ Dz and when ∆(e + erδ)1/δ ≤ 1/2, the quantity
R′z(1, f̄ , D, r) is not more than

R(f,D0, r + 1) +
Vσ(z)

Vσ0(z)
R(f0, D0, r + 1)

+
(

2C0(c)e−
LogD0/D

Log z F̂ (X) + 2∆(e+ erδ)1/δ
)
Vσ(z) (c/δ)r F̂ (X).

Proof. We employ a sieve of level M = D0/D ≥ z to get

±
∑′

n≤y/d
f(dn) ≤

∑∗

n≤y/d

∑
m|n

λ±m f(dn) =
∑

m|P (z)

λ±m
{
σ(dm)F (y) + rdm(f, y)

}
.

We find that

∑′

d≤D0/M

τr(d)

∣∣∣∣∣ ∑
m|P (z)

λ±mrdm(f, y)

∣∣∣∣∣ ≤ ∑∗

`≤D0

τr+1(`) max
y≤X
|r`(f, y)| = R(f,D0, r + 1).

Furthermore

∑′

n≤y/d
f(dn) = σ(d)Vσ(z)F (y)(1 +O∗(C0(c)e−

LogM
Log z )) +O∗

( ∑
m≤M
m|P (z)

|rdm(f, y)|
)
,

and a similar estimate holds for f0. To compare both, we use Lemma 21 and
bound ∣∣∣∣∣ ∑′

n≤y/d
f(dn)− Vσ(z)

Vσ0(z)

∑′

n≤y/d
f0(dn)

∣∣∣∣∣
by

|σ(d)− σ0(d)|Vσ(z)F (y) +
(
σ(d) + σ0(d)

)
Vσ(z)F (y)C0(c)e−

LogM
Log z

+
∑
m≤M
m|P (z)

|rdm(f, y)|+ Vσ(z)

Vσ0(z)

∑
m≤M
m|P (z)

|rdm(f0, y)|.

The first sum over d is treated in Lemma 21, while we treat the two next ones
as in (21). The Lemma follows readily. � � �
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4.4 Divisor-like weights with preliminary sieving

Let w1, . . . , wk be C1-functions over [1, X]. We consider the weight w = w1 ?
· · · ? wk.

Lemma 24 If D0/D ≥ z and when ∆(e+ erδ)1/δ ≤ 1/2, then the remainder
term R′z(w, f̄ ,X(D/X)k, r) is not more than

3 · 2k‖w‖
{

R(f,D0, r + k) +
Vσ(z)

Vσ0(z)
R(f0, D0, r + k)

+
(

2C0(c)e−
LogD0/D

Log z + 2∆(e+ erδ)1/δ
)
Vσ(z) (c/δ)r+k−1 F̂ (X)

}
.

Proof. We combine Lemma 20 and Lemma 23. � � �

5 Proof of Theorem 1

Recall that Σ′ν(f,X) denotes the sum Σ∗ν(f,X) when f =
∏
p≤z p. We use the

following succession of approximations

Σ′ν(f,X) =
∑
`̀

a(`̀)
(
S1(f, T, `̀) +O∗(S2(f, T, `̀))

)
=
∑
`̀

a(`̀)
(
Vσ(z)

Vσ0(z)
S1(f0, T, `̀)

+O∗
(
Vσ(z)

Vσ0(z)
S2(f0, T, `̀) + S2(f, T, `̀))

)
+ Remainder

)

=
Vσ(z)

Vσ0(z)
Σ′ν(f0, X) + Remainder

5.1 Evaluation of the truncated sums

We have to approximate

S1(f, T, `̀) =
∑′

n≤T
µ`(n)

∑′

m≤X/n
L(`̀)(m)f(mn) (23)

by Vσ(z)
Vσ0 (z)

S1(f0, T, `̀). In doing so, we get a remainder term which is not more

than ∑′

n≤T
τ`(n) max

y≤X
|rn,z(L(`̀), y)| = R′z(L(`̀), f̄ , T, `). (24)
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Let D be a parameter to be chosen later and such that 1 ≤ D ≤ D0/z. We
then take T = X(D/X)ν , use Lemma 24, hypothesis (H2) and (H4). Note
that ‖L(`̀)‖ = (LogX)2ν . We get that the difference

S1(f, T, `̀)− Vσ(z)

Vσ0(z)
S1(f0, T, `̀)

is not more in absolute value than

3·2`+1F̂ (X)(LogX)2ν

{
A

2 LogX
+

(
C0(c)e−

Log
D0
D

Log z + ∆(e+ e`δ)1/δ

)
Vσ(z) (c/δ)`+`−1

}

where it is worthwhile recalling that ` ≤ ν. Summing over `̀ and using
Lemma 7, we get a remainder term which is not more than

3 · 22ν(ν + 2)F̂ (X)(LogX)2ν−1 Vσ(z)

Vσ0(z)
×{

A

2(Vσ(z)/Vσ0(z))
+
(
C0(c)e−

LogD0/D

Log z + ∆(e+ e`δ)1/δ
)
Vσ0(z) LogX (c/δ)2ν−1

}

We invoke Lemma 8 and (H2) together with Lemma 9 to get the majorant

MT · (37ν2)ν
{
Ac2 +

(
C0(c)e−

LogD0/D

Log z + ∆(e+ eνδ)1/δ
)

(c/δ)2ν

}
(25)

since 3ν+2
ν

(4ν/e)2νe
1
24
√
πν ≤ (37ν2)ν .

