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Abstract

We prove that the number of primes in an interval of length N is
at most 2N/(Log N +3.53) when N is large enough. This is obtained
through a sieving process which can be seen as a hybrid between the
large sieve and the Selberg sieve, and draws on what we call ”local
models”.
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1 Introduction

The main result of this paper is the following Theorem:

Theorem 1.1 There exists an N0 such that for all N ≥ N0 and all M ≥ 1
we have

π(M +N)− π(M) ≤ 2N

LogN + 3.53
.

Such theorems have been termed “Brun-Titchmarsh” Theorem by Lin-
nik in [4]. Indeed, Titchmarsh proved such a theorem for q = 1, with a
Log Log(N/q) term instead of the 2 above, to establish the asymptotic for
the number of divisors of the p+ 1, p ranging through the primes; he used
the method of Brun. The constant 2 (with a o(1)) appeared for the first
time in [7]. In this work, Selberg also shows that the constant 2 + o(1) is
optimal in the above, if we are to stick to sieve methods in a fairly general
context. He expanded this theory, now known as the “parity principle”,
in [8].

It is thus of interest to try to qualify the o(1) — in 2 + o(1). The first
upper bound of the shape 2N/(LogN + c) with an unspecified but very
negative c is due to van Lint & Richert in [5] though [7] mentions without
any proof such a result around equation (6) therein. Bombieri gave in [1]
the value c = −3 and Montgomery & Vaughan the value c = 5/6 in [6].
The section 22 of “lectures on sieves” [9] gives a proof of c = 2.81, a proof
from which we shall take several elements.

∗AMS classification: 11N13, 11N35, 11N36
†Keywords: Brun-Titchmarsh Theorem
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Our method goes through a sieving process which can be seen as a hybrid
between the large sieve and the Selberg sieve, and draws on what we call
”local models”. With no further input this would lead to Selberg’s results,
with a tiny saving in the computations required. But having at our disposal
a machinery that allows such a high level of sieving (the moduli we consider
are as large as N), we can handle the remainder in a more detailled way.
One can see this process as a weighted large sieve inequality, with weights
adapted to the problem. We note that we shall in between be confronted
with the problem of majorizing a step function by a polynomial, and that
this problem appears to be numerically more difficult than meet the eye.
And prior to that, we shall also be forced to use numerical means for want of
a closed expression for our majorant. As a consequence of these two points,
we are not in a position to assert that our result is best possible, even if we
restrict our attention to our own method!

As a matter of notations, we denote by σ(d) the sum of the (positive)
divisors of d while, for any r ≥ 0, we set ηr(k) =

∏
p|k(p

r+1 + 1)/(p− 1).

2 Hilbertian inequalities

Let us start with a complex vector space H endowed with a hermitian
product [f |g], left linear and right sesquilinear.

The easiest exposition goes through a formal definition:

Definition 2.1 By an almost orthogonal system in H, we mean a collec-
tion of three sets of datas

1. a finite family (ϕ∗i )i∈I of points1,

2. a finite family (Mi)i∈I of positive real numbers,

3. a finite family (ωi,j)i,j∈I of complex numbers with ωj,i = ωi,j,

all of them given so that

∀(ξi)i ∈ CI , ‖
∑
i

ξiϕ
∗
i ‖2 ≤

∑
i

Mi|ξi|2 +
∑
i,j

ξiξjωi,j. (1)

We are to comment on this definition. If the family (ϕ∗i )i∈I were orthogonal,
we could ask for equality with Mi = ‖ϕ∗i ‖2. As it turns out, in applications
we have in mind, this family is not orthogonal, but almost so. It is this
almost orthogonality that the above condition is meant to measure.

Our first lemma reads as follows
1The reader may wonder why we chose to call the members of this family with a star.

It is to be consistent and to avoid confusion with notations that will appear later on.
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Lemma 2.1 For any finite family (ϕ∗i )i∈I of points of H, the system build
with Mi =

∑
j |[ϕ∗i |ϕ∗j ]| and ωi,j = 0 is almost orthogonal.

So that, when [ϕ∗i |ϕ∗j ] is small for i 6= j, then Mi is indeed close to ‖ϕ∗i ‖2

Proof: We write ∥∥∥∑
i

ξiϕ
∗
i

∥∥∥2

=
∑
i,j

ξiξj[ϕ
∗
i |ϕ∗j ]

and simply apply 2|ξiξj| ≤ |ξi|2 + |ξj|2. The lemma readily follows. � � �
Here is an enlightening reading of this lemma: the hermitian form that

appears has a matrix whose diagonal terms are the ‖ϕ∗i ‖2’s. A theorem of
Gershgorin says that all eigenvalues of this matrix are to lie in the so-called
Gershgorin’s disc centered on one ‖ϕ∗i ‖2 and with radius

∑
j 6=i |[ϕ∗i |ϕ∗j ]|.

