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We improve the error term in the Bombieri asympotic sieve when the summation is restricted to integers having at most two prime factors. This results in a refined bilinear decomposition for the characteristic function of the primes that enables us to get a best possible estimate for the trigonometric polynomial over primes.

Introduction

Since the discovery and systematic use of bilinear forms, our understanding of primes has greatly improved. This technique enables one to translate our knowledge of integers to the one of primes, and quite often, problems get reduced to finding a suitable bilinear form with which to write the characteristic function of the primes. Such a bilinear form converts the problem to a corresponding one over integers ranging an interval. However this decomposition of the characteristic function of primes introduces divisor functions, amounting to a loss of some power of Log X when working with primes ≤ X (in fact the "trivial bound" is increased by such an amount). We produce here a family of bilinear forms that do not have this feature; more precisely our divisors will have a bounded number of prime factors. Moreover we shall completely explicitate the dependence in this number of prime factors and further reduce their effect by using a preliminary sieving. We first choose an integer f and write denote a summation over integers d ≤ y and prime to f. We put Λ (t) (n) for Λ(n)(Log n) t-1 /(t -1)! and study

Σ ν (f, X) = * n≤X Λ (2ν) (n)f (n) + * n≤X Λ (ν) Λ (ν) (n)f (n) (1)
for a fairly wide class of non-negative functions defined below. The dependence on f is easily handled. The non-negativity assumption is much more drastic. However, since we can close the set for which the asymptotic expression holds under linear combination, we can also deal with complex-valued oscillating functions that are bounded by an element of this class. We shall details some applications in Corollary 30, 31 and 32. Let us mention here that Lemma 29 provides us with an asymptotic for the reference quantity Σ ν (1, X). A close look at the proof will also reveal to the reader that the contribution coming from Λ (2ν) is very close to the contribution of Λ (ν) Λ (ν) .

Our course of action will be as follows. We will assume a simple "model" f 0 is given for f (in a sense to be precised below) and show in Theorem 1 and 2 that Σ ν (f 0 , X) is a good approximation to Σ ν (f, X). This part is better sketched in subsection 2.1. In many problems the relevant expression with f 0 may be evaluated by different tools. We fail to evaluate this sum because the function F that appears in (H 1 ) below is too general for such a purpose.

Theorem 2 is quite sharp to describe the mean value of functions over integers having at most two prime factors. In many cases however, one would like to know the mean value of functions over primes only. Starting from Theorem 1, two courses of actions are possible: using a tauberian argument or handle the bilinear part as a remainder term. This is the path we follow in Theorem 3 in order to bound n≤X Λ(n)e(nα)

for a small α close to a rational with a small denominator.

Description of the properties required on f

The parameters X ≥ e 20 and ν ≥ 1 are fixed throughout this paper. The parameters D 0 = X 1-δ and z = X δ are also fixed with some δ ≤ 1/(4ν). We further assume that f has only prime factors less than z.

• To be able to sieve the sequence (f (n)), we need some regularity which we express in the following form. For d prime to f, define where the r d (f, y)'s are looked upon as error terms, σ is a multiplicative function and F is any function. We suppose given a "simple" model f 0 for f and define r d (f 0 , y) again by * n≤y/d f 0 (dn) = σ 0 (d)F (y) + r d (f 0 , y).

(2)

These parameters are assumed to verify

             |F (y)| ≤ F (X) (y ≤ X), 0 ≤ σ(p), σ 0 (p) < 1, ∀n ≤ X, f 0 (n) ≤ B 0 F (X)/X, * v≤p≤u (1 -σ(p)) -1 + * v≤p≤u (1 -σ 0 (p)) -1 ≤ c Log u Log v (2 ≤ v ≤ u) (H 1 )
where c is a constant ≥ 2.

We assume also an inequality in the other direction, namely:

V σ 0 (z) ≤ c/Log z (H 2 )
where we use the definition (σ being a generic multiplicative function)

V σ(z) = * p≤z (1 -σ(p)). (3) 
The introduction of σ 0 and f 0 serve two purposes. The first problem we meet is that the main terms are going to be difficult to compute; so much so that we do not even attempt this evaluation but only show how to replace a difficult one (with f ) to a supposedly simpler one (with f 0 ). In [START_REF] Fouvry | Crible asymptotique et sommes de Kloosterman[END_REF], the problem is handled in a similar fashion by assuming the main term to simply vanish. The second problem is the one of uniformity which becomes stringent when working with the sequence (Λ(N -p)) p≤N for instance. The sieve knows how to deal with that, the key observation being that the one sided condition ( 22) is really what is required: the parameters introduced usually diminish the left-hand side so that c has some uniformity. The proof of Corollary 32 displays on an example how all of that works. This takes care of the uniformity for the primes ≤ z.

For the larger ones, the main term with f 0 still has to be computed; this main term is a sum over integers prime to z.

One of the fundamental hypothesis we make concerns positivity

f ≥ 0 and f 0 ≥ 0. (H 3 )
This will be crucial to use the sieve argument, but as we remarked above, there is a workaround for oscillating functions; the proof of Theorem 3 uses such a technique.

We quantify the fact that r d (f, y) (resp. r d (f 0 , y)) is an error term with an assumption on R(f,

D, r) = * d≤D τ r (d) max y≤X |r d (f, y)|, (4) 
where τ r is the r-th divisor function. Our precise hypothesis is as follows:

R(f, D 0 , 2ν) + V σ (z) V σ 0 (z) R(f 0 , D 0 , 2ν) ≤ A F (X)/ Log X. (H 4 )
Such an inequality may be tricky to verify when ν is a function of X and we provide in (H 9 ) a simpler hypothesis.

• To handle the difference from f to f 0 , we shall use

∆ = X≥p a ,p≥z |σ(p a ) -σ 0 (p a )|. ( 5 
)
and we control the large values of σ 0 by * z≤p≤X a≥0

σ 0 (p a ) ≤ c Log X Log z . ( H 5 ) 
In Lemma 21, we deduce from ∆ and (H 5 ) a control on the large values of σ.

A first result

We start with a fairly raw result taht requires few hypotheses. It still contains a preliminary sieving, which is easily removed in most cases. This of course corresponds to the case f = p≤z p and we a priori do not need more notations. However, in the course of the proof, we will write for a summation restricted to integers having no prime factors below z. To maintain notational consistency, we denote by Σ ν (f, X) the sum Σ * ν (f, X) when f = p≤z p.

Theorem 1 Assuming (H 1 )-(H 5 ), we have Σ ν (f, X) = V σ (z) V σ 0 (z) Σ ν (f 0 , X) + (ρ + ρ) • V σ (z) V σ 0 (z) F (X) (Log X) 2ν-1 (2ν -1)! where      |ρ| ≤ (56ν 2 ) ν c 2 A + C 0 (c)δ 5ν + 4 1/δ ∆ (c/δ) 2ν , |ρ| ≤ B 0 (200ν 2 δ Log(1/δ)) ν , provided that ν 2 δ Log(1/δ) ≤ 1 6 , 2ν + 1 ≤ δ Log X, 20 ≤ Log X, 4 1/δ ∆ ≤ 1 2 . C 0 (c) is defined in Lemma 3.3.
Note that when ν increases, Λ (ν) Λ (ν) tends to give more weight to the points n = p h q k with p h ∼ q k ∼ √ X.