5.2 Error term due to truncation: from S2(f, T, `̀) to S2(f0, T, `̀)

We have to approximate

S2(f, T, `̀) =
∑′

m≤X/T
L(`̀)(m)

∑′

T<n≤X/m
τ`(n)f(mn) (26)

by Vσ(z)
Vσ0 (z)

S2(f0, T, `̀). We can use Lemma 24, hypothesis (H2) and (H4) to get

S2(f, T, `̀)− Vσ(z)

Vσ0(z)
S2(f0, T, `̀)

in not more in absolute value than

3 · 2`+2F̂ (X)
(

Log
X

T

)2ν Vσ(z)

Vσ0(z)
×{

Ac2

Log 2 LogX
+
(
C0(c)e−

LogD0/D

Log z + ∆(e+ e`δ)1/δ
)
Vσ0(z) (c/δ)`+`−1

}
(27)
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provided that X(D/X)ν ≥ X/T . This will be ensured by T 2 ≥ X. We fol-
low the same path as above, and get the very same majorant (see (25)) but
multiplied by

2
(

Log(X/T )

LogX

)2ν

≤ 2(1/2)2ν ≤ 1/2. (28)

5.3 Error term due to truncation: bounding S2(f0, T, `̀)

Our last task consists in finding an upper bound for S2(f0, T, `̀) defined in (26).
On using hypothesis (H1), we can bound above f0 by B0F̂ (X)/X, so that
we are reduced to finding an upper bound for S2(11, T, `̀) (and subsequently
multiply it by B0F̂ (X)/X). We follow an easy path, by using Lemma 16 (since
X/m is at least T ≥

√
X), followed by Lemma 17:

S2(11, T, `̀)≤ 2 · 3`X
δ` LogX

∑′

m≤X/T
L(`̀)(m)/m

≤ 2 · 3`X
δ` LogX

(
eLog(X/T )

2ν

)2ν
3` Log`+1(X/T )

(δ LogX)`
/w(`)

≤
(

17 Log3(X/T )

ν2δ2 LogX

)ν
/w(`)

since ` ≤ ν, and where, as usual, one should replace w(`) by w(`) in case `
belongs to H. We then use Lemma 6 to sum over `̀ and get a total contribution
of all S2(f0, T, `̀)’s which is not more than

B0F̂ (X)

Log1+ν X
(ν + 2)22ν−117ν

(
Log3(X/T )

ν2δ2 LogX

)ν

≤ c2 ·B0 MT ·
(

Log3(X/T )

δ2 Log3X

)ν
(29)

where the constant is, by Lemma 9,

c2 =
√
π/ν(2/e)2νe1/(24ν)17ν ≤ 31ν .

5.4 Choice of the parameters to prove Theorem 1

On taking T = X(D/X)ν , we derive an equality of the shape

Σ′ν(f,X) =
Vσ(z)

Vσ0(z)
Σ′ν(f0, X) + (ρ+ ρ̃) ·MT
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where we expect ρ to be o(1). We have precisely (see (25) and (28))

|ρ| ≤ 3
2
(37ν2)ν

{
c2A+

(
C0(c)e−

LogD0/D

Log z + ∆(e+ eνδ)1/δ
)(

c

δ

)2ν
}

with (see (29))

ρ̃ = B0

(
31 Log3(X/T )

δ2 Log3X

)ν
.

Let us gather the hypotheses on z, T and D :

X ≥ T ≥ X1/2 ≥ z ≥ e2ν+1, T = X(D/X)ν , D0 ≥ Dz.

We write 
Log z = δ LogX,

LogD0 = (1− δ) LogX,

Log T = (1− νϕ) LogX,

(30)

which gives LogD = (1− ϕ) LogX and the conditions are

1
2
≥ νϕ, ϕ− δ ≥ δ, δ ≥ 2ν + 1

LogX
.

We infer from the above the following somewhat simplified upper bound for |ρ|:

3
2
(37ν2)ν

{
c2A+

(
C0(c)e−

ϕ−δ
δ + ∆(e+ eνδ)1/δ

)
(c/δ)2ν

}
(31)

Since ∆ will be typically extremely small, we concentrate on the other terms.
We take

ϕ = 6νδ Log(1/δ) (32)

provided that

1
6
≥ ν2δ Log(1/δ), δ ≥ 2ν + 1

LogX
(33)

and we further simplify the expression by using e+e/4 ≤ 4. Lemma 23 implies
also a condition on ∆ which we simplify in a similar manner. Note finally that

ϕ− δ
δ

= 6

(
1− 1

6ν Log(1/δ)

)
ν Log(1/δ) ≥ 5ν Log(1/δ)

since δ ≤ 1/4.

6 Simplifying (H4)

We prove that (H9) implies (H4). To achieve that in the simplest manner use
Hölder’s inequality:
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R(f,D0, 2ν)2≤
∑
d≤D0

τ2ν(d)2d−1
∑∗

d≤D0

max
y≤X

d|rd(f, y)|2

≤CF̂ (X)
∑
d≤D0

τ2ν(d)2d−1
∑∗

d≤D0

max
y≤X
|rd(f, y)|

We use Lemma 13 and note that
∑
n≤x 1/n ≤ 2 Log x as soon as x ≥ e, to

reach

A =
√
C(2 LogX)4ν2A′ (34)

which indeed is what we have announced.