This approach is due to [3]. It has a drawback: we do not know that each
Gershgorin disc does indeed contain an eigenvalue, a flaw that is somehow
repaired in the above lemma.

In general, and only under (1), we get the following kind of Parseval
inequality:

Lemma 2.2 For any almost orthogonal system, and any f ∈ H, let us set
ξi = [f |ϕ∗i ]/Mi. We have∑

i

M−1
i |[f |ϕ∗i ]|2 ≤ ‖f‖2 +

∑
i,j

ξiξjωi,j.

Once again, the orthogonal case is enlightening: when the (ϕ∗i ) are orthog-
onal, then we may take Mi = ‖ϕ∗i ‖2 and ωi,j = 0. The LHS becomes the
square of the norm of the orthonormal projection of f on the subspace
generated by the ϕ∗i ’s.

Without the ωi,j’s and appealing to Lemma 2.1, this is due to Selberg,
as mentioned in section 2 of [2] and in [1].

Proof: For the proof, simply write∥∥f −∑
i

ξiϕ
∗
i

∥∥2 ≥ 0

and expand the square. We take care of ‖
∑

i ξiϕ
∗
i ‖2 by using (1), getting

‖f‖2 − 2<
∑
i

ξi[f |ϕ∗i ] +
∑
i

Mi|ξi|2 +
∑
i,j

ξiξjωi,j ≥ 0.

We now choose ξi’s to the best of our interest, neglecting the bilinear form
containing the ωi,j’s. We take ξi = [f |ϕ∗i ]/Mi. The lemma readily follows.
� � �
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Combining Lemma 2.2 together with Lemma 2.1 yields what is usually
known as “Selberg’s lemma” in this context. The introduction of the ωi,j’s
is due to the authors to enable a refined treatment of the error term as well
as an hybrid way between weighted large sieve results and Selberg sieve
results.

The value of ξi in the statement is usually of no importance, only its
order of magnitude being relevant.

We now discuss a special problem to introduce our next Theorem. In
some cases, a partial treatment of the bilinear form is readily available in
the shape of

∀(ξi)i ∈ CI ,
∥∥∥∑

i

ξiϕ
∗
i

∥∥∥2

≤
∑
i

Mi|ξi|2 +

(∑
i

|ξi|ni
)2

+
∑
i,j

ξiξjωi,j (2)

for some positive Mi, and ni (here again, Mi is generally an approximation
of ‖ϕ∗i ‖2). With such an inequality at hand, the above proof leads to

‖f‖2 − 2<
∑
i

ξi[f |ϕ∗i ] +
∑
i

Mi|ξi|2 +

(∑
i

|ξi|ni
)2

+
∑
i,j

ξiξjωi,j ≥ 0. (3)

When using it, we take for ϕ∗i a kind of local approximation of f , which
implies that we can assume [f |ϕ∗i ] to be a non-negative real number. It
is then readily seen that the ξi’s that minimize the RHS are non-negative.
Finally, we are led to choose these ξi’s so as to minimize

‖f‖2 − 2
∑
i

ξi[f |ϕ∗i ] +
∑
i

Miξ
2
i +

(∑
i

ξini

)2

.

We handle the optimization of (3) with calculus by setting ξi = ζ2
i . After

some manipulations, we conclude that there exists a subset I ′ of I such that
ξi = 0 if i ∈ I \ I ′ and

∀i ∈ I ′, ξi =
[f |ϕ∗i ]−Xni

Mi

, X =

∑
j∈I′ nj[f |ϕ∗j ]/mj

1 +
∑

j∈I′ n
2
j/mj

(4)

provided
∀i ∈ I ′, [f |ϕ∗i ]/ni ≥ X. (5)

However, determining optimal I ′ is difficult: the index i appears on the
left-hand side of (5), but also on its right-hand side since the definition of
X depends on whether this index belongs to I ′ or not. It is easier to set

ξi =
[f |ϕ∗i ]− Y ni

Mi

, (6)

5



for a Y to be chosen but which guarantees ξi ≥ 0. The optimal Y is of
course Y = X.