A result without a preliminary sieving

We now turn to a more refined result, but which requires finer hypotheses. We first need a mild control over the values taken by σ and σ 0 on prime powers :

max(σ(p h )p h , σ 0 (p h )p h ) ≤ c, (p ≤ z), ( H 6 ) 
Such a hypothesis is a consequence when h = 1 of (H 1 ) by taking u = v = p there. It is sensible since (H 1 ) corresponds to a sieve of dimension 1. The hypothesis σ(p h ) ≤ cp -h simply says that individual values do not vary in too vaste a range. For σ 0 , we further assume that:

V σ 0 (X 1/4 ) ≤ c/Log X. ( H 7 ) 
Furthermore, the simplest treatment uses the following two bounds:

F (X) ≥ z √ Xδ -ν , max( f ∞ , f 0 ∞ ) ≤ B. (H 8 )
Theorem 2 Assuming (H 1 )-(H 8 ), we have

Σ ν (f, X) = V σ (z) V σ 0 (z) Σ ν (f 0 , X) + (ρ + θ) • V σ (z) V σ 0 (z) F (X) (Log X) 2ν-1 (2ν -1)! where          |ρ| ≤ (56ν 2 ) ν A + C 0 (c)δ 5ν + 4 1/δ ∆ (c/δ) 2ν , |θ| c A + (B + B 0 )(200ν 2 δ Log(1/δ)) ν provided that ν 2 δ Log(1/δ) ≤ 1 6 , 2ν + 1 ≤ δ Log X, 20 ≤ Log X, 4 1/δ ∆ ≤ 1 2 .
Comparing with [START_REF] Friedlander | Bombieri's sieve[END_REF], our result is better in that the error term is (essentially) (ν 2 δ Log(1/δ)) ν while it was (essentially) δ Log(1/δ) in the aforementioned paper.

A simpler hypothesis on the remainder term

Hypothesis (H 4 ) may be troublesome due to the uniformity required in ν. We prove in section 6 that it can be replaced by

       ∀d ≤ D 0 , max y≤X (|r d (f, y)|, |r(f 0 , y)|) ≤ C F (X)/d, R(f, D 0 , 1) + V σ (z) V σ 0 (z) R(f 0 , D 0 , 1) ≤ A F (X)/ Log 2 X (H 9 )
in which case we can take A = C(2 Log X) 4ν 2 A .

A sum over primes

When studying prime numbers, it is often useful to have some information about their distribution in arithmetic progressions. We first introduce a notation: for a sequence f , real numbers X and X ∈]X, 2X] and α on the torus, we put

S(f ; α) = X<n≤X f (n)e(nα). (6) 
By using only combinatorial arguments, we shall prove Theorem 3 For X ≥ 1, Log q ≤ 1 50 (Log X) 1/3 and α = a/q + β with |β| ≤ qX -1 exp((Log X) 1/3 ) and a prime to q, we have p≤X Log p e(pα) X √ q/φ(q).

All constants are explicit. We now discuss the optimality of Theorem 3. Assuming the Riemann hypothesis for L-functions, one would get

|S(Λ; a/q)| µ 2 (q) φ(q) + q 2 /X Log X X (7) 
while by using the prime number Theorem for the modulus q and assuming that there exists a Siegel's zero at 1 -δ, we get

|S(Λ; a/q)| ∼ √ q φ(q) X 1-δ .
Thus multiplying our bound by a function of q which goes to 0 would improve on our effective knowledge of Siegel's zero, and in this sense it is optimal. It also improves on [START_REF] Daboussi | Brun's fundamental lemma and exponential sums over primes[END_REF] in the main term as well as in the range in β. Let us note here that in [START_REF] Vinogradov | The method of trigonometrical sums in the theory of numbers[END_REF] we can already find a proof of an upper bound for |S(Λ; a/q)|/X that has the main characteristic of this one: it is independant of X, goes to zero when q remains smaller than a power of Log X and is obtained via the bilinear form technique; use Theorem 2b of chapter IX therein with ε = 2 Log q/ Log Log X -the upper bound obtained is about X • (Log q) 10 / √ q.

The range in β is amply sufficient for applications but a much shorter one would not do.

Notations

We write for a summation restricted to integers free of prime factors ≤ z. The function f 0 should be a good model for f . More precisely, define

n≤y/d w(n)f (dn) = V σ (z) V σ 0 (z) n≤y/d w(n)f 0 (dn) + r d,z (w, y) (8) 
where w is a weight. We further define

f = f - V σ (z) V σ 0 (z) f 0 . (9) 
For D ≥ 1, we set 

         * d≤D τ r (d) max
There exist relationships between these quantities, and it is the topic of the third section to show how to control them in terms of some R(f 0 , D , r) and R(f, D , r).

To avoid typographical work, we set

MT = F (X) (Log X) 2ν-1 (2ν -1)! V σ (z) V σ 0 (z) . ( 11 
)
As a matter of notations, we shall use either standard ones (in particular p shall always stand for a prime number) or define them when required but for two exceptions : we write a ≡ b[q] to say that a is congruent to b modulo q and the notation f = O * (g) to mean that |f | ≤ g. Though we shall not compute every constant implied in O-symbols, some of them are easy enough to get and displays clearly the dependence of the constants on the various parameters. We finally use Log to denote the natural logarithm.
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Diamond & Steinig identity and some further notations

In their elementary proof of the Prime Number Theorem with a good remainder term in 1970, Diamond & Steinig introduced a generalisation of Selberg's identity. We are mainly concerned in this part with creating a confortable environment for using these identities as bilinear forms, their main default lying in the fact that they are not easy to write.

Let us fix an integer ν ≥ 1.

When k 1 , k 2 . . . , k m are integers, we define the function L(k 1 , . . . , k m ) by

L(k 1 , . . . , k m ) = Log • • • Log Log 2 • • • Log 2 • • • Log m • • • Log m , ( 12 
)
while µ k denotes the k-fold convolution power of µ.

Let us denote by K = K(ν) the set of all 2ν-tuples (k 1 , . . . , k 2ν ) satisfying

k 1 + • • • + k 2ν = k ≤ ν, k 1 + 2k 2 + • • • + 2νk 2ν = 2ν. (13) 
A generic element of K will be denoted by k and its length (i.e. k i ) by k.

Let us also define the functions c and w over K by

         c(k) = (-1) k-1 (k -1)! k 1 ! . . . k 2ν ! , w(k) = 1 1! k 1 • 1 2! k 2 . . . 1 (2ν)! k 2ν . (14)
We denote by H = H(ν) the set of all 2ν-tuples (k 1 , . . . , k ν , k 1 , . . . , k ν ) satisfy-

ing k 1 + • • • + k ν + k 1 + • • • + k ν = k + k ≤ ν, k 1 + • • • + νk ν = k 1 + • • • + νk ν = ν. (15) 
A generic element of H will be denoted by h = (k , k ) and its length by h.

The functions c and w are defined on H by

         c(h) = (-1) k -1 (k -1)! k 1 ! . . . k ν ! (-1) k -1 (k -1)! k 1 ! . . . k ν ! , w(h) = 1 1! k 1 • 1 2! k 2 . . . 1 ν! k ν • 1 1! k 1 • 1 2! k 2 . . . 1 ν! k ν . ( 16 
)
After these preparations, the identity under question reads:

Lemma 4 (Diamond & Steinig) Λ (2ν) + Λ (ν) Λ (ν) = 2ν k∈K c(k)w(k)µ k L(k) + ν 2 h∈H c(h) w(h)µ h L(k ) L(k ).
This Lemma follows from an identity of the shape

1 (2ν -1)! ζ ζ (2ν-1) +    1 (ν -1)! ζ ζ (ν-1)    2 = P (1, ζ, . . . , ζ (2ν) ) ζ ν ( 17 
)
where P is a polynomial with integer coefficients. The key here is that ζ appears on the denominator with a power ν and not 2ν.

We shall often use the following short form

Λ (2ν) + Λ (ν) Λ (ν) = a( ) µ L( ) (18) 
Finally, we write µ k,T for the function defined by

µ k,T (m) = µ k (m) if m ≤ T, 0 otherwise. ( 19 
)

A more precise sketch of the proof

We said that our plan is to prove that Σ ν (f 0 , X) is a good approximation to Σ ν (f, X). As a matter of fact, we use the assumed level of distribution given by hypothesis (H 9 ) and the fact that σ is close to σ 0 to show that

n≤X a( )(µ ,T L( ))(n) f (n) is small.
Here T is a truncation parameter that we will choose later so large that

n≤X a( )(|µ -µ ,T | L( ))(n) f (n) + V σ (z) V σ 0 (z) f 0 (n)
is indeed an error term. The fact that is bounded above by ν is essential in this part. If we were to carry out this programm, we would reach an error term for this part of size

ν MT • Log 3 (X/T ) Log X ν
thus forcing us to take X/T rather small. However the preliminary sieving reduces the above term (see ( 29)) to

ν MT • Log 3 (X/T ) δ 2 Log 3 X ν
and thus enables us to take X/T as a power of X δ . (We take X/T to be (X δ ) ν 2 Log(1/δ) in (32)). The treatment of the main term, which is already rather intricate due to the iterated convolutions, is made even more intricate by this preliminary sieving. This treatment accounts in fact for most of the length of the paper.