7 Removal of the preliminary sieving: proof of Theorem 2

In this section, we give an upper bound for∑
n≤X

(n,P (z))6=1

Λ(2ν)(n)g(n) +
∑
n≤X

(n,P (z)) 6=1

Λ(ν) ? Λ(ν)(n)g(n) (35)

when g is f or f0. We use (H8), δ LogX ≥ (2ν + 1) and z ≥ e2ν+1.

The argument is fairly simple. For the first sum we use the fact that it contains
few summands. As for the second one we proceed in three steps. We write
n = phm with p ≤ z and distinguish several cases: when n ≤ X1/2, we use
a maximum for f and f0; we proceed also in this way when m is a power
of a prime ≤ X1/2. However, when n = phm > X1/2 with m prime > X1/2

(and thus ph ≤ X1/2) we have to be more cautious since taking the maximum
on f will not be enough in applications: a typical example is when f is the
characteristic function of an arithmetic progression modulo q where using a
maximum would loose a factor q.

To keep our estimates precises, we shall use two results of [12] : ψ(X) ≤ 1.04X
for all X > 0 ((3.35) of the aforementioned paper) and (see (3.24) and (3.6)
therein) :

∑
p≤X

Log p

p
< LogX, π(X) ≤ 1.26X/LogX (X ≥ 1). (36)

Here is another preliminary estimate :

Lemma 25 We have

∑
h≥1

hν−1

ph−1
≤ (ν − 1)!

(1− 1/p)ν
≤ 2ν(ν − 1)!
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Proof. Put βh = hν−1/[h(h+ 1) . . . (h+ ν)] ≤ 1. We have

∑
h≥1

hν−1

ph−1
≤ max

h≥1
(βh)

∑
k≥0

(k + 1) . . . (k + ν − 1)

pk
≤ (ν − 1)!

(1− 1/p)ν

hence the result. � � �

7.1 The part with the primes

We first have

∑
p≤z

∑
h≤LogX

Log p

(Log p)2νh2ν−1 ≤
∑
p≤z

(Log p)2ν 1

2ν

(
2 LogX

Log p

)2ν

≤ 1.26 · 22ν−1(LogX)2ν z

Log z
.

We divide this estimate by (2ν − 1)! and use Lemma 8. This gives us an error
term of size at most

MT ·B · c2 · 1.26

Log 2
22ν z

F̂ (X)δ
. (37)

An appeal to (H8) reduces this term to

MT ·B · c2 · 1.26

Log 2
22νδν

LogX√
X(2ν + 1)

≤ 0.001 MT B c2 (4δ)ν . (38)

7.2 The bilinear part: small n’s

First note that by Lemma 25

∑
p≤z

∑
h≤ LogX

2 Log p

(Log p)νhν−1
∑

m≤
√
X/ph

Λ(m)(Logm)ν−1

≤ 1.26(1
2

LogX)ν−1
√
X
∑
p≤z

(Log p)ν

p

∑
h≤ LogX

2 Log p

hν−1

ph−1

≤ 1.26(1
2

LogX)ν−1
√
X
∑
p≤z

(Log p)ν

p

(ν − 1)!

(1− 1/p)ν

≤ 2.52(ν − 1)!
√
X(LogX)ν−1(Log z)ν .
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This gives us (use Lemma 8) an error term of size at most

MT ·B · c2 · 5.04

Log 2

(2ν)!

2 ν!

√
Xδν

F̂ (X)
. (39)

An appeal to (H8) and to Lemma 9 reduces this term to

MT ·B · c2 · 5.4(4νδ2/e)ν/z ≤ 0.01 ·MT ·B · c2(νδ)ν . (40)

7.3 The bilinear part: m’s with a small prime factor

Next, we have

∑
p≤z

∑
h≤LogX

Log p

(Log p)νhν−1
∑

p′≤
√
X

∑
k≤LogX

Log p′

(Log p′)νkν−1

≤
∑
p≤z

(
2 LogX

Log p

)ν
(Log p)ν

∑
p′≤
√
X

(
2 LogX

Log p′

)ν
(Log p′)ν

≤ (2 LogX)2ν−28 · (1.26)2z
√
X/δ.

We divide this bound by (ν − 1)!2 and invoke Lemma 10. We next appeal to
(H8), Lemma 8 and δ LogX ≥ (2ν+1) to obtain an error term of size at most

2MT ·B · (1.26)2c2

Log 2
· 22ν−1

2
√
ν22ν δν

2ν + 1
≤ MT ·B · c2 · (16δ)ν . (41)

7.4 The bilinear part: m a large prime

We are left with

∑
ph≤
√
X

p≤z

(Log p)νhν−1
∑

√
X<p′≤X/ph

(Log p′)νf(p′ph) (42)

where we can simply use an upper sieve up to X1/4 ≤ D0/
√
X. This means

we invoke the Fundamental Lemma (Lemma 22) with M = z̃ = X1/4, σ̃ = σ
and we include p inside f. The constante c̃ = c is unchanged. Hypothesis (H4)
is of course more than enough for such a simple task. The quantity in (42) is

26



thus bounded above by:

(LogX)2νR(f,D0, 1)

+ (LogX)ν
∑

ph≤
√
X

(Log p)νhν−1σ(ph)
Vσ(X1/4)

1− σ(p)
F̂ (X)(1 + C0(c)).

Hypothesis (H1) implies, on taking u = v = p, that (1 − σ(p))−1 ≤ c. Now
invoke (H6) and (H2) and get that the above is at most

(LogX)2νR(f,D0, 1)

+ 22−ν(LogX)νVσ(X1/4)
∑
p≤z

Logν p

p

∑
h≥1

hν−1

ph−1
c2F̂ (X)(1 + C0(c)). (43)

The treatment of Vσ(X1/4) is different from the one for Vσ0(X
1/4). For this

latter we have (H7) at our disposal, and Vσ(z)
Vσ0 (z)

comes from the factor in front.

