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We show that any L-function attached to a non-exceptionnal Hecke Grossencharakter Ξ may be approximated by a truncated Euler product when s lies near the line s = 1. This leads to some refined bounds on L(s, Ξ).

Introduction and results

For L(1, χ), see [START_REF] Hardy | Determination of all imaginary cyclic quartic fields with class number 2[END_REF], [START_REF] Louboutin | Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux[END_REF] and [START_REF] Barrucand | Minoration au point 1 des fonctions L attachées à des caractères de Dirichlet[END_REF].

We first need to fix some terminology. We select a number field K/Q be a number field of degree d and discriminant ∆. We denote its norm by N, as a shortcut to N K/Q . We shall consider Hecke Grossencharakters Ξ with (finite) ideal f, of norm q, and associated with some finite set of infinite places. The conductor f being fixed, the main Theorem of [START_REF] Fogels | On the zeros of Hecke's L-functions[END_REF] tells us there exists an absolute constant C > 0 such that no L-function L(s, Ξ) has a zero ρ in the region

ρ ≥ 1 - C Log max(q∆, q∆| s|) (1) 
except at most one such character; this potential exception is real valued and may have at most one real zero β in this region. We refer to this hypothetical character as the exceptional character and term the remaining ones as being non-exceptional. See also [START_REF] Hinz | On Siegel Zeros of Hecke-Landau Zeta-Functions[END_REF]. In the case of Dirichlet characters, i.e. K = Q, we know from [START_REF] Kadiri | An explicit zero-free region for the Dirichlet L-functions[END_REF] that we may take C = 1/6.3958.

Theorem 1 Let Ξ be a non-exceptional Hecke Grossencharacter with (finite) conductor f of norm q > 1. We have

L(s, Ξ) N p≤q∆|s| 1 -Ξ(p)/ N p s -1 when 1 ≥ ( s -1) Log(q∆(2 + |s|)) ≥ -C/2, the constant C being the one from (1) 
.

The restriction to non-exceptional characters can be dispensed with if we assume | s| ≥ 1/ Log(q∆). Under the Riemann hypothesis for the implied L-function, we can restrict the above product to p ≤ Log Log(q∆|s|). As trivial consequences, we find via (a generalization of) Mertens theorems (see (9) below) that, under these conditions

q/φ(q) Log(q∆|s|) |L(s, Ξ)| φ(q) q Log(q∆|s|). ( 2 
)
The upper bound is classical in the case of Dirichlet characters but improves considerably in the general case on the one given in Theorem 5 of [START_REF] Rademacher | On the Phragmén-Lindelöf theorem and some applications[END_REF], albeit being less explicit. The factor q/φ(q) in the lower one appears to be novel, even in the case of Dirichlet characters. For instance, it supersedes the one of Corollary 2 of [START_REF] Hinz | On Siegel Zeros of Hecke-Landau Zeta-Functions[END_REF] by the factor q/φ(q) and by the fact that it is valid for any non-exceptional character. From a historical viewpoint, [START_REF] Landau | Über das Nichtverschwinden der Dirichletschen Reihen, welche komplexen Charakteren entsprechen[END_REF] shows that |L(1, χ)| 1/ Log 5 q for non-real characters, and improves this in |L(1, χ)| 1/ Log q in [START_REF] Landau | Über Dirichletsche Reihen mit komplexen Charakteren entsprechen[END_REF]. The proof is somewhat more delicate than expected.

Note also (by again invoking Mertens' theorems) that we can restrict the product to p ≤ (q|s|) a for any positive a.

Granville & Soundararajan investigated in [START_REF] Granville | The distribution of values of L(1, χ)[END_REF] (see also [START_REF] Granville | Errata to: The distribution of values of L(1, χ)[END_REF]) the distribution of values of L(1, χ) (χ being a Dirichlet character) via an approximation by an Euler product and in particular,they show in their Proposition 1 that the Euler product may be truncated to p ≤ Log q for all but O(q 1-2/ Log Log q ) characters. Note however that they aim at an exact approximation of L(1, Ξ) while we only seek to recover its order of magnitude.

Our main ingredient is the following Lemma of independent interest. In this Lemma also, the restriction to non-exceptional characters can be dispensed with if we assume | s| ≥ 1/ Log(q∆). The inequality -L /L(s, Ξ) ≤ c Log(q∆(2 + |s|)) when s > 1 is a classical element of the proof of the zerofree region for L(•, Ξ) (see [4, chapter 14] for instance); by using his local method, Landau shows in [15, page 30] that L /L(s, Ξ) ≤ c Log(q∆(2+|s|)).

The above Lemma shows that much more is true and that only invoking a one-sided bound for the real part does nor lead to any improvement. Under the Riemann hypothesis for L(•, Ξ), the upper bound becomes Log Log(q∆(2 + |s|)).

Generalization

Like many properties of Dirichlet L-functions, this one generalizes to a wide class of L-functions. We shall not describe such a general context but refer the reader to chapter 5 of [START_REF] Iwaniec | Analytic number theory[END_REF]. We work under the conditions of their Theorem 5.10: L(f, s) is an L-function fo degree d such that the Rankin-Selberg convolutions L(f ⊗ f, s) and L(f ⊗ f , s) exist, the latter having a simple pole at s = 1 while the former is entire if f = f . We further suppose that |α j (p)| 2 ≤ p/2 at the ramified primes. The notion of exceptional character is more complicated to define in a general context, since it requires a way of defining families of L-functions. Assuming that our candidate has no real zero in the classical zero-free region, we find that

L(f, s) p≤q(f,s) (1 -α 1 (p)p -s ) -1 • • • (1 -α d (p)p -s ) -1 (3) 
where the analytical conductor is defined there in equation (5.7).