3 Some preliminary estimates Lemma 5 For fixed k 0 and ν ≥ 1, we have

h∈H h=k 0 |c(h)| ≤ k∈K k=k 0 |c(k)| = 1 k 0 2ν -1 k 0 -1 .
Proof. The equality comes from computing the coefficient of

Y 2ν X k 0 in (1 + XY + XY 2 + • • • + XY 2ν ) 2ν
in two different ways (cf between (5.10) and

(5.11) in [START_REF] Diamond | An Elementary Proof of the Prime Number Theorem with a Remainder Term[END_REF]). Indeed, a direct expansion yields

(1 + XY + XY 2 + • • • + XY 2ν ) 2ν = 0≤k 1 ,••• ,k 2ν ≤2ν 2ν k 1 , • • • , k 2ν X k 1 +k 2 +•••+k 2ν Y k 1 +2k 2 +•••+2νk 2ν while : (1 + X(Y + Y 2 + • • • + Y 2ν )) 2ν = 1 + XY 1 -Y 2ν + O(Y 2ν+1 ) = k≥0 2ν k (XY ) k j≥0 k -1 + j k -1 Y j + O(Y 2ν+1 )
(with the convention -1 -1 = 1 and -1+j -1

= 0 when j ≥ 1). This leads to

0≤k 1 ,••• ,k 2ν ≤2ν, k 1 +k 2 +•••+k 2ν =k, k 1 +2k 2 +•••+2νk 2ν =2ν 2ν k 1 , • • • , k 2ν = 2ν k 2ν -1 k -1
from which our claim follows easily. The inequality is easy.

Lemma 6 For k in K, w(k) ≤ 2 -ν , and for h in H, w(h) ≤ 2 -ν .
Proof. We want to get the minimum of

S = 2ν j=1 j =1 k j Log
under jk j = 2ν and k j ≤ ν. Introducing the variables K = 2ν j= k j , we solve easily this problem. The other inequality follows from this one.

Lemma 7 2ν k∈K |c(k)w(k)| + ν 2 h∈H |c(h) w(h)| ≤ (ν + 2)2 ν-1 .
Proof. By Lemma 5 and 6, the LHS of Lemma 7 is not more than

2ν + ν 2 2 ν ν k 0 =1 2ν -1 k 0 -1 1 k 0 ≤ 2ν + ν 2 2 ν 1 0 (1 + t) 2ν-1 dt ≤ (ν + 2)2 ν-1
hence the result.

Lemma 8 We have V σ (z)/V σ 0 (z) ≥ 1/(2c 2 ).
Proof. By (H 1 ), we get V σ (z) ≥ Log 2 c Log z ≥ 1/(2c Log z) and (H 2 ) concludes.

Lemma 9

We have n! = (2πn) 1/2 (n/e) n e θ + /(12n) for n ≥ 1 and some θ + ∈ ]0, 1[ Cf [5, (2.9)].

Lemma 10 When ν ≥ 1, we have (2ν -1)!/(ν -1)! 2 ≤ √ ν2 2ν-3 2 .
This follows readily from [5, (2.10)].

Lemma 11

We have τ r (p a ) ≤ 1 2 (e(1 + r/A)) A whenever a ≤ A.

Proof. Indeed, we have

τ r (p a ) = r -1 + a r -1 ≤ e 1/12 √ 2π r r + a r + a ra (r + a) r+a r r a a ≤ e 1/12 √ 2π r (r + a)a (1 + r/a) a (1 + a/r) r ≤ e a (1 + r/A) A /2 since x → (1 + r/x)
x is increasing; indeed the derivative of its logarithm is Log(1 + r/x) -r/x 1 + (r/x) and Log(1 + y) ≥ y/(1 + y) for y ≥ 0 (the derivative of the difference is ≥ 0).

Lemma 12

We have τ r ( m) ≤ τ r ( )τ r (m).

Proof. This submultiplicativity is classical. We can establish it by showing that τ r (p u+v ) ≤ τ r (p u )τ r (p v ) for every prime p. Let A(w) be the set of rtuples such that a 1 + • • • + a r = w. We simply want to build an injective map from A(u + v) into A(u) × A(v). There are several way to achieve that, and for instance, we can associate to (a

1 , • • • , a r ) ∈ A(u + v) the two r-tuples (a 1 , • • • , a r ) ∈ A(u) and (a 1 -a 1 , • • • , a r -a r ) ∈ A(v)
where

a 1 = min(a 1 , u), a 2 = min(a 2 , u -a 1 ), a 3 = min(a 3 , u -a 1 -a 2 ), • • • • • • a r = min(a r , u -a 1 -a 2 -• • • -a r-1 ). Lemma 13 We have n≤N τ r (n) 2 /n ≤ n≤N 1/n r 2 .
Proof. Indeed and on using Lemma 12, we find that

n≤N τ r (n) 2 n = n≤N τ r (n) n n 1 n 2 •••nr=n 1 ≤ n 1 n 2 •••nr≤N τ r (n 1 )τ r (n 2 ) • • • τ r (n r ) n 1 n 2 • • • n r ≤ n≤N τ r (n)/n r ≤ n≤N 1/n r 2
and the Lemma readily follows.

The following Lemma is not essential but will help in keeping our estimates explicit, and thus, hopefully, more understandable.

Lemma 14 For 300 ≤ a ≤ b, we have

a<p≤b (1 -1/p) -1 ≤ 1.04(Log b)/ Log a.
Proof. We use inequalities (3.25) and (3.28) from [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF], to get that

a<p≤b (1 -1/p) -1 ≤ c 1 (Log b)/ Log a with c 1 = 1 + 1 2 Log 2 b 1 - 1 2 Log 2 a -1 .
A numerical application concludes.

Let us recall the following lemma (this is th 01 of [START_REF] Hall | Divisors[END_REF]):

Lemma 15 Let H be a non-negative multiplicative function verifying

(1) p≤y H(p) Log p ≤ αy for y ≥ 0, (2) p a≥2 H(p a )p -a Log(p a ) ≤ β. Then, for x > 1, we have n≤x H(n) ≤ (α + β + 1) x Log x n≤x H(n)/n.
We use it to prove:

Lemma 16 For r ≥ 1 and z ≥ 300, we have

n≤N τ r (n) ≤ N 3 r (Log N ) r /(Log z) r , and n≤N τ r (n) n ≤ 3 r (Log N ) r+1 /(Log z) r .
This Lemma gives the correct order of magnitude in N and z.

Proof. To use Lemma 15, note that τ r (p) = while τ r (p a ) = r-1+a r-1 . This leads to

a≥2 τ (p a )p -a Log(p a ) = Log p p a≥2 r r + a -1 r p -(a-1) = Log p p r 1 (1 -p -1 ) r+1 -1 ≤ Log p p 2 r(r + 1) (1 -p -1 ) r+1 ≤ r(r + 1)2 r+1 Log p p 2 .
As a consequence, we reach

n≤N τ r (n) N Log N 2 r r 2 z<p≤X (1 -1/p) -r ≤ N Log N r 2 (2.08) r δ -r
where we used Lemma 14 to estimate the product over the primes. We conclude by noticing that r 2 (2.08) r ≤ 3 r . The second estimates follows readily from the above lines.

Lemma 17 Let m ≤ M be an integer with no prime factor ≤ z. The following upper bound holds true for in K or in H:

L( )(m) ≤ τ (m) e Log m 2ν 2ν /w( ).
(Replace w( ) by w( ) in case ∈ H).