For σ, we first extract Vσ(z)
Vσ0 (z)

and are left with

Vσ0(z)
∏

z<p≤X1/4

(1− σ(p)) ≤ Vσ0(X
1/4) exp

( ∑
z<p≤X1/4

σ0(p)− σ(p)

1− σ0(p)

)
. (44)

On appealing to (H1) and recalling (5), we get via (H7):

Vσ(X1/4) ≤ Vσ(z)

Vσ0(z)

cec∆

LogX
. (45)

As a conclusion, these estimates introduce a factor u = c (for σ0) and u = cec∆

(for σ).

We use Lemma 25 for the sum over h and reach the upper bound

21−2ν(LogX)2ν−1R(f,D0, 1)

+ 22(LogX)ν−1(Log z)ν(ν − 1)!c2uF̂ (X)(1 + C0(c))

or also after dividing by (ν − 1)!2 (use Lemma 8)

21−2ν

(ν − 1)!2
(LogX)2ν−1R(f,D0, 1) + MT 4uc2 (2ν − 1)!

(ν − 1)!
(1 + C0(c))δν .

This is not more by Lemma 9 than

21−2ν

(ν − 1)!2
(LogX)2ν−1R(f,D0, 1) + MT 8uc2e1/24(4νδ/e)ν(1 + C0(c))

� 21−2ν

(ν − 1)!2
(LogX)2ν−1R(f,D0, 1) + MT 9uc2(2νδ)ν(1 + C0(c)). (46)
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7.5 Combining all that

We add up the contribution of f and of f0. The error term is not more than
(θ1 + θ2)MT where (adding (38), (40), (41) and (46))

|θ1| ≤ 11Bc2(1 + c(1 + ec∆)(1 + C0(c)))(8νδ)ν , (47)

and by Lemma 10

|θ2| ≤ A
21−2ν(2ν − 1)!

(ν − 1)!2
(LogX)−1 ≤ 0.6

√
νA/LogX. (48)

We finally use 1
4
≥ νδ ≥ 2ν/LogX to reach

|θ2| ≤ 0.1 A. (49)

8 Examples

The following three examples are standard. It is better to start with two
preliminary Lemmas. They require two definitions. First, we set for any integer
κ ≥ 1

F κ(X) =
∫ X

1
Logκ−1 t dt, (50)

and second, we define

L = exp
{
− Log3/5X

Log Log1/5X

}
. (51)

An integration by parts yields:

Lemma 26

F κ(X) = X
∑

1≤k≤κ
(−1)k−1 (κ− 1)!

(κ− k)!
Logκ−kX + (−1)κ(κ− 1)!.

When 2κ ≤ LogX, we have F κ(X) � X Logκ−1X.

Proof. We check this formula by recursion. Indeed, it holds when κ = 1 and
we easily check that F κ(X) = X Logκ−1X− (κ−1) F κ−1(X). We obtain the
order of magnitude by first noticing that the series is alternated. Secondly,
when κ is even and we are looking for a lower bound, the last term can be
discarded, while, when κ ≥ 3 is odd and we are again searching for a lower
bound, we can join this last term with the term with k = κ. We proceed
similarly for the upper bound and deal directly with κ = 1, 2, 3. � � �

28



Lemma 27 There is a positive constant c such that, for X ≥ 3 and X ≥ f ≥
1, one has ∑∗

n≤X
Λ(κ)(n) =

F κ(X)

(κ− 1)!
(1 +O(L

c))

provided 2κ ≤ LogX.

Proof. Indeed when κ ≥ 2 we have, since Logκ−1 n = F ′
κ(n)

∑∗

n≤X
Λ(n) Logκ−1 n = ψ∗(X) Logκ−1X −

∫ X

1
ψ∗(t) F ′′

κ(t)dt

where

ψ∗(X) =
∑
n≤X,

(n,f)=1

Λ(n) = ψ(X) +O(ω(f) LogX).

We thus reduce the expression above to the case f = 1 up to an error term of
order O(ω(f) LogκX). We recall that there exists c1 > 0 such that (see [10,
Corollary 8.30]) , when y ≥ 10,

ψ(y) = y + y exp
{
−c1

Log3/5 y

Log Log1/5 y

}
. (52)

This leads to, for a positive constant c2,

∑
√
X<n≤X

Λ(n) Logκ−1 n = X Logκ−1X −
∫ X

√
X
tF ′′

κ(t)dt

+O(
√
X Logκ−1X +X L

c2 LogκX
)
.

The first O-term is of lower order than the second one. On using the conditions
κ ≤ LogX and f ≤ X, we reach

∑∗

n≤X
Λ(n) Logκ−1 n = X Logκ−1X −

∫ X

1
tF ′′

κ(t)dt+O
(
X L

c2 LogκX
)
.

The main term is indeed F κ(X) and Lemma 26 enables us to put this main
term in factor. � � �

Lemma 28 When ν1 and ν2 are positive integers we have, for X ≥ 1:

∫ X

1

F ν1(X/t) F ′
ν2

(t)dt

(ν1 − 1)!(ν2 − 1)!
=

F ν1+ν2(X)

(ν1 + ν2 − 1)!
.