Notations

We need some names for our variables, and the easiest path is to keep a fixed point s 0 = σ 0 + it 0 , which will be s in the Theorem, and a running s = σ + it.

We define

L = Log(q∆(|s 0 | + 2)). ( 4 
)
The point s 1 = σ 1 + it 0 with σ 1 = 1 + 1/L will be of special interest.

Some material on primes in number fields

We can use the prime number Theorem for K/Q, but we prefer to sketch an elementary approach to the classical results we need. Such material is also contained in [START_REF] Rosen | A generalization of Mertens' theorem[END_REF]. Assume we have an asymptotic estimate:

N a≤X 1 = c 0 X + O(X/ Log(2X)) (5) 
n(1 + it, r) to be the number of zeros ρ of L(s, χ) in the disc |ρ -i -it| ≤ r.

We have

L L (s, Ξ) = -δ Ξ s -1 + |ρ-1-it 0 |≤1/3 1 s -ρ + O(L) (|s -1 -it 0 | ≤ 1/4), (10) 
where δ Ξ is 1 if Ξ is principal, and 0 otherwise. This is for instance Lemma 6 of [START_REF] Fogels | On the zeros of Hecke's L-functions[END_REF]; In case of Dirichlet characters, this is (4) of chapter 16 of [START_REF] Davenport | Multiplicative Number Theory[END_REF], and in a general context (5.28) of [START_REF] Iwaniec | Analytic number theory[END_REF]. These two last proofs relie on a global representation of L /L, while Fogel's one follows the local method of Landau.

The latest refinements of this method may be found in [START_REF] Heath-Brown | Zero-free regions of ζ(s) and L(s, χ)[END_REF] and [START_REF] Heath-Brown | Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression[END_REF]. One of the consequences of ( 10) is Linnik's density lemma:

n(1 + it, r) rL + 1. (11) 
Apply [START_REF] Heath-Brown | Zero-free regions of ζ(s) and L(s, χ)[END_REF] to s = σ + it with σ ≥ 1 -2C/L and to s 1 and substract. For any zero ρ in the summation above, we have |s -ρ| ≥ |1 + it 0 -ρ|/2 and thus

L L (s, Ξ) - L L (s 1 , Ξ) ≤ |ρ-1-it 0 |≤1/3 4|σ -σ 1 | |1 + it 0 -ρ| 2 + O(L) ≤ |σ -σ 1 | 0≤k≤Log L r=2 k ≤|ρ-1-it 0 |L≤2 k+1 4 r 2 + O(L) ≤ |σ -σ 1 | 0≤k≤Log L 2n(1 + it 0 , r) r 2 + O(L) |σ -σ 1 | 0≤k≤Log L L r + 1 r 2 + O(L) |σ -σ 1 |L 2 + L. Notice furthermore that |L /L(s 1 , Ξ)| ≤ -ζ /ζ(σ 1 )
L, so that, when σ ≤ 1 + L, the above inequality reduces to

L L (s, Ξ) L. (12) 
This ends the proof in case of non-exceptional characters. In case of an exceptional character, we simply consider separately in (10) its contribution, namely 1/(s -β) which is again O(L). Under the Riemann hypothesis, we simply invoke Theorem 5.17 of [START_REF] Iwaniec | Analytic number theory[END_REF]. 

when s = σ + it 0 and 1 ≥ (σ -1)L ≥ -C/2. We integrate (12) between s 1 and s 0 and find that

| Log L R (s 0 , Ξ) -Log L R (s 1 , Ξ)| 1 ( 14 
)
with L R (s, Ξ) = N p>R (1 -Ξ(p)/ N p s ) -1 . Next we note that

|L R (s 1 , Ξ)| ≤ N p>R (1 -N p -σ 1 ) -1 ≤ exp N p>R N p -σ 1 exp ∞ R dt t σ 1 Log t = exp ∞ R σ 1 -1 dv v 2 Log v
by setting v = t σ 1 -1 , and where we have invoked [START_REF] Hardy | Determination of all imaginary cyclic quartic fields with class number 2[END_REF]. The last quantity is bounded since so is R σ 1 -1 . Considering only real parts in [START_REF] Landau | Über das Nichtverschwinden der Dirichletschen Reihen, welche komplexen Charakteren entsprechen[END_REF], the Theorem readily follows.

Lemma 1

 1 Under the conditions above, |L /L(s, Ξ)| Log(q∆(2 + |s|)).

4

  Proof of the TheoremDefine R = q∆|s 0 |. We check that L L (s, Ξ) + N p≤R Ξ(p) Log N p N p s -Ξ(p) L + Log R L

where a ranges the integral ideals of K. Such an estimate is linked with the fact that the Dedekind zeta function ζ K of K has a simple pole at s = 1. In particular c 0 is the residue of this function at s = 1. The results we seek also hold with the error term being simply o(X), but our proof would require a modification. From this we deduce that

Writing

Log N a and plugging this into (6), we get

by appealing to [START_REF] Fogels | On the zeros of Hecke's L-functions[END_REF], from which we infer

Using the expression of ζ K as an Euler product, we find that Λ K (b) is zero except when b is a power of a prime p, at which point it takes the value Log N p. This finally leads us to the estimate

We infer N p≤X 1/N p = Log Log X + O(1) and thus

which is enough for our purpose. This is not what is referred to as Mertens' Theorem, since we do not have a proper asymptotic, but these estimates are enough for our purpose. We refer the reader to [START_REF] Bordellés | An explicit Mertens' type inequality for arithmetic progressions[END_REF] for related material on explicit Mertens' Theorem in abelian number fields.

Proof of Lemma 1

We start from Linnik's density lemma which the reader may find in [5, Lemma 7] or in [2, chapter 6] in case of Dirichlet characters. We define