Once we have inferred the form of these weights, we can simply plug
them in the proof of Lemma 2.2 without even mentioning (2). Here is the
theorem we have reached:

Theorem 2.1 Let an almost orthogonal system be given with notations as
above and let f ∈ H. Let also Y be a non-negative real number and (ni)i
be non-negative real numbers. Assume that [f |ϕ∗i ]’s are real numbers. Set
ξi = ([f |ϕ∗i ]− Y ni)/Mi for all i. Then we have∑

i

Miξ
2
i + 2Y

∑
i

niξi −
∑
i,j

ξiξjωi,j ≤ ‖f‖2.

Of course, the preliminary discussion tells us that it will be better to
have ξi ≥ 0, but the statement is valid as is, and may offer some more
flexibility.

3 Integers coprime to a fixed modulus in an

interval

Let f be a positive integer and let us define by ρ = φ(f)/f. We study here
the following two functions of the real non-negative variable u:

θ−f (u) = min
y∈R

min
0≤x≤u
x∈R

( ∑
y<n≤y+x,

(n,f)=1

1− ρx
)
,

θ+
f (u) = max

y∈R
max

0≤x≤u
x∈R

( ∑
y<n≤y+x,

(n,f)=1

1− ρx
)
.

The introduction of these two functions is inspired from section 22 of
“lectures on sieves” in [9]. In order to compute them, we need to restrict
both x and y to integer values. This is the role of next lemma.

Lemma 3.1 We have

θ−f (u) = min
`∈N

 min
k∈N,

0≤k≤u

( ∑
`+1≤n≤`+k−1,

(n,f)=1

1− ρk
)
,

∑
`+1≤n≤`+[u],

(n,f)=1

1− ρu

 ,

θ+
f (u) = max

k,`∈N,
k<u+1

( ∑
`≤n≤`+k−1,

(n,f)=1

1− ρ(k − 1)

)
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The function θ+
f is a non-decreasing step function which is left continuous

with jump points at integer points. The function θ−f is non-increasing con-
tinuous : it alternates linear pieces of directing coefficient −ρ and constant
pieces. Changes occur at integer points. Both are constant if u ≥ f.

Proof: We start with θ+
f . First fix y. The function

∑
y<n≤y+xw(n)− ρx

is linear non-increasing in x from 0 to 1−{y}, then from 1−{y} to 2−{y}
and so on. Its maximum value is reached at x = 0 or x = k − {y} for some
integer k, thus

θ+
f (u) = max

y∈R
max
k∈N,

k≤u+{y}

( ∑
y<n≤[y]+k

w(n) + ρ(−k + {y})
)
.

The condition k ≤ u + {y} is increasing in {y} and so is the term to
maximize. We may take thus y to be just below an integer `, reaching the
expression we announced.

As for θ−f , we start similarly by fixing y. Minimum is reached at x =
k − {y} − 0 or at x = u, where k is an integer and the −0 means we are to
take x just below this value. We get that θ−f (u) equals

min
y∈R

(
min
k∈N,

k≤u+{u}

( ∑
y<n≤[y]+k−1

w(n) + ρ({y} − k)

)
,
∑

y<n≤[y]+u

w(n)− ρu

)
.

As far as the last sum is concerned, the worst case is when y is an integer
` ≥ 0, so it reduces to

min
`∈N

( ∑
`+1≤n≤`+u

w(n)− ρu
)
. (7)

For the first minimum, we distinguish between k ≤ [u] and k = [u] + 1
(which can only happen if u is not an integer). If k ≤ [u], we may take y
to be integral. If k = [u] + 1, then {y} ≥ 1− {u} which is indeed the worst
case: we take y = `+1−{u}. This last contribution turns out to be exactly
the same as the one in (7). � � �

Next we consider the function

θ∗f (v) = max(θ+
f (1/v),−θ−f (1/v)) (8)

which is right continuous with jump points at the 1/m’s, where m ranges
over the integers from 1 to f. Of course, θ∗f (1) = θ+

f (1) = 1.

7



Case of f = 210

Here is our function:

θ∗210(1/u) =



1 if 0 < u ≤ 1

54/35 if 1 < u ≤ 3

57/35 if 3 < u ≤ 7

76/35 if 7 < u ≤ 9

79/35 if 9 < u ≤ 79/8



8u/35 if 79/8 ≤ u ≤ 10

16/7 if 10 < u ≤ 13

82/35 if 13 < u ≤ 17

94/35 if 17 < u ≤ 41/2

8u/35− 2 if 41/2 ≤ u ≤ 22

106/35 if 22 < u ≤ 210

The following plot displays the step function θ∗210 as well as the optimiz-
ing polynomial we shall compute in section 7.