Proof. We appeal to Lemma 26 with κ = ν1 to get that the LHS above,

29



say E, is

E = X
∑

1≤k≤ν1
(−1)k−1 (ν1 − 1)!

(ν1 − k)!

∫ X

1

Logν1−k(X/t) Logν2−1 t dt

t

+ (−1)ν1(ν1 − 1)! F ν2(X).

The inner integral is (LogX)ν1+ν2−k(ν1− k)!(ν2− 1)!/(ν1 + ν2− k)! (this is for
instance [5, (2.7)]). This gives us

E = X
∑

1≤k≤ν1
(−1)k−1 (ν1 − 1)!(ν2 − 1)!

(ν1 + ν2 − k)!
(LogX)ν1+ν2−k

+ (−1)ν1(ν1 − 1)! F ν2(X).

We use Lemma 26 with κ = ν2 and check (by using the same Lemma with this
time κ = ν1 + ν2) that the RHS is F ν1+ν2(X)(ν1 − 1)!(ν2 − 1)!/(ν1 + ν2 − 1)!,
as required. � � �

Lemma 29 There is a positive constant c such that, for X ≥ 3 and X ≥ f ≥
1, one has

∑∗

n≤X
Λ(2ν)(n) +

∑∗

n≤X
Λ(ν) ? Λ(ν)(n) =

2 F 2ν(X)

(2ν − 1)!
(1 +O(L

c))

provided 4ν ≤ LogX.

Proof. We invoke Lemma 27 and check that, for a positive c3:

∑∗

`≤
√
X,

m≤X/`

Λ(ν)(`)Λ(ν)(m) =
∑∗

`≤
√
X

Λ(ν)(`)
F ν(X/`)

(ν − 1)!
(1 +O(L

c3)).

On using Lemma 26 together with Lemma 9, we readily check that the re-
mainder term is

� X
Log2ν−1X

(ν − 1)!2
L
c3 � F 2ν(X)

(2ν − 1)!
L
c4

for some positive c4. The main term reads

∑∗

`≤
√
X

Λ(ν)(`)
F ν(X/`)

(ν − 1)!
=
∫ X

1

∑∗

`≤min(X/t,
√
X)

Λ(ν)(`) F ′
ν(t)dt/(ν − 1)!

which up to an admissible error term equals

∫ X

1
F ν(min(X/t,

√
X)) F ′

ν(t)dt/(ν − 1)!2.
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We use Dirichlet hyperbola principle and the estimates above to infer that

∑∗

n≤X
Λ(ν) ? Λ(ν)(n) = 2

∫ X

√
X

F ν(X/t) F ′
ν(t)dt

(ν − 1)!2

+
F ν(
√
X)2

(ν − 1)!2
+O

(
F 2ν(X)

(2ν − 1)!
L
c4

)
.

We integrate one
∫X√

X · · · by parts, change t by X/t and finally check that the
main term above is∫ X

1

F ν(X/t) F ′
ν(t)dt

(ν − 1)!2
= F 2ν(X)/(2ν − 1)!2 (53)

by Lemma 28. This concludes the proof. � � �

8.1 Primes in progressions

We take f(n) = 1 when n ≡ a[q] (where (a, q) = 1) and f(n) = 0 otherwise.
Then we select f = q. We select f0(n) = 1/φ(q) when (n, q) = 1 and f0(n) = 0
otherwise. This gives us σ(d) = σ0(d) = 1/d (so that ∆ = 0), furthermore
F̂ (X) = F (X) = X/q, B0 = q/φ(q) and c is bounded. We easily get:

R(f,D0, 2ν) +R(f0, D0, 2ν) ≤ 2
∑
d≤D0

τ2ν(d) ≤ 2D0

∑
d≤D0

τ2ν(d)/d

≤ 2D0(2 LogX)2ν ≤ 2
qD0

X
(2 LogX)2νF̂ (X) (54)

when X ≥ 3. This leads to

Corollary 30 There exists a positive constant c such that

( ∑
n≤X
n≡a[q]

Λ(2ν)(n) +
∑
n≤X
n≡a[q]

Λ(ν) ? Λ(ν)(n)
)
/
(

2 F 2ν(X)

φ(q)(2ν − 1)!

)

= 1 +O
(
L
c +q exp{−1

2
δ LogX}+

q

φ(q)
δν/2

)
provided

3 ≤ q ≤ X, ν ≤ δ LogX

6 Log LogX
, ν2δ3/2 Log(1/δ) ≤ 1/200

and δ is small enough.

Proof. We write the error term as ε + ρ + θ. First ε comes from the main
term, see Lemma 29, and |ε| � Lc5 for some positive constant c5; secondly, ρ
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comes from the first part of the error term in Theorem 2:

|ρ| ≤ (56ν2)ν
{

2
q

z
(2 LogX)2ν + C0(c)(c2δ3)ν

}
.

Finally θ depends on δ and is bounded by (recall that D0 = X1−δ)

|θ| � 2
q

Xδ
(2 LogX)2ν + C0(c)(56c2ν2δ3)ν + q(200ν2δ Log(1/δ))ν .

This leads to

|ρ|+ |θ| � q

Xδ
(112ν LogX)2ν + q(200ν2δ Log(1/δ))ν

provided δ be small enough. Our hypotheses imply that ν ≤ 1
112

LogX when
X is large enough. This enables us to reduce the above bound to

|ρ|+ |θ| � qX−δ Log3ν X + qδ−ν/2 � q exp
(
−1

2
δ LogX

)
+ qδ−ν/2.