Proof. Indeed, we have to write m as a product

m = 1≤i≤ν 1≤j≤ i m i,j
where 1 , 2 , • • • , 2ν define and thus verify

1≤i≤2ν i i = 2ν, 1≤i≤2ν i = ≤ ν.
Since Log 1 = 0, we have to count only the m i,j 's that are > 1 and thus ≥ z.

We set m i,j = z α i,j so that

(Log z) -2ν L( )(m)/τ (m) ≤ 1≤i≤2ν 1≤j≤ i α i i,j = exp 1≤i≤2ν 1≤j≤ i i Log α i,j
and we should maximize the sum containing the Log α i,j 's under the conditions

α i,j ≥ 1, i,j α i,j = A ≤ (Log m)/ Log z.
We can use Lagrange multipliers, forgetting the individual lower bounds, and prove that we should have α i,j = i/λ for a fixed λ. We readily discover that λ = 2ν/A and thus that

L( )(m)/τ (m) ≤ Log m 2ν 2ν i i i i ≤ Log m 2ν 2ν i (e i i!) i
since Lemma 9 implies that (i/e) i ≤ i!. We conclude easily.

When using the above Lemma, we will replace Lemma 7 by the following one, which we prove in the same way:

Lemma 18

2ν k∈K |c(k)| + ν 2 h∈H |c(h)| ≤ (ν + 2)2 2ν-1 .

Inter-relations between different error terms

Our aim is to derive estimates for

n≤X/d w(n)f (dn)
where w is a weight to be precised. When this weight is intricate, obtaining the main term for the above sum in terms of similar expression for f is difficult, hence the introduction of f 0 . Recall that f = f -Vσ(z) Vσ 0 (z) f 0 .

If g is a C 1 -function over [1, X], we define

g 1 = X 1 |g (t)|dt, g ∞ = max 1≤t≤X |g(t)|, g = max( g 1 , g ∞ ). (20)

Smooth weights

Lemma 19 When w is a C 1 -function over [1, X], we have 

     R z (w, f , D, r) ≤ 3 w R z (1, f , D, r), R z (w, f , D, r) ≤ 3 w R z (1, f , D, r).

Divisor-like weights

Let w 1 , . . . , w k be k C 1 -functions over [1, X]. We consider the weight w = w 1 • • • w k . We put w = w 1 . . . w k .

Lemma 20 We have, when 

1 ≤ D ≤ X, R z (w, f , X(D/X) k , r) ≤ 3(2 k -1) • R z (1, f , D, r + k -1) w , R z (w, f , X(D/X) k , r) ≤ 3(2 k -1) • R z (1, f , D, r + k -1) w Proof. Put D(w) = X(

Now note that

τ r |w|( ) ≤ w 1 ∞ . . . w k-1 ∞ τ r+k-1 ( )
so that our remainder term is not more than

3 w k w 1 . . . w k-1 +2(2 k -1) w 1 . . . w k-1 w k ∞ R z (1, f , D, r+k-1)
from which the first inequality of the Lemma follows readily. The proof of the second inequality is similar.

Sieve weights

We first need a Lemma to connect σ(d) and σ 0 (d).

Lemma 21 When ∆ ≤ (e + erδ) -1/δ , where ∆ is defined in (5), we have

d≤X τ r (d)|σ(d) -σ 0 (d)| ≤ 2∆(e + erδ) 1/δ (c/δ) r
Proof. We get the following inequality by mimicking the proof given section 15 of [START_REF] Friedlander | Bombieri's sieve[END_REF]: Notice that, by Lemma 11 and on noticing that a ≤ 1/δ:

|σ(d) -σ 0 (d)| ≤
τ r (p a ) = r -1 + a r -1 ≤ (e + erδ) 1/δ /2.
We furthermore write

max(σ(d), σ 0 (d)) ≤ |σ(d) -σ 0 (d)| + σ 0 (d) so that U r (|σ -σ 0 |) ≤ ∆(e + erδ) 1/δ U r (|σ -σ 0 |) + ∆(e + erδ) 1/δ U r (σ 0 ).
Our bound on ∆ enables to infer from the above that

U r (|σ -σ 0 |) ≤ 2∆(e + erδ) 1/δ U r (σ 0 ).
Next we write

U r (σ 0 ) ≤ z<p≤D (1 + a≥1 σ 0 (p a )) r ≤ (c/δ) r (21) 
by (H 5 ) and the Lemma follows readily.

Let z ≥ 1 be a real number and P (z) = P (z, f) = * p≤z p. We take w(n) = 1 when (n, P (z)) = 1 and 0 otherwise. We first recall a well-known Lemma (cf for instance [START_REF] Friedlander | On Bombieri's asymptotic sieve[END_REF]Lemma 5]).

Lemma 22 (Fundamental Lemma) Let M ≥ 2 and z ≥ 1 be two real parameters. There exist two sequences (λ + m ), (λ - m ) with the following properties:

λ + 1 = λ - 1 = 1, |λ + m |, |λ - m | ≤ 1, λ + m = λ - m = 0 when m > M .
For any n for which (n,

P (z)) = 1, m|n λ - m ≤ 0 ≤ m|n λ + m , while m|n λ - m = m|n λ + m = 1 when (n, P (z)) = 1. For any multiplicative function σ verifying 0 ≤ σ < 1 and * v≤p≤u (1 -σ(p)) -1 ≤ cLog u Log v (2 ≤ v ≤ u), (22) 
we have

m|P (z) λ + m σ(m) ≤ (1 + C 0 (c)e -(Log M )/ Log z ) * p≤z (1 -σ(p)), m|P (z) λ - m σ(m) ≥ (1 -C 0 (c)e -(Log M )/ Log z ) * p≤z (1 -σ(p)),
where C 0 (c) is a number which depends only on the constant c.

Lemma 23 For D 0 ≥ Dz and when ∆(e + erδ)

1/δ ≤ 1/2, the quantity R z (1, f , D, r) is not more than R(f, D 0 , r + 1) + V σ (z) V σ 0 (z) R(f 0 , D 0 , r + 1) + 2C 0 (c)e -Log D 0 /D Log z F (X) + 2∆(e + erδ) 1/δ V σ (z) (c/δ) r F (X).
Proof. We employ a sieve of level M = D 0 /D ≥ z to get

± n≤y/d f (dn) ≤ * n≤y/d m|n λ ± m f (dn) = m|P (z) λ ± m σ(dm)F (y) + r dm (f, y) .
We find that

d≤D 0 /M τ r (d) m|P (z) λ ± m r dm (f, y) ≤ * ≤D 0 τ r+1 ( ) max y≤X |r (f, y)| = R(f, D 0 , r + 1). Furthermore n≤y/d f (dn) = σ(d)V σ (z)F (y)(1 + O * (C 0 (c)e -Log M Log z )) + O * m≤M m|P (z)
|r dm (f, y)| , and a similar estimate holds for f 0 . To compare both, we use Lemma 21 and bound

n≤y/d f (dn) - V σ (z) V σ 0 (z) n≤y/d f 0 (dn) by |σ(d) -σ 0 (d)|V σ (z)F (y) + σ(d) + σ 0 (d) V σ (z)F (y)C 0 (c)e -Log M Log z + m≤M m|P (z) |r dm (f, y)| + V σ (z) V σ 0 (z) m≤M m|P (z)
|r dm (f 0 , y)|.

The first sum over d is treated in Lemma 21, while we treat the two next ones as in (21). The Lemma follows readily.