Figure 1: Comparison of θ∗210 and the optimizing polynomial

Polynomial approximation of θ∗f (v)

We shall require a good polynomial upper bound for θ∗f:

θ∗f (v) ≤
∑

0≤r≤R

brv
r. (9)
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Finding such an approximation turned out to be much more tricky than
expected. Our first idea has been to start with a polynomial approximation
of θ∗f (v) of the form ∣∣θ∗f (v)−

∑
0≤r≤R

b̃rv
r
∣∣ ≤ ε

for 0 ≤ v ≤ V from which an upper bound is easily derived by increasing
the constant term. We carried out this scheme with Bernstein polynomials,
with poor numerical results and fitting. We even tried to achieve such an
approximation on a larger interval since endpoints are notoriously trouble-
some: this helped a bit but not by much, despite the fact that we used
polynomials of very high degree (up to 200). We finally decided for a dif-
ferent scheme exposed in the last section.

4 Local models for the sequence of primes

4.1 Choice of the local system

Let us start with a general discussion on what “sieving” means. Sieving is
about gaining information on a sequence from what we know of it modulo d
for several d’s. If one looks at the sequence of primes modulo d and if we
neglect the prime divisors of d, it simply is the set of reduced residue classes
modulo d. Thus, on one hand we have the characteristic function of the
primes of the interval [M + 1,M + N ], say f , and on the other hand the
characteristic function ϕd of the integers in this interval that are coprime
to d for all d ≤

√
N . Notice here that it is enough to restrict our attention

to squarefree d’s.

On recalling what we did in section 2, we could simply try to get an
approximation of f in terms of the ϕd’s. However, the study there is pat-
terned for almost orthogonal ϕq’s, which is not the case of the sequence
(ϕd)d: if q|d, knowing that a given integer is coprime with d implies it is
coprime with q, so there is redundancy of information. It implies in turn
that these functions are far from being linearly independent. We unscrew
the situation in the following way. When d is squarefree, we set

d

φ(d)
ϕd =

∑
q|d

ϕ∗q (10)

where

ϕ∗q(n) = µ(q)cq(n)/φ(q) (11)
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and cq(n) is the Ramanujan sum given by

cq(n) =
∑

amod∗q

e(na/q) =
∑
`|q

`µ(q/`). (12)

Verifying (10) is easy:

∑
q|d

µ(q)cq(n)/φ(q) =
∏
p|d

(
1−

{
1 if p|n
−1/(p− 1) otherwise

)
.

In our problem, we shall select a fixed integer f that will be taken to be
210 at the end of the proof and consider the characteristic function w of the
points in [M + 1,M + N ] that are coprime with f. This being chosen, our
hermitian product on sequences over [M + 1,M +N ] is defined by

[g|h] =
∑

M+1≤n≤M+N

w(n)g(n)h(n). (13)

Furthermore, we take the moduli q in the set{
q / σ(q) ≤ S, µ2(q) = 1, (q, f) = 1

}
, (14)

where σ(q) =
∑

d|q d. The reason for this choice will become apparent later
on.

4.2 Study of the local models

Notice that

[ϕ∗q|ϕ∗q′ ] =
µ(q)

φ(q)

µ(q′)

φ(q′)

∑
n

w(n)cq(n)cq′(n). (15)

We note that when q and q′ have a common factor, say δ, then cδ(n)2 =
φ((n, δ))2 would factor out: this contribution is non-negative and we want
to use this fact here. Let ∆ be a squarefree integer coprime with f. Write
(q, q′,∆) = δ, so that [ϕ∗q|ϕ∗q′ ] equals

µ(q)µ(q′)

φ(q)φ(q′)

∑
`|q/δ
`′|q′/δ
h|δ

`µ(q/`)`′µ(q/`′)(µ ? φ2)(h)

(
φ(f)

f

N

h[`, `′]
+Rh[`,`′](M,N, f)

)

where

Rd(M,N, f) =
∑

M+1≤n≤M+N
d|n

w(n)− φ(f)N

fd
. (16)
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Recall that we have set ρ = φ(f)/f in section 3 to simplify typograph-
ical work. The reader will check that the main term (corresponding to
ρN/[`, `′]) vanishes when q 6= q′ and is ρN/φ(q) otherwise. We carry over

this change to the bilinear form
∥∥∑

q ξqϕ
∗
q

∥∥2
, which equals the diagonal term

ρN
∑

q |ξq|2/φ(q) augmented by

R =
∑

δ1δ2δ3|∆

µ(δ2δ3)

φ(δ1)2φ(δ2)φ(δ3)

∑
(`,f∆)=1
(`′,f∆)=1

µ(`)ξδ1δ2`
φ(`)

µ(`′)ξδ1δ3`′

φ(`′)

×
∑
d|`δ2
d′|`′δ3
h|δ1

dd′µ(`δ2/d)µ(`′δ3/d
′)(µ ? φ2)(h)Rh[d,d′](M,N, f).

