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Comparing L(s, χ) with its truncated Euler
product and generalization

O. Ramaré

April 17, 2009

Abstract

We show that any L-function attached to a non-exceptionnal Hecke
Grossencharakter Ξ may be approximated by a truncated Euler prod-
uct when s lies near the line <s = 1. This leads to some refined
bounds on L(s,Ξ).

1 Introduction and results

For L(1, χ), see [8], [16] and [1].
We first need to fix some terminology. We select a number field K/Q be a

number field of degree d and discriminant ∆. We denote its norm by N, as a
shortcut to NK/Q. We shall consider Hecke Grossencharakters Ξ with (finite)
ideal f, of norm q, and associated with some finite set of infinite places. The
conductor f being fixed, the main Theorem of [5] tells us there exists an
absolute constant C > 0 such that no L-function L(s, Ξ) has a zero ρ in the
region

<ρ ≥ 1− C

Log max(q∆, q∆|=s|)
(1)

except at most one such character; this potential exception is real valued and
may have at most one real zero β in this region. We refer to this hypothetical
character as the exceptional character and term the remaining ones as being
non-exceptional. See also [11]. In the case of Dirichlet characters, i.e. K = Q,
we know from [13] that we may take C = 1/6.3958.
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Theorem 1 Let Ξ be a non-exceptional Hecke Grossencharacter with (finite)
conductor f of norm q > 1. We have

L(s, Ξ) �
∏

N p≤q∆|s|

(
1− Ξ(p)/ N ps

)−1

when 1 ≥ (<s − 1) Log(q∆(2 + |s|)) ≥ −C/2, the constant C being the one
from (1).

The restriction to non-exceptional characters can be dispensed with if we
assume |=s| ≥ 1/ Log(q∆). Under the Riemann hypothesis for the implied
L-function, we can restrict the above product to p ≤ Log Log(q∆|s|). As
trivial consequences, we find via (a generalization of) Mertens theorems (see
(9) below) that, under these conditions

q/φ(q)

Log(q∆|s|)
� |L(s, Ξ)| � φ(q)

q
Log(q∆|s|). (2)

The upper bound is classical in the case of Dirichlet characters but improves
considerably in the general case on the one given in Theorem 5 of [17], albeit
being less explicit. The factor q/φ(q) in the lower one appears to be novel,
even in the case of Dirichlet characters. For instance, it supersedes the
one of Corollary 2 of [11] by the factor q/φ(q) and by the fact that it is
valid for any non-exceptional character. From a historical viewpoint, [14]
shows that |L(1, χ)| � 1/ Log5 q for non-real characters, and improves this
in |L(1, χ)| � 1/ Log q in [15]. The proof is somewhat more delicate than
expected.

Note also (by again invoking Mertens’ theorems) that we can restrict the
product to p ≤ (q|s|)a for any positive a.

Granville & Soundararajan investigated in [6] (see also [7]) the distribu-
tion of values of L(1, χ) (χ being a Dirichlet character) via an approximation
by an Euler product and in particular,they show in their Proposition 1 that
the Euler product may be truncated to p ≤ Log q for all but O(q1−2/ Log Log q)
characters. Note however that they aim at an exact approximation of L(1, Ξ)
while we only seek to recover its order of magnitude.

Our main ingredient is the following Lemma of independent interest.

Lemma 1 Under the conditions above, |L′/L(s, Ξ)| � Log(q∆(2 + |s|)).

In this Lemma also, the restriction to non-exceptional characters can be dis-
pensed with if we assume |=s| ≥ 1/ Log(q∆). The inequality−<L′/L(s, Ξ) ≤
c Log(q∆(2+ |s|)) when <s > 1 is a classical element of the proof of the zero-
free region for L(·, Ξ) (see [4, chapter 14] for instance); by using his local

2



method, Landau shows in [15, page 30] that <L′/L(s, Ξ) ≤ c Log(q∆(2+|s|)).
The above Lemma shows that much more is true and that only invoking a
one-sided bound for the real part does nor lead to any improvement.

Under the Riemann hypothesis for L(·, Ξ), the upper bound becomes
Log Log(q∆(2 + |s|)).

Generalization

Like many properties of Dirichlet L-functions, this one generalizes to a wide
class of L-functions. We shall not describe such a general context but refer
the reader to chapter 5 of [12]. We work under the conditions of their Theo-
rem 5.10: L(f, s) is an L-function fo degree d such that the Rankin-Selberg
convolutions L(f ⊗ f, s) and L(f ⊗ f, s) exist, the latter having a simple
pole at s = 1 while the former is entire if f 6= f . We further suppose that
|αj(p)|2 ≤ p/2 at the ramified primes. The notion of exceptional character
is more complicated to define in a general context, since it requires a way
of defining families of L-functions. Assuming that our candidate has no real
zero in the classical zero-free region, we find that

L(f, s) �
∏

p≤q(f,s)

(1− α1(p)p−s)−1 · · · (1− αd(p)p−s)−1 (3)

where the analytical conductor is defined there in equation (5.7).

Notations

We need some names for our variables, and the easiest path is to keep a fixed
point s0 = σ0 + it0, which will be s in the Theorem, and a running s = σ+ it.
We define

L = Log(q∆(|s0|+ 2)). (4)

The point s1 = σ1 + it0 with σ1 = 1 + 1/L will be of special interest.