Let D be a parameter to be chosen later and such that 1 ≤ D ≤ D 0 /z. We then take T = X(D/X) ν , use Lemma 24, hypothesis (H 2 ) and (H 4 ). Note that L( ) = (Log X) 2ν . We get that the difference

S 1 (f, T, ) - V σ (z) V σ 0 (z) S 1 (f 0 , T, )
is not more in absolute value than

3•2 +1 F (X)(Log X) 2ν A 2 Log X + C 0 (c)e -Log D 0 D Log z + ∆(e + e δ) 1/δ V σ (z) (c/δ) + -1
where it is worthwhile recalling that ≤ ν. Summing over and using Lemma 7, we get a remainder term which is not more than

3 • 2 2ν (ν + 2) F (X)(Log X) 2ν-1 V σ (z) V σ 0 (z) × A 2(V σ (z)/V σ 0 (z)) + C 0 (c)e -Log D 0 /D Log z + ∆(e + e δ) 1/δ V σ 0 (z) Log X (c/δ) 2ν-1
We invoke Lemma 8 and (H 2 ) together with Lemma 9 to get the majorant

MT • (37ν 2 ) ν Ac 2 + C 0 (c)e -Log D 0 /D Log z + ∆(e + eνδ) 1/δ (c/δ) 2ν (25) since 3 ν+2 ν (4ν/e) 2ν e 1 24
√ πν ≤ (37ν 2 ) ν .

5.2

Error term due to truncation: from S 2 (f, T, ) to S 2 (f 0 , T, )

We have to approximate

S 2 (f, T, ) = m≤X/T L( )(m) T <n≤X/m τ (n)f (mn) (26) 
by Vσ(z) Vσ 0 (z) S 2 (f 0 , T, ). We can use Lemma 24, hypothesis (H 2 ) and (H 4 ) to get

S 2 (f, T, ) - V σ (z) V σ 0 (z) S 2 (f 0 , T, )
in not more in absolute value than

3 • 2 +2 F (X) Log X T 2ν V σ (z) V σ 0 (z) × Ac 2 Log 2 Log X + C 0 (c)e -Log D 0 /D Log z + ∆(e + e δ) 1/δ V σ 0 (z) (c/δ) + -1 (27) 
provided that X(D/X) ν ≥ X/T . This will be ensured by T 2 ≥ X. We follow the same path as above, and get the very same majorant (see (25)) but multiplied by

2 Log(X/T ) Log X 2ν ≤ 2(1/2) 2ν ≤ 1/2. ( 28 
)
5.3 Error term due to truncation: bounding S 2 (f 0 , T, )

Our last task consists in finding an upper bound for S 2 (f 0 , T, ) defined in (26). On using hypothesis (H 1 ), we can bound above f 0 by B 0 F (X)/X, so that we are reduced to finding an upper bound for S 2 (1 1, T, ) (and subsequently multiply it by B 0 F (X)/X). We follow an easy path, by using Lemma 16 (since X/m is at least T ≥ √ X), followed by Lemma 17:

S 2 (1 1, T, ) ≤ 2 • 3 X δ Log X m≤X/T L( )(m)/m ≤ 2 • 3 X δ Log X e Log(X/T ) 2ν 2ν 3 Log +1 (X/T ) (δ Log X) /w( ) ≤ 17 Log 3 (X/T ) ν 2 δ 2 Log X ν /w( )
since ≤ ν, and where, as usual, one should replace w( ) by w( ) in case belongs to H. We then use Lemma 6 to sum over and get a total contribution of all S 2 (f 0 , T, )'s which is not more than

B 0 F (X) Log 1+ν X (ν + 2)2 2ν-1 17 ν Log 3 (X/T ) ν 2 δ 2 Log X ν ≤ c 2 • B 0 MT • Log 3 (X/T ) δ 2 Log 3 X ν (29) 
where the constant is, by Lemma 9,

c 2 = π/ν(2/e) 2ν e 1/(24ν) 17 ν ≤ 31 ν .

Choice of the parameters to prove Theorem 1

On taking T = X(D/X) ν , we derive an equality of the shape

Σ ν (f, X) = V σ (z) V σ 0 (z) Σ ν (f 0 , X) + (ρ + ρ) • MT R(f, D 0 , 2ν) 2 ≤ d≤D 0 τ 2ν (d) 2 d -1 * d≤D 0 max y≤X d|r d (f, y)| 2 ≤ C F (X) d≤D 0 τ 2ν (d) 2 d -1 * d≤D 0 max y≤X |r d (f, y)|
We use Lemma 13 and note that n≤x 1/n ≤ 2 Log x as soon as x ≥ e, to reach

A = C(2 Log X) 4ν 2 A ( 34 
)
which indeed is what we have announced.

7 Removal of the preliminary sieving: proof of Theorem 2

In this section, we give an upper bound for

n≤X (n,P (z)) =1 Λ (2ν) (n)g(n) + n≤X (n,P (z)) =1 Λ (ν) Λ (ν) (n)g(n) ( 35 
)
when g is f or f 0 . We use (H 8 ), δ Log X ≥ (2ν + 1) and z ≥ e 2ν+1 .

The argument is fairly simple. For the first sum we use the fact that it contains few summands. As for the second one we proceed in three steps. We write n = p h m with p ≤ z and distinguish several cases: when n ≤ X 1/2 , we use a maximum for f and f 0 ; we proceed also in this way when m is a power of a prime ≤ X 1/2 . However, when n = p h m > X 1/2 with m prime > X 1/2 (and thus p h ≤ X 1/2 ) we have to be more cautious since taking the maximum on f will not be enough in applications: a typical example is when f is the characteristic function of an arithmetic progression modulo q where using a maximum would loose a factor q.

To keep our estimates precises, we shall use two results of [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF] : ψ(X) ≤ 1.04X for all X > 0 ((3.35) of the aforementioned paper) and (see (3.24) and (3.6) therein) :

p≤X Log p p < Log X, π(X) ≤ 1.26X/ Log X (X ≥ 1). ( 36 
)
Here is another preliminary estimate :

Lemma 25 We have h≥1 h ν-1 p h-1 ≤ (ν -1)! (1 -1/p) ν ≤ 2 ν (ν -1)! Proof. Put β h = h ν-1 /[h(h + 1) . . . (h + ν)] ≤ 1. We have h≥1 h ν-1 p h-1 ≤ max h≥1 (β h ) k≥0 (k + 1) . . . (k + ν -1) p k ≤ (ν -1)! (1 -1/p) ν
hence the result.

The part with the primes

We first have

p≤z h≤ Log X Log p (Log p) 2ν h 2ν-1 ≤ p≤z (Log p) 2ν 1 2ν 2 Log X Log p 2ν ≤ 1.26 • 2 2ν-1 (Log X) 2ν z Log z .
We divide this estimate by (2ν -1)! and use Lemma 8. This gives us an error term of size at most

MT • B • c 2 • 1.26 Log 2 2 2ν z F (X)δ . (37) 
An appeal to (H 8 ) reduces this term to

MT • B • c 2 • 1.26 Log 2 2 2ν δ ν Log X √ X(2ν + 1) ≤ 0.001 MT B c 2 (4δ) ν . ( 38 
)
7.2 The bilinear part: small n's

First note that by Lemma 25

p≤z h≤ Log X 2 Log p (Log p) ν h ν-1 m≤ √ X/p h Λ(m)(Log m) ν-1 ≤ 1.26( 1 2 Log X) ν-1 √ X p≤z (Log p) ν p h≤ Log X 2 Log p h ν-1 p h-1 ≤ 1.26( 1 2 Log X) ν-1 √ X p≤z (Log p) ν p (ν -1)! (1 -1/p) ν ≤ 2.52(ν -1)! √ X(Log X) ν-1 (Log z) ν .
This gives us (use Lemma 8) an error term of size at most

MT • B • c 2 • 5.04 Log 2 (2ν)! 2 ν! √ Xδ ν F (X) . (39) 
An appeal to (H 8 ) and to Lemma 9 reduces this term to

MT • B • c 2 • 5.4(4νδ 2 /e) ν /z ≤ 0.01 • MT • B • c 2 (νδ) ν . ( 40 
)
7. [START_REF] Daboussi | Brun's fundamental lemma and exponential sums over primes[END_REF] The bilinear part: m's with a small prime factor