� � �

8.2 An oscillatory function

We want to study ga(n) = e(nα) with α = a
q

+ β, (a, q) = 1. We take f = q

and assume |D0qβ| ≤ 1
2
. We notice that, when (d, f) = 1 and d ≤ D0:

∑
n≤y/d
(n,q)=1

ga(dn) =
µ(q)

q

y

d

e(yβ)− 1

2iπyβ
+O(q2/φ(q)) =

G(y)

d
+O(q2/φ(q)). (55)

Proof. Indeed, we treat the condition (n, q) = 1 via the Moebius function:

∑
n≤y/d
(n,q)=1

ga(dn) =
∑
δ|q
µ(δ)

∑
m≤y/(dδ)
(n,q)=1

ga(dδm)

=µ(q)
∑

m≤y/(dq)
(n,q)=1

ga(dqm) +O
(∑
δ|q,
δ 6=q

µ2(δ)/
∥∥∥ad+ βdq

q/δ

∥∥∥).

The O-tem is O(q2/φ(q)). The main term does not depend on a anymore, but
we should still separate y and d. We achieve that in two steps. We first write
this main term as follows:

e
(
βdq[y/(dq)]

)
−1

e(βdq)− 1
=

e(βy)− 1

e(βdq)− 1
+ e(βy)

e(βdqη)− 1

e(βdq)− 1
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with −η being the fractionnal part of y/(dq). The second summand on the
RHS is O(1). We further write

e(βy)− 1

e(βdq)− 1
=
e(βy)− 1

2iπβdq
+
e(βy)− 1

2iπβdq

( 2iπβdq

e(βdq)− 1
− 1

)
where the second summand on the RHS is again O(1). This proves our claim.
� � �

We apply Theorem 1 to the functions 1 + <ga, 1 + =ga and 1, the model
function for ga being g1. In these three cases, we proceed as for (54) and get

R(f,D0, 2ν) + R(f0, D0, 2ν)� q

φ(q)

qD0

X
(2 LogX)2ν ·X,

and we take F̂ (X) = X and B0 = 2. We thus get the same results as in the
preceding case, save that A is to be multiplied by O(q/φ(q)). This leads in
this case to

|ρ|+ |θ| � q2

φ(q)Xδ
Log3ν X + δν/2 � q

Xδ
Log4ν X + δν/2

on assumptions very similar to the ones of Corollary 30, namely:

3 ≤ q ≤ X, 11ν ≤ δ
LogX

Log LogX
, ν2δ3/2 Log(1/δ) ≤ 1/200.

To remove the model g1, we sum Σν(ga, X) over a modulo q (but invertible
modulo q) and majorize the resulting sum by taking β = 0 therein and ap-
pealing to Lemma 29. Let us state formally:

Corollary 31 Let α = (a/q) + β. We have

Σν(e(nα), X)� X Log2ν−1X

(2ν − 1)!

(
1

φ(q)
+ q exp{−1

2
δ LogX}+ δν/2

)

with f = q, provided

3 ≤ q ≤ X, |X1−δqβ| ≤ 1
2
, 11ν ≤ δ

LogX

Log LogX
, ν2δ3/2 Log(1/δ) ≤ 1/200

and δ is small enough.

8.3 Representation of an integer as a sum of a prime and product of two
primes

Our result is also adapted to the Goldbach problem by selecting f(n) = Λ(N−
n). This example is interesting since it shows that our hypotheses on σ and σ0
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have been properly tailored; this part is almost entirely copied from [8]. We
select the following parameters:

f = 1, σ(d) =
11(d,N)=1

φ(d)
, f0(n) = 1, σ0(d) =

1

d
, F̂ (X) = X, F (y) = y.

This enables us to take B0 = 1. We consider the hypothesis:

∑
d≤N1−δ,
(d,N)=1

max
y≤X

∣∣∣ψ(N ; d,N)− X

φ(d)

∣∣∣ ≤ A′′N(11 LogN)−5ν2−2 (H10)

with the aim of producing an asymptotic formula for the weighted represen-
tation number

Rν(N) =
∑

n+m=N

Λ(n)(Λ(2ν) + Λν ? Λν)(m). (56)

Bombieri [1] considered a similar question for the problem of twin primes
and with δ tending to zero; Iwaniec & Friedlander in [7] extended this work
in several directions, and in particular were able to handle the problem of
uniformity to produce a similar result in the case of Goldbach’s conjecture.
In both cases, the asymptotic formula is obtained by letting δ go to zero.
The result we state below has this same feature, but we can increase ν to
get a better error term, thus allowing larger δ’s. Let us recall that Chen [2]
proved that every large enough integer is indeed a sum of a prime and an
integer having at most two prime factors, but his method, or any subsequent
improvement (see for instance [14]), are not able to produce any asymptotic.

We define also

S(N) = 2
∏
p|N,
p>2

p− 1

p− 2

∏
p>2

(
1− 1

(p− 1)2

)
. (57)

Corollary 32 There exists a constant c > 0 such that, for any large enough
even integer N and when (H10) holds for some small enough δ > 0 and some
ν ≥ 1, we have

Rν(N) =
2 F 2ν(N)S(N)

(2ν − 1)!

(
1 +O(L

c +
√
A′′ + (ν4δ)ν/2)

)
provided that

δ > 100/
√

LogN, ν2δ Log(1/δ) ≤ 1/8, A′′ ≥ N−δ/2.