At this level, we say that∣∣Rh[d,d′](M,N, f)
∣∣ ≤ θ∗f (h[d, d′]/N) ≤

∑
0≤r≤R

br(h[d, d′]/N)r

by (9). We infer that

R ≤
∑

0≤r≤R

brN
−r

∑
δ1δ2δ3|∆

1

φ(δ1)2φ(δ2)φ(δ3)

∑
(`,f∆)=1
(`′,f∆)=1

|ξδ1δ2`|
φ(`)

|ξδ1δ3`′ |
φ(`′)

×
∑
d|`δ2
d′|`′δ3
h|δ1

dd′(µ ? φ2)(h)hr[d, d′]r.

This leads to

R ≤
∑

0≤r≤R

brN
−r

∑
δ1δ2δ3|∆

∏
p|δ1

(
1 + pr+1(p− 2)

)
ηr(δ2δ3)

φ(δ1)2

×
∑

(`,f∆)=1
(`′,f∆)=1

|ξδ1δ2`|ηr(`)|ξδ1δ3`′|ηr(`′)
∏
p|(`,`′)

1 + 2pr+1 + pr+2

(1 + pr+1)2
.

The factor that depends on (`, `′) is somewhat troublesome. We handle it
in the following way: for r = 0, it is equal to 1; Otherwise let P be the
smallest prime number that does not divide f∆. This prime factor will tend
to infinity, and we approximate the factor depending on (`, `′) essentially

11



by 1 +O(P−1). More precisely, we write

∑
(`,f∆)=1
(`′,f∆)=1

|ξδ1δ2`|ηr(`)|ξδ1δ3`′ |ηr(`′)
∣∣∣∣ ∏
p|(`,`′)

1 + 2pr+1 + pr+2

(1 + pr+1)2
− 1

∣∣∣∣
�r

∑
p≥P

∑
(m,pf∆)=1,
(m′,pf∆)=1

|ξδ1δ2pm|ηr(pm)|ξδ1δ3pm′|ηr(pm′)

�r

∑
p≥P

p2r
∑
m,m′

|ξδ1δ2pm|ηr(m)|ξδ1δ3pm′ |ηr(m′)

The idea here is that the factor ξδ1δ2pm forces m to be rather small. Indeed,
anticipating on the values of ξ in (20) and using Lemma 5.1, we get the
above to be not more than(

Z

ρN

)2∑
p≥P

p2r (S/p)2r+2 �r

(
Z

ρN

)2

S2r+2P−1. (17)

This will give rise to the error term(
Z

ρN

)2 ∑
δ1δ2δ3|∆

η[r(δ1)ηr(δ2δ3)

σ(δ1δ2)r+1σ(δ1δ3)r+1

∑
1≤r≤R

S2r+2|br|
N rP

which, up to a multiplicative constant, is not more than(
Z

ρN

)2∏
p|∆

(1 + p−1)2
∑

1≤r≤R

S2r+2|br|
N rP

. (18)

The factor P−1 will indeed be enough to control this quantity. Hence, again
anticipating on (20), we reach

∥∥∥∑
q

ξqϕ
∗
q

∥∥∥2

≤ ρN
∑
q

|ξq|2/φ(q)

+
∑

0≤r≤R

br
N r

∑
δ1δ2δ3|∆

η[r(δ1)
∑

(`,f∆)=1,
(`′,f∆)=1

|ξδ1δ2`|ηr(δ2`)|ξδ1δ3`′ |ηr(δ3`
′)

+O
((

Z

ρN

)2∏
p|∆

(1 + p−1)2
∑

1≤r≤R

S2r+2|br|
N rP

)
.
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5 Some arithmetical auxiliaries

We need to evaluate some rather unusual averages.