Next, we have

p≤z h≤ Log X Log p (Log p) ν h ν-1 p ≤ √ X k≤ Log X Log p (Log p ) ν k ν-1 ≤ p≤z 2 Log X Log p ν (Log p) ν p ≤ √ X 2 Log X Log p ν (Log p ) ν ≤ (2 Log X) 2ν-2 8 • (1.26) 2 z √ X/δ.
We divide this bound by (ν -1)! 2 and invoke Lemma 10. We next appeal to (H 8 ), Lemma 8 and δ Log X ≥ (2ν + 1) to obtain an error term of size at most

2MT • B • (1.26) 2 c 2 Log 2 • 2 2ν-1 2 √ ν2 2ν δ ν 2ν + 1 ≤ MT • B • c 2 • (16δ) ν . ( 41 
)
7. [START_REF] Daboussi | Explicit upper bounds for exponential sums over primes[END_REF] The bilinear part: m a large prime

We are left with

p h ≤ √ X p≤z (Log p) ν h ν-1 √ X<p ≤X/p h (Log p ) ν f (p p h ) ( 42 
)
where we can simply use an upper sieve up to X 1/4 ≤ D 0 / √ X. This means we invoke the Fundamental Lemma (Lemma 22) with M = z = X 1/4 , σ = σ and we include p inside f. The constante c = c is unchanged. Hypothesis (H 4 ) is of course more than enough for such a simple task. The quantity in (42) is thus bounded above by: (Log X) 2ν R(f, D 0 , 1)

+ (Log X) ν p h ≤ √ X (Log p) ν h ν-1 σ(p h ) V σ (X 1/4 ) 1 -σ(p) F (X)(1 + C 0 (c)).
Hypothesis (H 1 ) implies, on taking u = v = p, that (1 -σ(p)) -1 ≤ c. Now invoke (H 6 ) and (H 2 ) and get that the above is at most

(Log X) 2ν R(f, D 0 , 1) + 2 2-ν (Log X) ν V σ (X 1/4 ) p≤z Log ν p p h≥1 h ν-1 p h-1 c 2 F (X)(1 + C 0 (c)). ( 43 
)
The treatment of V σ (X 1/4 ) is different from the one for V σ 0 (X 1/4 ). For this latter we have (H 7 ) at our disposal, and Vσ(z) Vσ 0 (z) comes from the factor in front. For σ, we first extract Vσ(z) Vσ 0 (z) and are left with

V σ 0 (z) z<p≤X 1/4 (1 -σ(p)) ≤ V σ 0 (X 1/4 ) exp z<p≤X 1/4 σ 0 (p) -σ(p) 1 -σ 0 (p) . (44) 
On appealing to (H 1 ) and recalling (5), we get via (H 7 ):

V σ (X 1/4 ) ≤ V σ (z) V σ 0 (z) ce c∆ Log X . (45) 
As a conclusion, these estimates introduce a factor u = c (for σ 0 ) and u = ce c∆ (for σ).

We use Lemma 25 for the sum over h and reach the upper bound

2 1-2ν (Log X) 2ν-1 R(f, D 0 , 1) + 2 2 (Log X) ν-1 (Log z) ν (ν -1)!c 2 u F (X)(1 + C 0 (c))
or also after dividing by (ν -1)! 2 (use Lemma 8)

2 1-2ν (ν -1)! 2 (Log X) 2ν-1 R(f, D 0 , 1) + MT 4uc 2 (2ν -1)! (ν -1)! (1 + C 0 (c))δ ν .
This is not more by Lemma 9 than

2 1-2ν (ν -1)! 2 (Log X) 2ν-1 R(f, D 0 , 1) + MT 8uc 2 e 1/24 (4νδ/e) ν (1 + C 0 (c)) 2 1-2ν (ν -1)! 2 (Log X) 2ν-1 R(f, D 0 , 1) + MT 9uc 2 (2νδ) ν (1 + C 0 (c

)). (46)

Lemma 27 There is a positive constant c such that, for X ≥ 3 and

X ≥ f ≥ 1, one has * n≤X Λ (κ) (n) = F κ (X) (κ -1)! (1 + O( L c )) provided 2κ ≤ Log X.
Proof. Indeed when κ ≥ 2 we have, since Log κ-

1 n = F κ (n) * n≤X Λ(n) Log κ-1 n = ψ * (X) Log κ-1 X - X 1 ψ * (t) F κ (t)dt where ψ * (X) = n≤X, (n,f)=1 Λ(n) = ψ(X) + O(ω(f) Log X).
We thus reduce the expression above to the case f = 1 up to an error term of order O(ω(f) Log κ X). We recall that there exists c 1 > 0 such that (see [START_REF] Iwaniec | Analytic number theory[END_REF]Corollary 8.30]) , when y ≥ 10,

ψ(y) = y + y exp -c 1 Log 3/5 y Log Log 1/5 y . (52) 
This leads to, for a positive constant c 2 ,

√ X<n≤X Λ(n) Log κ-1 n = X Log κ-1 X - X √ X t F κ (t)dt + O( √ X Log κ-1 X + X L c 2 Log κ X .
The first O-term is of lower order than the second one. On using the conditions κ ≤ Log X and f ≤ X, we reach

* n≤X Λ(n) Log κ-1 n = X Log κ-1 X - X 1 t F κ (t)dt + O X L c 2 Log κ X .
The main term is indeed F κ (X) and Lemma 26 enables us to put this main term in factor.

Lemma 28 When ν 1 and ν 2 are positive integers we have, for X ≥ 1:

X 1 F ν 1 (X/t) F ν 2 (t)dt (ν 1 -1)!(ν 2 -1)! = F ν 1 +ν 2 (X) (ν 1 + ν 2 -1)! .
Proof. We appeal to Lemma 26 with κ = ν 1 to get that the LHS above, say E, is

E = X 1≤k≤ν 1 (-1) k-1 (ν 1 -1)! (ν 1 -k)! X 1 Log ν 1 -k (X/t) Log ν 2 -1 t dt t + (-1) ν 1 (ν 1 -1)! F ν 2 (X). The inner integral is (Log X) ν 1 +ν 2 -k (ν 1 -k)!(ν 2 -1)!/(ν 1 + ν 2 -k)! (this is for instance [5, (2.7)]
). This gives us

E = X 1≤k≤ν 1 (-1) k-1 (ν 1 -1)!(ν 2 -1)! (ν 1 + ν 2 -k)! (Log X) ν 1 +ν 2 -k + (-1) ν 1 (ν 1 -1)! F ν 2 (X).
We use Lemma 26 with κ = ν 2 and check (by using the same Lemma with this time

κ = ν 1 + ν 2 ) that the RHS is F ν 1 +ν 2 (X)(ν 1 -1)!(ν 2 -1)!/(ν 1 + ν 2 -1)!, as required.
Lemma 29 There is a positive constant c such that, for X ≥ 3 and

X ≥ f ≥ 1, one has * n≤X Λ (2ν) (n) + * n≤X Λ (ν) Λ (ν) (n) = 2 F 2ν (X) (2ν -1)! (1 + O( L c )) provided 4ν ≤ Log X.
Proof. We invoke Lemma 27 and check that, for a positive c 3 :

* ≤ √ X, m≤X/ Λ (ν) ( )Λ (ν) (m) = * ≤ √ X Λ (ν) ( ) F ν (X/ ) (ν -1)! (1 + O( L c 3 )).
On using Lemma 26 together with Lemma 9, we readily check that the remainder term is

X Log 2ν-1 X (ν -1)! 2 L c 3 F 2ν (X) (2ν -1)! L c 4
for some positive c 4 . The main term reads

* ≤ √ X Λ (ν) ( ) F ν (X/ ) (ν -1)! = X 1 * ≤min(X/t, √ X) Λ (ν) ( ) F ν (t)dt/(ν -1)!
which up to an admissible error term equals

X 1 F ν (min(X/t, √ X)) F ν (t)dt/(ν -1)! 2 .
comes from the first part of the error term in Theorem 2:

|ρ| ≤ (56ν 2 ) ν 2 q z (2 Log X) 2ν + C 0 (c)(c 2 δ 3 ) ν .
Finally θ depends on δ and is bounded by (recall that D

0 = X 1-δ ) |θ| 2 q X δ (2 Log X) 2ν + C 0 (c)(56c 2 ν 2 δ 3 ) ν + q(200ν 2 δ Log(1/δ)) ν .
This leads to

|ρ| + |θ| q X δ (112ν Log X) 2ν + q(200ν 2 δ Log(1/δ)) ν
provided δ be small enough. Our hypotheses imply that ν ≤ 1 112 Log X when X is large enough. This enables us to reduce the above bound to

|ρ| + |θ| qX -δ Log 3ν X + qδ -ν/2 q exp -1 2 δ Log X + qδ -ν/2 .

