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Tame behaviour of the mean value of
multiplicative functions and some inequalities

relating values of Dirichlet series ∗†

O. Ramaré

November 2, 2007

Abstract

We show that the average of a bounded multiplicative function
varies locally in a regular manner. Our precise result improves on a
similar one by Elliott. We use two novel ingredients: a better smooth-
ing device, and a bilinear inequality for values of Dirichlet series. This
last inequality leads to a refinement of a Theorem of Barrucand &
Louboutin on lower bounds of L(1, χ).

1 Introduction

In 1996, Hildebrand discovered in [10] that mean values of bounded mul-
tiplicative functions vary in a mild manner over a large range. This early
proof used the large sieve inequality. Shortly afterward Elliott modified com-
pletely the approach in [5] and, using Halász method, managed to improve
considerably the error term. Our aim here is to refine the latter estimate.

Theorem 1.1 Let g be a complex valued multiplicative function whose mod-
ulus is not more than 1. There exists a real number τ of modulus ≤ (Log x)1/8

such that∑
n≤x

g(n) = w1+iτ
∑

n≤x/w

g(n) +O
(
x · κ

−2
9+
√

81−32ξ (Log κ)3/2
)

∗2000 AMS Classification: 11N37, 11K65, 11M20
†Keywords: multiplicative functions, mean values, large sieve inequality, Dirichlet char-

acter, lower bound
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2 Ramaré, On the mean value of multiplicative functions

uniformly in g and w0 such that 1 ≤ w ≤ w0 ≤ x, and where

(1) κ =
2 Log x

Log 2w0

, ξ Log Log x = Log κ.

The exponent in the above Theorem is larger than 1/9 which is already
twice better than the one in [5]. This saving comes from a better handling
of the smoothing device, for which we appeal to [13] (see also [12] for some
comments). Furthermore when w0 is not more than a power of Log x, our
exponent becomes 1/8; this improvement stems from a better inequality
between values of Dirichlet series of completely multiplicative functions on
the border of their half-plane of absolute convergence. The outcome of our
discussion on such inequality is twofold: first, bilinear inequalities for the
logarithm of such Dirichlet series seem more appropriate than linear ones;
and second, we prove that if such a series has a large value at one point on a
vertical line, then this point is isolated, except for its immediate neighbours.
In passing, we shall recover and extend a result from [1] concerning lower
bounds of L-functions at 1:

Theorem 1.2 Let χ be a primitive Dirichlet character of conductor f and
let f′ be the conductor of χ2. Let us assume that f′ 6= 1. Then we have

(2) |L(1, χ)| � 1/
(
(Log f)

√
(1+ξ)/2 Log Log(10f/f′)

)
with ξ = (Log Log f′)/Log Log f.

The results in [1] correspond to the extreme case ξ = 0 and otherwise to the
exponent (3+ξ)/4. This exponent is larger than ours, though it is asymptotic
to it when ξ narrows to 1.

The optimal exponent of κ in Theorem 1.1 is 1. Indeed, let us consider
for the case when g = fy, the characteristic function of those integers with
no prime factors below some y = xu for a fixed u < 1. We have the classical
estimate

(3) (1/x)
∑
n≤x

fy(n) = ω(u) +O(1/Log2 y)

where ω is the Buchstab function. This implies that

(1/x)
∑
n≤x

fy(n)− (w/x)
∑

n≤x/w

fy(n) ∼ ω′(u)
Logw

uLog x

when (Logw)/Log x gos to zero and provided we choose u such that ω′(u) 6=
0; this is easily achieved. This example shows also what we mean by ”uni-
formly in g”: our function may depend on x.

We can refine somewhat the previous approach when g is real-valued.
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Theorem 1.3 Let g be a real valued multiplicative function whose modulus
is not more than 1. We have∑

n≤x

g(n) = w
∑

n≤x/w

g(n) +O
(
x · κ

−1/4

1+
√

1−ξ/2 (Log κ)5/4

)
uniformly in g and w0 such that 1 ≤ w ≤ w0 ≤ x, and where κ and ξ are
defined in (1).

This time, the exponent of κ lies between (2−
√

2)/4 = 1/6.828 . . . when
ξ = 1 and 1/8 when ξ = 0.

Concerning Theorems 1.1 and 1.3, let us specify that we handle the case
of bounded multiplicative functions by noticing that their Dirichlet series
compares to the one of a completely multiplicative one up to multiplication
by a third series absolutely convergent in a larger half-plane.

We show at the end of this paper that τ can in fact be taken not more

than the saving in Theorem 1.1, namely κ
2

9+
√

81−32ξ (Log κ)−3/2.
Hildebrand applied his idea to the Moebius function, see [11], and ob-

tained an elementary proof of the prime number theorem. By using Theo-
rem 1.1, one can for instance improve the Burgess inequality, see [3], on the
initial interval [1, y]: we first extend the summation from ranging over [1, y]
to range over [1, wy] for a suitable w and we prove that the resulting sum is
indeed smaller than the trivial bound. This general principle can be applied
to numerous situations. Hildebrand already used in [10] this idea and Elliott
gave some other applications in [6] which are thus directly improved upon
by our results.

2 Frame of the proof

We follow closely [5], which in turn is a modification of a paper of Halász.
We consider

(4) S0(g, y) = y−1
∑
n≤y

g(n)

and

(5) S(g, y, β) = y−1
∑
n≥1

Log n g(n)e−(n/y)β

.