Lemma 5.1 Let f∗ be a positive integer. We set ρ∗ = φ(f∗)/f∗ and use
t(q) = 1− σ(q)/S∗. For any real number S∗ going to infinity, we have∑

q/σ(q)≤S∗,
(q,f∗)=1

t(q)2

φ(q)
= ρ∗(LogS∗ + κ(f∗)) + o(1)

with

κ(f) = γ +
∑
p≥2

Log p

p(p− 1)
−
∑
p

Log(1 + p−1)

p
+
∑
p|f∗

Log(p+ 1)

p
− 3

2

(κ(210) = 1.115 37 . . . ) and∑
q/σ(q)≤S∗,

(q,f∗)=1

ηr(q)t(q) =
ρ∗

2(r + 1)

∏
p-f∗

(
1− pr − 1

pr+1(p+ 1)

)
S∗(r+1) + o(S∗(r+1)).

Proof: The first estimate comes from [9]. We follow closely Selberg’s
proof and get∑

q/σ(q)≤S∗,
(q,f∗)=1

ηr(q)t(q)

qr
=
ρ

2

∏
p-f∗

(
1− pr − 1

pr+1(p+ 1)

)
S∗ + o(S∗)

from which we get∑
q/σ(q)≤S∗,

(q,f∗)=1

ηr(q)t(q) =
ρ∗

2(r + 1)

∏
p-f∗

(
1− pr − 1

pr+1(p+ 1)

)
S∗(r+1) + o(S∗(r+1)).

� � �
Note that the quantities we end up computing are the same as the ones

that appear in [9] though we have one less to handle.
Let us define

Cr(∆) =
φ(∆)2

∆2

∑
δ1δ2δ3|∆

∏
p|δ1

(
1 + pr+1(p− 2)

)
ηr(δ2δ3)

φ(δ1)2σ(δ1)2r+2σ(δ2)r+1σ(δ3)r+1
. (19)

We have

13



Lemma 5.2

Cr(∆) =
∏
p|∆

(
(p− 1)2

p2
+

2(p− 1)(pr+1 + 1)

p2(p+ 1)r+1

+
1 + pr+1(p− 2)

p2(p+ 1)2r+2
+

(1 + pr+1(p− 2))(pr+1 + 1)

(p− 1)p2(p+ 1)3r+3)

)
.

Proof: We start with δ3:∑
δ3|∆/(δ1δ2)

ηr(δ3)

σ(δ3)r+1
=

∏
p|∆/(δ1δ2)

(
1 +

1 + pr+1

(p+ 1)r+1(p− 1)

)

=
∏

p|∆/(δ1δ2)

(p+ 1)r+1(p− 1) + pr+1 + 1

(p+ 1)r+1(p− 1)
.

Our sum reduces to

∏
p|∆

(
(p+ 1)r+1(p− 1) + pr+1 + 1

)
(p− 1)

p2(p+ 1)r+1

×
∑
δ1δ2|∆

∏
p|δ1

(
1 + pr+1(p− 2)

)
ηr(δ2)

φ(δ1)2σ(δ1)2r+2σ(δ2)r+1

∏
p|δ1δ2

(p+ 1)r+1(p− 1)

(p+ 1)r+1(p− 1) + pr+1 + 1
.

We continue with δ2:∑
δ2|∆/δ1

1 + pr+1

(p− 1)(p+ 1)r+1

(p+ 1)r+1(p− 1)

(p+ 1)r+1(p− 1) + pr+1 + 1

=
∏
p|∆/δ1

(
1 +

pr+1 + 1

(p+ 1)r+1(p− 1) + pr+1 + 1

)

=
∏
p|∆/δ1

(p+ 1)r+1(p− 1) + 2pr+1 + 2

(p+ 1)r+1(p− 1) + pr+1 + 1
.

Hence our quantity reduces to

∏
p|∆

(
(p+ 1)r+1(p− 1) + 2pr+1 + 2

)
(p− 1)

p2(p+ 1)r+1

×
∑
δ1|∆

∏
p|δ1

1 + pr+1(p− 2)

(p− 1)2(p+ 1)2r+2

(p+ 1)r+1(p− 1) + pr+1 + 1

(p+ 1)r+1(p− 1) + 2pr+1 + 2

14



which reads

∏
p|∆

(
(p+ 1)r+1(p− 1) + 2pr+1 + 2

)
(p− 1)

p2(p+ 1)r+1

×

(p− 1)2(p+ 1)2r+2
(
(p+ 1)r+1(p− 1) + 2pr+1 + 2

)
+
(
1 + pr+1(p− 2)

)(
(p+ 1)r+1(p− 1) + pr+1 + 1

)
(p− 1)2(p+ 1)2r+2

(
(p+ 1)r+1(p− 1) + 2pr+1 + 2

)
=
∏
p|∆

(p− 1)2(p+ 1)2r+2
(
(p+ 1)r+1(p− 1) + 2pr+1 + 2

)
+
(
1 + pr+1(p− 2)

)(
(p+ 1)r+1(p− 1) + pr+1 + 1

)
(p− 1)p2(p+ 1)3r+3

.