An oscillatory function

We want to study g a (n) = e(nα) with α = a q + β, (a, q) = 1. We take f = q and assume |D 0 qβ| ≤ 1 2 . We notice that, when (d, f) = 1 and d ≤ D 0 :

n≤y/d (n,q)=1 g a (dn) = µ(q) q y d e(yβ) -1 2iπyβ + O(q 2 /φ(q)) = G(y) d + O(q 2 /φ(q)). (55) 
Proof. Indeed, we treat the condition (n, q) = 1 via the Moebius function:

n≤y/d (n,q)=1 g a (dn) = δ|q µ(δ) m≤y/(dδ) (n,q)=1 g a (dδm) = µ(q) m≤y/(dq) (n,q)=1 g a (dqm) + O δ|q, δ =q µ 2 (δ)/ ad + βdq q/δ .
The O-tem is O(q 2 /φ(q)). The main term does not depend on a anymore, but we should still separate y and d. We achieve that in two steps. We first write this main term as follows:

e βdq[y/(dq)] -1 e(βdq) -1 = e(βy) -1 e(βdq) -1 + e(βy) e(βdqη) -1 e(βdq) -1 have been properly tailored; this part is almost entirely copied from [START_REF] Friedlander | Bombieri's sieve[END_REF]. We select the following parameters:

f = 1, σ(d) = 1 1 (d,N )=1 φ(d) , f 0 (n) = 1, σ 0 (d) = 1 d , F (X) = X, F (y) = y.
This enables us to take B 0 = 1. We consider the hypothesis: with the aim of producing an asymptotic formula for the weighted representation number

R ν (N ) = n+m=N Λ(n)(Λ (2ν) + Λ ν Λ ν )(m). ( 56 
)
Bombieri [START_REF] Bombieri | On twin almost primes[END_REF] considered a similar question for the problem of twin primes and with δ tending to zero; Iwaniec & Friedlander in [START_REF] Friedlander | On Bombieri's asymptotic sieve[END_REF] extended this work in several directions, and in particular were able to handle the problem of uniformity to produce a similar result in the case of Goldbach's conjecture.

In both cases, the asymptotic formula is obtained by letting δ go to zero. The result we state below has this same feature, but we can increase ν to get a better error term, thus allowing larger δ's. Let us recall that Chen [START_REF] Chen | On large odd numbers as sum of three almost equal primes[END_REF] proved that every large enough integer is indeed a sum of a prime and an integer having at most two prime factors, but his method, or any subsequent improvement (see for instance [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF]), are not able to produce any asymptotic.

We define also

S(N ) = 2 p|N, p>2 p -1 p -2 p>2 1 - 1 (p -1) 2 .
(

57)

Corollary 32 There exists a constant c > 0 such that, for any large enough even integer N and when (H 10 ) holds for some small enough δ > 0 and some ν ≥ 1, we have

R ν (N ) = 2 F 2ν (N )S(N ) (2ν -1)! 1 + O( L c + √ A + (ν 4 δ) ν/2 )
provided that δ > 100/ Log N , ν 2 δ Log(1/δ) ≤ 1/8, A ≥ N -δ/2 .

Proof. We note that (H 1 ) is verified for some constant c > 0 independent of N : the coprimality condition at most diminishes the product v≤p≤u (1 -σ(p)) -1 . Hypotheses (H 2 ), (H 5 ) and (H 7 ) hold true since, this time, σ 0 does not depend on N . Hypothesis (H 9 ) follows on one side from the Brun-Titchmarsh Theorem (see [START_REF] Montgomery | The large sieve[END_REF] for instance) with C = O(Log Log N ) and on the other side from (H 10 ) with any A chosen so that

A ≥ A (11 Log N ) -5ν 2 + p|N,p =2 p p -2 N -δ Log 2 N.
Since we suppose N large enough, we can assume that δ Log N ≥ 2 66 δ Log(1/δ) Log Log N which ensures us that 11(5ν 2 + 4) Log Log N ≤ 1 2 δ Log N . This implies that A ≥ N -δ/2 ≥ (11 Log N ) 5ν 2 +4 N -δ . As a consequence, we can take A = 2A (11 Log N ) -5ν 2 . It is thus enough to have A (2/11) 5ν 2 A . We finally take A = c 1 (56ν 2 ) -ν √ A for a suitable constant c 1 > 0. The reader will check that (see [8, (2.4)]) ∆ (Log N )/N δ .

Hypothesis (H 6 ) is trivial to verify in our case, and (H 8 ) holds true with B = Log N (we defined f on the integers n < N only but readily extend it by 0 out of this range). We are thus in a position to use Theorem 2. The quantity * ν (f 0 , N ) is evaluated in Lemma 29. The quotient Vσ(z) Vσ 0 (z) is given by

V σ (z) V σ 0 (z) = 2 2<p≤z 1 - 1 p -1 1 - 1 p -1 2<p≤z, p|N 1 - 1 p -1 -1 = S(N ) + O δ -1 + Log Log N N δ = S(N ) + O √ A .
We further have, following notations of Theorem 2:

|ρ| + |θ| √ A + (56ν 2 ) ν δ 5ν + 4 1/δ ∆ (c/δ) 2ν + (200ν 2 δ Log(1/δ)) ν Log N.
The assumption δ > 2/ √ Log N ensures that 4 1/δ ∆ < e 1/δ ≤ e 5/(8νδ) ≤ δ 5ν when N is large enough. When δ is small enough, we reach At this level, we have proved the estimate of the Corollary with a (ν 4 δ) ν/2 Log N instead of a (ν 4 δ) ν/2 . This additional Log N is due to our simplistic hypothesis

y≤X

  |r d,z (w, y)| = R z (w, f , D, r), d≤D τ r (d) max y≤X |r d,z (w, y)| = R z (w, f , D, r).

Proof. By summation by parts we get 1 |w

 1 (t)|dt max t≤X |r d,z (1, t)| as required.

  D/X) k . We use induction over k ≥ 1. The case k = 1 is treated in Lemma 19. Let us prove Lemma 20 to hold for k if it holds for k -1. We put w = w 1 • • • w k-1 and apply Dirichlet hyperbola formula to get, with M N = y/d, f (dmn). Assuming dN ≤ D and dM ≤ D(w), we get r d,z (w w k , y) = n≤N w(n)r dn,z (w k , y)+ m≤M w k (m)(r dm,z (w, y)-r dm,z (w, N dm)) We take M = D(w)/d and get * d≤D(w w k ) τ r (d) max y≤X |r d,z (w w k , y)| ≤ * d≤D(w w k ) τ r (d) * n≤X/D(w) |w(n)| max y≤X |r dn,z (w k , y)| + 2 * d≤D(w w k ) τ r (d) * m≤D(w)/d |w k (m)| max y≤X |r dm,z (w, y)| which in turn is not more than * ≤D τ r |w|( ) max y≤X |r ,z (w k , y)| + 2 * ≤D(w) τ r |w k |( ) max y≤X |r ,z (w, y)|.

  a ) -σ 0 (p a )| max(σ(d/p a ), σ 0 (d/p a )).We then writeU r (|σ -σ 0 |) = d≤D τ r (d)|σ(d) -σ 0 (d)| ≤ d≤D τ r (d)p a d |σ(p a ) -σ 0 (p a )| max(σ(d/p a ), σ 0 (d/p a )) ≤ ∆ max τ r (p a ) d≤D/z τ r (d) max(σ(d), σ 0 (d)).