Proof. We note that (H1) is verified for some constant c > 0 independent
of N : the coprimality condition at most diminishes the product

∏
v≤p≤u(1 −
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σ(p))−1. Hypotheses (H2), (H5) and (H7) hold true since, this time, σ0 does not
depend on N . Hypothesis (H9) follows on one side from the Brun-Titchmarsh
Theorem (see [11] for instance) with C = O(Log LogN) and on the other side
from (H10) with any A′ chosen so that

A′ ≥ A′′(11 LogN)−5ν2

+
∏

p|N,p6=2

p

p− 2
N−δ Log2N.

Since we suppose N large enough, we can assume that

δ LogN ≥ 2
66

δ Log(1/δ)
Log LogN

which ensures us that 11(5ν2 + 4) Log LogN ≤ 1
2
δ LogN . This implies that

A′′ ≥ N−δ/2 ≥ (11 LogN)5ν2+4N−δ. As a consequence, we can take A′ =

2A′′(11 LogN)−5ν2
. It is thus enough to have A �

√
(2/11)5ν2A′′. We finally

take
A = c1(56ν2)−ν

√
A′′

for a suitable constant c1 > 0. The reader will check that (see [8, (2.4)])

∆� (LogN)/N δ.

Hypothesis (H6) is trivial to verify in our case, and (H8) holds true with
B = LogN (we defined f on the integers n < N only but readily extend it by
0 out of this range). We are thus in a position to use Theorem 2. The quantity∑∗

ν(f0, N) is evaluated in Lemma 29. The quotient Vσ(z)
Vσ0 (z)

is given by

Vσ(z)

Vσ0(z)
= 2

∏
2<p≤z

(
1− 1

p− 1

)(
1− 1

p

)−1 ∏
2<p≤z,
p|N

(
1− 1

p− 1

)−1

= S(N) +O
(
δ−1 + Log LogN

N δ

)
= S(N) +O

(√
A′′
)
.

We further have, following notations of Theorem 2:

|ρ|+ |θ| �
√
A′′ + (56ν2)ν

(
δ5ν + 41/δ∆

)
(c/δ)2ν + (200ν2δ Log(1/δ))ν LogN.

The assumption δ > 2/
√

LogN ensures that 41/δ∆ < e1/δ ≤ e5/(8νδ) ≤ δ5ν

when N is large enough. When δ is small enough, we reach

|ρ|+ |θ| �
√
A′′ + (200ν2δ Log(1/δ))ν LogN �

√
A′′ + (ν4δ)ν/2 LogN

At this level, we have proved the estimate of the Corollary with a (ν4δ)ν/2 LogN
instead of a (ν4δ)ν/2. This additional LogN is due to our simplistic hypothesis
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on the maximum of f in (H8). In fact, we have here F̂ (X) ≥ z
√
Xδ−ν LogX

(since X is N here); f0 is bounded by 1. As for f , the estimates (38), (40) still
hold divided by LogX, while we can sieve more efficiently to reach both (41)
and (46) multiplied by an additional factor of order S(N)/LogN . � � �

9 Proof of Theorem 3

We first note that a bound for S(Λ(k);α) (notation defined in (6)) yields di-
rectly a bound for S(Λ;α) by

|S(Λ;α)| ≤ 2(k − 1)!
maxX<X′≤2X |S(Λ(k);α)|

Logk−1X
(X ≥ 2). (58)

We then write S(Λ(2ν);α) as

Σν(e(nα), X ′)− Σν(e(nα), X)−
∑

X<mn≤X′
Λ(ν)(m)Λ(ν)(n)e(mnα) (59)

where we have taken f = 1. This does not change anything in the bounds given
for Σν(e(nα), X) given in Corollary 31. We first reduce the last summand
of (59).

Lemma 33 Let T be a real number ≥
√
X and not more than X/2. Let ν ≥ 1

be an integer. We have for X ≥ 10

S(Λ(ν) ∗ Λ(ν);α) = 2
∑

√
X<p≤T

Λ(ν)(p)
∑
`<p

X/p<`≤X′/p

Λ(ν)(`)e(αp`)

+O
(
X

3
4 Log2ν−1X +X Logν−1 X

T
Logν X

)
/(ν − 1)!2.

Proof. We do not assume X ≥ exp(50) for the estimates that follow. We
have

S(Λ(ν) ? Λ(ν);α) =
∑
`1,`2

X<`1`2≤X′

Λ(ν)(`1)Λ(ν)(`2)e(α`1`2)

which now equals
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2
∑
`2<`1

X<`1`2≤X′

Λ(ν)(`1)Λ(ν)(`2)e(α`1`2) +O∗
(

1.04

22ν−1

√
2X

Log2ν−1 2X

(ν − 1)!2

)

= 2
∑

√
X<p≤X

Λ(ν)(p)
∑
`2<p

X
p
<`2≤X

′
p

Λ(ν)(`2)e(αp`2)

+O∗
(

1.04

22ν−1

√
2X Log2ν−1 2X + (2× 1.04)2X3/4 Log2ν−1X

Log 2

)
/(ν − 1)!2,

since ψ(X) ≤ 1.04X for all X > 0 (cf [12, (3.35)]). We now need to remove
the large p’s, which does not give rise to any problem, whence the result. � � �

To handle the remaining bilinear part, we use a diadic decomposition and the
following lemma.

Lemma 34 When
√
X ≤ P ≤ P ′ ≤ 2P , X/P ≥ q2, |qβ| ≤ X−0.55, X ≤

X ′ ≤ 2X and X ≥ 2, we have

∑
P<p≤P ′

Λ(ν)(p)
∑
n<p

X<np≤X′

Λ(ν)(n)e (pnα)� Logν−1 (2X/P )

(ν − 1)!