� � �

6 Using the hermitian inequalilty

Optimizing in ξ is too difficult. We stick to the simplest choice: Mi =
ρN/φ(q), [f |ϕ∗i ]/Mi = Z/(ρN), ni = σ(q)/φ(q) and Y = Z/S for a param-
eter S we shall choose later on. This leads to

ξq =
Z

ρN
t(q), t(q) = 1− σ(q)

S
. (20)

We invoke Lemma 5.1 to compute the relevant mean values, and for in-
stance, we use S∗ = S/σ(δ1δ2) and f∗ = f∆ to evaluate

∑
(`,f∆)=1 |ξδ1δ2`|ηr(`).

There appear constants in the form of an Euler product, say Sr(f
∗), which

we again approximate by 1 + O(P−1). Let us give some details. In a first
step we reach

Z ≥
(
Z

ρN

)2

ρ2N (LogS + κ(f)) +
2Z2

ρNS

∑
(q,f)=1

σ(q)t(q)

φ(q)
− A+O(B)

with g(δ) =
∏

p|δ(1 + pr+1(p− 2))/(p− 1)2 and
A =

∑
0≤r≤R

Z2br
ρ2N r+2

∑
δ1δ2δ3|∆

g(δ1)
∑

(`,f∆)=1
(`′,f∆)=1

t(δ1δ2`)ηr(`δ2)t(δ1δ3`
′)ηr(`

′δ3),

B =
∑

δ1δ2δ3|∆

g(δ1)
∑

1≤r≤R

∑
p≥P

|br|p2r

N r

∑
`,`′

|ξδ1δ2p`|ηr(`δ2)|ξδ1δ3p`′ |ηr(`′δ3).

15



We tidy this expression step by step:

N ≥ Z (LogS + κ(f)) + Z

− Z
∑

0≤r≤R

brS
2r+2

ρ2N r+1

∑
δ1δ2δ3|∆

∏
p|δ1

(
1 + pr+1(p− 2)

)
ηr(δ2δ3)

φ(δ1)2σ(δ1)2r+2σ(δ2)r+1σ(δ3)r+1

ρ2φ(∆)2Sr(f∆)2

4∆2(r + 1)2

+O
(∏
p|∆

(1 + p−1)2S2ZN−1P−1
∑

1≤r≤R

|br|(S2/N)r
)

+ o(N).

This leads to

N/Z ≥ LogS + κ(f) + 1−
∑

0≤r≤R

br(S
2/N)r+1

4(r + 1)2
Cr(∆)Sr(f∆)2

+O
(∏
p|∆

(1 + p−1)2P−1
∑

1≤r≤R

|br|(S2/N)r+1
)

+ o(1)

And since Sr(f∆) = 1 +O(P−1), we finally obtain

N/Z − 1
2

LogN ≥ 1
2

Log(S2/N) + κ(f) + 1−
∑

0≤r≤R

br(S
2/N)r+1

4(r + 1)2
Cr(∞/f)

+O
(∏
p|∆

(1 + p−1)2P−1
∑

1≤r≤R

|br|(S2/N)r+1
)

+ o(1).

At this level, we send ∆ (and P ) to infinity and we are left with finding an
optimal value for S2/N . It would be satisfactory to have an expression for
the final constant, but we are not able to attain such a precision. In par-
ticular, the br’s should not appear in the final expression. We are, however,
able to get numerical results.

7 Optimizing the polynomial via linear pro-

gramming

It is better at this level to change notation slightly and set

cr(x) =
∏

7<p≤x

(
(p− 1)2

p2
+

2(p− 1)(pr+1 + 1)

p2(p+ 1)r+1

+
1 + pr+1(p− 2)

p2(p+ 1)2r+2
+

(1 + pr+1(p− 2))(pr+1 + 1)

(p− 1)p2(p+ 1)3r+3)

)
,

16



together with
cr = Cr(∞/f) = lim

x→∞
cr(x). (21)

Lemma 7.1 We have for x > 2r + 2 the estimate

cr(x) ≥ cr ≥ cr(x)
(

1− 2r + 2

x

)
.