  ; d, N ) -X φ(d) ≤ A N (11 Log N ) -5ν 2 -2 (H 10 )

2 δ

 2 Log(1/δ)) ν Log N √ A + (ν 4 δ) ν/2 Log N

Divisor-like weights with preliminary sieving

Let w 1 , . . . , w k be C 1 -functions over [1, X]. We consider the weight w = w 1 • • • w k .

Lemma 24 If D 0 /D ≥ z and when ∆(e + erδ) 1/δ ≤ 1/2, then the remainder term R z (w, f , X(D/X) k , r) is not more than

Proof. We combine Lemma 20 and Lemma 23.

Proof of Theorem 1

Recall that Σ ν (f, X) denotes the sum Σ * ν (f, X) when f = p≤z p. We use the following succession of approximations

Evaluation of the truncated sums

We have to approximate

by Vσ(z) Vσ 0 (z) S 1 (f 0 , T, ). In doing so, we get a remainder term which is not more than

where we expect ρ to be o(1). We have precisely (see ( 25) and ( 28)

Let us gather the hypotheses on z, T and D :

We write

which gives Log D = (1 -ϕ) Log X and the conditions are

We infer from the above the following somewhat simplified upper bound for |ρ|:

Since ∆ will be typically extremely small, we concentrate on the other terms.

We take ϕ = 6νδ Log(1/δ) (32)

provided that

and we further simplify the expression by using e+e/4 ≤ 4. Lemma 23 implies also a condition on ∆ which we simplify in a similar manner. Note finally that

6 Simplifying (H 4 )

We prove that (H 9 ) implies (H 4 ). To achieve that in the simplest manner use Hölder's inequality:

Combining all that

We add up the contribution of f and of f 0 . The error term is not more than (θ 1 + θ 2 )MT where (adding (38), (40), (41) and ( 46))

and by Lemma 10

We finally use 1 4 ≥ νδ ≥ 2ν/ Log X to reach

8 Examples

The following three examples are standard. It is better to start with two preliminary Lemmas. They require two definitions. First, we set for any integer κ ≥ 1

and second, we define

An integration by parts yields:

Lemma 26

Proof. We check this formula by recursion. Indeed, it holds when κ = 1 and we easily check that

. We obtain the order of magnitude by first noticing that the series is alternated. Secondly, when κ is even and we are looking for a lower bound, the last term can be discarded, while, when κ ≥ 3 is odd and we are again searching for a lower bound, we can join this last term with the term with k = κ. We proceed similarly for the upper bound and deal directly with κ = 1, 2, 3.

We use Dirichlet hyperbola principle and the estimates above to infer that * n≤X

We integrate one X √ X • • • by parts, change t by X/t and finally check that the main term above is

by Lemma 28. This concludes the proof.

Primes in progressions

We take f (n) = 1 when n ≡ a[q] (where (a, q) = 1) and f (n) = 0 otherwise. Then we select f = q. We select f 0 (n) = 1/φ(q) when (n, q) = 1 and f 0 (n) = 0 otherwise. This gives us σ(d) = σ 0 (d) = 1/d (so that ∆ = 0), furthermore F (X) = F (X) = X/q, B 0 = q/φ(q) and c is bounded. We easily get:

This leads to

Corollary 30 There exists a positive constant c such that

and δ is small enough.

Proof. We write the error term as ε + ρ + θ. where the second summand on the RHS is again O(1). This proves our claim.

We apply Theorem 1 to the functions 1 + g a , 1 + g a and 1, the model function for g a being g 1 . In these three cases, we proceed as for (54) and get

and we take F (X) = X and B 0 = 2. We thus get the same results as in the preceding case, save that A is to be multiplied by O(q/φ(q)). This leads in this case to

on assumptions very similar to the ones of Corollary 30, namely:

To remove the model g 1 , we sum Σ ν (g a , X) over a modulo q (but invertible modulo q) and majorize the resulting sum by taking β = 0 therein and appealing to Lemma 29. Let us state formally:

Corollary 31 Let α = (a/q) + β. We have

and δ is small enough.

Representation of an integer as a sum of a prime and product of two primes

Our result is also adapted to the Goldbach problem by selecting f (n) = Λ(Nn). This example is interesting since it shows that our hypotheses on σ and σ 0 on the maximum of f in (H 8 ). In fact, we have here F (X) ≥ z √ Xδ -ν Log X (since X is N here); f 0 is bounded by 1. As for f , the estimates (38), (40) still hold divided by Log X, while we can sieve more efficiently to reach both (41) and (46) multiplied by an additional factor of order S(N )/ Log N .

Proof of Theorem 3

We first note that a bound for S(Λ (k) ; α) (notation defined in ( 6)) yields directly a bound for S(Λ; α) by

We then write S(Λ (2ν) ; α) as

where we have taken f = 1. This does not change anything in the bounds given for Σ ν (e(nα), X) given in Corollary 31. We first reduce the last summand of (59).

Lemma 33 Let T be a real number ≥ √ X and not more than X/2. Let ν ≥ 1 be an integer. We have for X ≥ 10

Proof. We do not assume X ≥ exp(50) for the estimates that follow. We have

since ψ(X) ≤ 1.04X for all X > 0 (cf [12, (3.35)]). We now need to remove the large p's, which does not give rise to any problem, whence the result.

To handle the remaining bilinear part, we use a diadic decomposition and the following lemma.

Lemma 34 When √ X ≤ P ≤ P ≤ 2P , X/P ≥ q 2 , |qβ| ≤ X -0.55 , X ≤ X ≤ 2X and X ≥ 2, we have

the constant in the -symbol being absolute.

Proof. For simplicity, we put ρ = 1/(ν -1)! and call Σ our sum. We apply the Cauchy inequality and we relax the condition "p prime" into "p survives a sieve of level M ". We use the Fundamental Lemma with M (which we shall later choose as M = 1 4 X 1/20 ), z = √ M , f = q. We assume M q Log q ≤ P/ Log P and M ≥ X ε for some ε > 0. Then |Σ| 2 is not more than

The first sum is ρ 2 P Log 2ν-1 (2P ) and we now study the second one.

• When n ≡ ñ[q], and on using the Brun-Titchmarsh Theorem (see [START_REF] Montgomery | The large sieve[END_REF]) the contribution is

P .

• When n ≡ ñ[q], the contribution is at most

where I(P, n, ñ) is an interval of length ≤ P . The inner sum is

provided qM 2X|β|/P ≤ 1 2 . Since d≤M |λ + d | ≤ M , and M q Log q ≤ P/ Log P by hypothesis, the total contribution is ε ρ 2 q Log q φ(q)

Finally we get

Note that the constants do not depend on ν. Since q 2 ≤ X/P , we surely have q ≤ X 1/4 . We take M = 1 4 X 1/20 . Taking the squareroot yields the Lemma.

Using a diadic decomposition, we get

C being the integer part of (Log(2 √ X)/ Log 2. Putting D = (Log 2)/ Log(2 √ X), our upper bound becomes

The summation over c is less than

under the assumption Log X ≥ ν. Under this same assumption, we also have

Note also that thanks to Lemma 9, we have

Thus, for Log X ≥ ν,

To complete the proof of Theorem 3, we write S(Λ (2ν) ; α) = Σ ν (e(nα), X ) -Σ ν (e(nα), X)

4 Log(X/T ) Log X ν-1   , (62) provided (Log(X/T )/ Log X) ν-1 ≥ X -1/4 , X/T ≥ q 2 and q ≤ X 1/24 . We take X/T = q 2 and use (58) and Corollary 31 to get

provided that

(the LHS of first condition should have X instead of X which is why we have divided the RHS by 2). We take δ = (Log X) -2/3 and assume Log q ≤ 1 6 (Log X) 1/3 as well as Log q ≤ 1 4 ν Log Log X and X large enough. Our bound simplifies into

|S(Λ, α)| φ(q)

√ qX 1 as required. We finally take ν to be the integer part of (Log X) 1/3 /(11 Log Log X) and assume that Log q ≤ 1 50 (Log X) 1/3 .