Logν−1 (2P )

(ν − 1)!

√
qX

φ(q)
,

the constant in the �-symbol being absolute.

Proof. For simplicity, we put ρ = 1/(ν−1)! and call Σ our sum. We apply the
Cauchy inequality and we relax the condition “p prime” into “p survives a sieve
of level M”. We use the Fundamental Lemma with M (which we shall later
choose as M = 1

4
X1/20), z =

√
M , f = q. We assume Mq Log q ≤ P/LogP

and M ≥ Xε for some ε > 0. Then |Σ|2 is not more than∑
P<p≤P ′

Λ(ν)(p)2
∑

P<m≤2P

∑
d|m

λ+
d

∑
n,ñ

X
m
<n,ñ≤X

m

Λ(ν)(n)Λ(ν)(ñ)e(αm(n− ñ)).

The first sum is � ρ2P Log2ν−1(2P ) and we now study the second one.

◦ When n ≡ ñ[q], and on using the Brun-Titchmarsh Theorem (see [11]) the
contribution is

� qP

φ(q) LogP

∑
n≡ñ[q]

X
2P
<n,ñ≤ 2X

P

Λ(ν)(n)Λ(ν)(ñ)�ε
ρ2qP

φ(q)2 LogP

(
X

P

)2

Log2ν−2
(

2X

P

)
.

◦ When n 6≡ ñ[q], the contribution is at most∑
n6≡ñ[q]

X
2P
<n,ñ≤X

′
P

Λ(ν)(n)Λ(ν)(ñ)
∑
d≤M

λ+
d

∑
m∈I(P,n,ñ)

d|m

e(αm(n− ñ)) (60)
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where I(P, n, ñ) is an interval of length ≤ P . The inner sum is

≤ (2‖αd(n− ñ)‖)−1 � ‖ad(n− ñ)/q‖−1

provided qM2X|β|/P ≤ 1
2
. Since

∑
d≤M |λ+

d | ≤ M , and Mq Log q ≤ P/LogP
by hypothesis, the total contribution is

�ε ρ
2 q Log q

φ(q)

X2M

P 2
Log2ν−2

(
2X

P

)
� ρ2 1

φ(q)
· X2

P LogP
Log2ν−2

(
2X

P

)
.

Finally we get

|Σ|2 �ε ρ
4 Log2ν−2

(
2X

P

)
Log2ν−2(2P )

qX2

φ(q)2
.

Note that the constants do not depend on ν. Since q2 ≤ X/P , we surely have
q ≤ X1/4. We take M = 1

4
X1/20. Taking the squareroot yields the Lemma.

� � �

Using a diadic decomposition, we get

∑
√
X<p≤T

n<p,X<np≤X′

Λ(ν)(p) Λ(ν)(n)e(pnα)�
√
qX

φ(q)

Σ

(ν − 1)!2

with

Σ =
C∑
c=0

{
Log

(√
X21−c

)
Log

(√
X21+c

)}ν−1
,

C being the integer part of (Log(2
√
X)/Log 2. PuttingD = (Log 2)/Log(2

√
X),

our upper bound becomes

√
qX

φ(q)

Log2ν−2(2
√
X)

(ν − 1)!2

C∑
c=0

[(1− cD)(1 + cD)]ν−1.

The summation over c is less than

1 +
∫ 1

0
(1− x2)ν−1dx

D
� 1 +

LogX√
ν
� LogX√

ν

under the assumption LogX ≥ ν. Under this same assumption, we also have

(
Log(2

√
X)

Log
√
X

)2ν−2

=

(
1 +

Log 2

LogX

)2ν−2

� 1.

Note also that thanks to Lemma 9, we have(
2ν − 2

ν − 1

)
2ν − 1

22ν
√
ν
� 1.

38



Thus, for LogX ≥ ν,

∑
√
X<p≤T

n<p,X<np≤X′

Λ(ν)(p) Λ(ν)(n)e(pnα)�
√
qX

φ(q)

Log2ν−1X

(2ν − 1)!
. (61)

To complete the proof of Theorem 3, we write

S(Λ(2ν);α) = Σν(e(nα), X ′)− Σν(e(nα), X)

+O

√qX Log2ν−1X

φ(q)(2ν − 1)!

[
1 +
√
qν

1
2

(
4 Log(X/T )

LogX

)ν−1] , (62)

provided (Log(X/T )/LogX)ν−1 ≥ X−1/4, X/T ≥ q2 and q ≤ X1/24. We take
X/T = q2 and use (58) and Corollary 31 to get

|S(Λ, α)| φ(q)
√
qX
� 1 +

√
qν

(
8 Log q

LogX

)ν−1

+ q3/2 exp{−1
2
δ LogX}+

√
qδν/2

provided that

|X1−δqβ| ≤ 1
4
, 11ν ≤ δ

LogX

Log LogX
, ν2δ3/2 Log(1/δ) ≤ 1/200

(the LHS of first condition should have X ′ instead of X which is why we
have divided the RHS by 2). We take δ = (LogX)−2/3 and assume Log q ≤
1
6
(LogX)1/3 as well as Log q ≤ 1

4
ν Log LogX and X large enough. Our bound

simplifies into

|S(Λ, α)| φ(q)
√
qX
� 1

as required. We finally take ν to be the integer part of (LogX)1/3/(11 Log LogX)
and assume that Log q ≤ 1

50
(LogX)1/3.
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