Proof: Denote by F (p) the factor in cr(x) corresponding to the prime
number p. We then have

(p− 1)2

p2
+

2(p− 1)(pr+1 + 1)

p2(p+ 1)r+1
≤ F (p)

≤ (p− 1)2

p2
+

2(p− 1)(pr+1 + 1)

p2(p+ 1)r+1
+

2

p2(p+ 1)r
,

and the left-hand expression can be written as

1− 2− 2p+ 2p1+r − 2p2+r − (1 + p)r + p(1 + p)r + 2p2(1 + p)r

p2(1 + p)r+1
,

from which it is obvious that F (p) < 1 for r ≥ 1. This can be checked
directly when r = 0. On the other hand we have for p ≥ r the estimate

pr = ((p+ 1)− 1)r =
r∑

ν=0

(−1)ν
(
r

ν

)
(p+ 1)r−ν ≥ (p+ 1)r − r(p+ 1)r−1,

since the binomial sum is alternating and monotonically decreasing, which
implies, for r ≥ 1, the estimate

F (p) ≥ 1− 2− 2p+ 2p1+r − (1 + p)r + p(1 + p)r + 2rp2(1 + p)r−1

p2(1 + p)r+1

≥ 1− (2r + 2)p2(p+ 1)r−1

p2(p+ 1)r+1

≥
(

1− 1

p2

)2r+2

;

Again, for r = 0 this bound can be checked directly. We now have

cr = cr(x)
∏
p>x

F (p) ≥ cr(x)
∏
p>x

(
1− 1

p2

)2r+2

≥ cr(x)
(

1−
∑
n>x

n−2
)2r+2

≥ cr(x)
(

1− 1

x

)2r+2

≥ cr(x)
(

1− 2r + 2

x

)
.

� � �
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Next we compute a polynomial P such that P (V n/300) > θ∗210(V n/300)
for all n ≤ 300, where V = S2/N is some parameter, and such that the
linear functional F∗(P ) defined on monomials as F∗(xr) = 1

4(r+1)2
cr(105) is

minimized. Since the domain described by the inequalities relating P and
θ∗210 is non-compact, we further restrict all coefficients to be at least −M .
Then we compute an upper bound for F(P ), the linear functional defined on
monomials through F(xr) = 1

4(r+1)2
cr, by replacing cr by cr(1−(2r+2)/105),

whenever the coefficient of xr in P is negative. Note that smaller values of
M yield worse approximations to the optimal value of the functional F∗(P ),
but restricting the size of negative coefficients diminishes the upper bound
for F(P ).

Using M = −1 000, V = 1.5 and looking for polynomials of degree 25,
we obtain a polynomial P with F(P ) ≤ 0.547 38. The resulting polynomial
is

P (u) = 3.117973 + 3.555433u− 154.037413u2 + 732.936467u3 − 1000u4

− 1000u5 + 3227.305717u6 − 1000u7 − 1000u8 − 1000u9 − 1000u10

+ 3012.745710u11 + 1227.721539u12 − 1000u13 − 1000u14 − 1000u15

− 1000u16 + 1191.986883u17 + 2708.564854u18 − 1000u19 − 1000u20

−1000u21 + 675.282733u22 + 1158.017142u23−1000u24 + 214.336183u25;

We determined this polynomial by using the lpsolve linear programming
package and a C-program of our own. There has been numerous precisions
issues and instabilities that we were no able to understand, less to tackle to
our satisfaction. For instance, many of the coefficients are on the artificial
boundary ai ≥ −1 000. We delay a further study to a latter paper.

Once the polynomial is selected, we can simply consider it and study
anew how it fits θ∗f . To do so, we revert to Pari/GP.

By construction of P we know that P (u) ≥ θ∗f (u) for 300 well spaced
points, however, this does not imply that this inequality holds true for all
values of u. In fact, there are six regions in which P dips slightly below
θ∗210, these regions being close to the points u = 0.29, 0.59, 0.84, 1.16, 1.32
and 1.44. The difference is greatest at u = 1.442 618 . . . , where P (u) −
θ∗210(u) = −0.008 338 . . . . Hence, putting P ∗(u) = P (u) + 0.0084, we obtain
a polynomial which is strictly larger than θ∗210, and we have

F(P ∗) = F(P ) +
0.0084

4
≤ 0.547 4 + 0.002 1 = 0.549 5,

which implies that

N/Z − 1

2
LogN ≥ 1

2
Log 1.5 + κ(210) + 1−F(P ∗) ≥ 1.768 6

18



and therefore

π(M +N)− π(M) ≤ 2N

LogN + 3.537 2

as announced.
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