2 Some material on primes in number fields

We can use the prime number Theorem for K/Q, but we prefer to sketch an
elementary approach to the classical results we need. Such material is also
contained in [18]. Assume we have an asymptotic estimate:∑

N a≤X

1 = c0X +O(X/ Log(2X)) (5)
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where a ranges the integral ideals of K. Such an estimate is linked with the
fact that the Dedekind zeta function ζK of K has a simple pole at s = 1. In
particular c0 is the residue of this function at s = 1. The results we seek also
hold with the error term being simply o(X), but our proof would require a
modification. From this we deduce that∑

N a≤X

Log N a = c0X Log X +O(X). (6)

Writing ζ ′K/ζK(s) =
∑

a ΛK(a)/N as we find that
∑

b|a ΛK(b) = Log N a and

plugging this into (6), we get

c0X Log X +O(X) =
∑

N b≤X

ΛK(b)
∑

N c≤X/ N b

1 = X
∑

N b≤X

ΛK(b)

N b

by appealing to (5), from which we infer∑
N b≤X

ΛK(b)

N b
= Log X +O(1). (7)

Using the expression of ζK as an Euler product, we find that ΛK(b) is zero
except when b is a power of a prime p, at which point it takes the value
Log N p. This finally leads us to the estimate∑

N p≤X

Log N p

N p
= Log X +O(1). (8)

We infer
∑

N p≤X 1/N p = Log Log X +O(1) and thus∏
N p≤X

(1− 1/ N p) � 1/ Log X (9)

which is enough for our purpose. This is not what is referred to as Mertens’
Theorem, since we do not have a proper asymptotic, but these estimates are
enough for our purpose. We refer the reader to [3] for related material on
explicit Mertens’ Theorem in abelian number fields.

3 Proof of Lemma 1

We start from Linnik’s density lemma which the reader may find in [5,
Lemma 7] or in [2, chapter 6] in case of Dirichlet characters. We define
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n(1 + it, r) to be the number of zeros ρ of L(s, χ) in the disc |ρ− i− it| ≤ r.
We have

L′

L
(s, Ξ) =

−δΞ

s− 1
+

∑
|ρ−1−it0|≤1/3

1

s− ρ
+O(L) (|s− 1− it0| ≤ 1/4), (10)

where δΞ is 1 if Ξ is principal, and 0 otherwise. This is for instance Lemma 6
of [5]; In case of Dirichlet characters, this is (4) of chapter 16 of [4], and
in a general context (5.28) of [12]. These two last proofs relie on a global
representation of L′/L, while Fogel’s one follows the local method of Landau.
The latest refinements of this method may be found in [10] and [9].

One of the consequences of (10) is Linnik’s density lemma:

n(1 + it, r) � rL + 1. (11)

Apply (10) to s = σ + it with σ ≥ 1 − 2C/L and to s1 and substract. For
any zero ρ in the summation above, we have |s−ρ| ≥ |1+ it0−ρ|/2 and thus

∣∣∣∣L′

L
(s, Ξ)− L′

L
(s1, Ξ)

∣∣∣∣ ≤ ∑
|ρ−1−it0|≤1/3

4|σ − σ1|
|1 + it0 − ρ|2

+O(L)

≤ |σ − σ1|
∑

0≤k≤LogL

∑
r=2k≤|ρ−1−it0|L≤2k+1

4

r2
+O(L)

≤ |σ − σ1|
∑

0≤k≤LogL

2n(1 + it0, r)

r2
+O(L)

� |σ − σ1|
∑

0≤k≤LogL

(
L
r

+
1

r2

)
+O(L) � |σ − σ1|L2 + L.

Notice furthermore that |L′/L(s1, Ξ)| ≤ −ζ ′/ζ(σ1) � L, so that, when σ ≤
1 + L, the above inequality reduces to∣∣∣∣L′

L
(s, Ξ)

∣∣∣∣ � L. (12)

This ends the proof in case of non-exceptional characters. In case of an
exceptional character, we simply consider separately in (10) its contribution,
namely 1/(s − β) which is again O(L). Under the Riemann hypothesis, we
simply invoke Theorem 5.17 of [12].
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4 Proof of the Theorem

Define R = q∆|s0|. We check that∣∣∣∣∣L′

L
(s, Ξ) +

∑
N p≤R

Ξ(p) Log N p

N ps − Ξ(p)

∣∣∣∣∣ � L+ Log R � L (13)

when s = σ + it0 and 1 ≥ (σ − 1)L ≥ −C/2. We integrate (12) between s1

and s0 and find that

|Log LR(s0, Ξ)− Log LR(s1, Ξ)| � 1 (14)

with LR(s, Ξ) =
∏

N p>R(1− Ξ(p)/ N ps)−1. Next we note that

|LR(s1, Ξ)| ≤
∏

N p>R

(1− N p−σ1)−1 ≤ exp
∑

N p>R

N p−σ1

� exp

∫ ∞

R

dt

tσ1 Log t
= exp

∫ ∞

Rσ1−1

dv

v2 Log v

by setting v = tσ1−1, and where we have invoked (8). The last quantity is
bounded since so is Rσ1−1. Considering only real parts in (14), the Theorem
readily follows.
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