In order to compare both, let us first note the following Lemma whose proof
is delayed until next section:
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Lemma 2.1 We have for β ≥ 1:∑
n≤y

(
1− e−(n/y)β)

Log n+
∑
n>y

e−(n/y)β

Log n� y
Log y

β
+ y + β Log y.

We use furthermore the estimate
∑

n≤y Log(y/n) � y and get

(6) S0(g, y) Log y = S(g, y, β) +O(β−1 Log y + 1 + y−1β Log y).

Halasz in [8] and Elliott in [5] use a different smoothing while Ruzsa uses
none in [15]. The removal of the smoothing these first authors employ is
responsible in their proof for halving the exponent of the saving by 2. If we
were to not introduce any smoothing at all like in [15], the error term would
have an additionnal Log Log x (possibly Log Log Log x after some trimming).

Halász method relies on expressing the average in consideration in terms
of an integral of the derivative of the Dirichlet series

(7) D(g, s) =
∑
n≥1

g(n)/ns.

We use here:

(8) S(g, y, β) =
−1

2iπβ

∫ α+i∞

α−i∞
D′(g, s)Γ (s/β) ys−1ds

with

(9) α = 1 + (Log x)−1, 1 ≤ y ≤ x, β ≥ 2.

The parameter β will tend to infinity at a slower pace than Log x and will
have to be tuned properly (this is done in (35)).

Once α is fixed, we construct a real number τ not too large such that:

1. D(g, s+ iτ) is appreciably smaller than ζ(α) for all s neither too close
nor too far from 0. More precisely, we ensure that

(10) µ = (α− 1) max
K(α−1)≤|t|≤β3

|D(g, s+ iτ)|

is small enough;

2. if τ 6= 0, we needD(g, α+iτ) to be close enough to ζ(α); more precisely,
we ensure that ∑

p≤x

(1−<g(p)p−iτ )/p

is small enough.
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Having such a τ , we consider the multiplicative function

(11) gτ (n) = n−iτg(n)

which satisfies D(gτ , s) = D(g, s+ iτ).

We follow Halász method as in [5] and apply (8) to gτ . By using the
exponential decay of the Γ-function in vertical strips, we readily shorten this
integral to |=s| ≤ β3. As in [5], the main work is then to study the medium
range K(α− 1) ≤ |=s| ≤ β3. On the remaining range, we exchange x/w by
x with an error term O(K Logw0) as in [5], and we present in section 10 an
improvement of it in case g is real-valued. We thus reach

(12) S(gτ , x/w, β) = S(gτ , x, β) +O(error) +O
(
K

Logw0

Log x
Log x

)
.

At this level we choose β and K optimally and derive an estimation of
S0(gτ , x/w) − S0(gτ , x) by dividing the resultant error term by Log x; we
should in fact add a O((Logw0)/Log x) but this can be incorporated in the
main error term simply by assuming that K ≥ 2. The proof of the Theorem
in case τ = 0 is complete at this level, and in particular when g takes only
real values.

We remove τ in case it is 6= 0 by appealing to Lemma 8.6 from [15]:

Lemma 2.2 Let b be a real number and set L =
∑

p≤x |1−g(p)|/p. We have

∑
n≤x

g(n)nib =
xib

1 + ib

∑
n≤x

g(n) +O
(
x
(
eL/Log x

)1/2
Log2(|b|+ Log x)

)
.

As a matter of fact, Ruzsa stated this Lemma for unimodular multiplicative
functions g, that is those who verify |g(n)| = 1, but it is easily seen that the
proof applies also in our somewhat more general context. It is used in this
case by [5].

Let us stress again that none of the implied constants in the O-symbols
depend on g and we shall indeed use Lemma 2.2 on gτ , with b being τ .

3 Proof of Lemma 2.1

This section is routine, but we need to handle completely the dependence in
the parameter β. We simply use

∑
n≤t Log n = tLog t− t+O(Log(2t)) and
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an integration by parts:∑
n≤y

Log ne−(n/y)β

=
∑
n≤y

Log nβ

∫ y

n

(
t

y

)β−1

e−(t/y)β dt

y
+ e−1

∑
n≤y

Log n

= β

∫ y

1

(tLog t− t+O(Log(2t)))

(
t

y

)β−1

e−(t/y)β dt

y
+ e−1y Log y +O(y).

We call V the left-hand side. The above estimation simplifies into

V = β

∫ y

1

(tLog t− t)(t/y)β−1e−(t/y)β

dt/y + e−1y Log y +O(y)

= yβ

∫ 1

1/y

(Log u+ Log y − 1)uβe−uβ

du+ e−1y Log y +O(y)

= y Log y β

∫ 1

1/y

uβe−uβ

du+ e−1y Log y +O(y)

We continues by noticing that

β

∫ 1

1/y

uβe−uβ

du = β

∫ 1

0

uβe−uβ

du+O(βy−1)

=

∫ 1

0

v1/βe−vdv +O(βy−1)

=

∫ 1

0

e−vdv +O
(
βy−1 +

∫ 1

0

(1− v1/β)dv

)
= 1− e−1 +O

(
βy−1 + β−1

)
.

Let us now consider

W =
∑
n≥1

Log n e−(n/y)β

=
∑
n≥1

Log n β

∫ ∞

n

(
t

y

)β−1

e−(t/y)β dt

y

= β

∫ ∞

1

(tLog t− t+O(Log(2t))

(
t

y

)β−1

e−(t/y)β dt

y
.

We use yet another integration by parts to get

β

∫ ∞

1

Log(2t)

(
t

y

)β−1

e−(t/y)β dt

y
= Log 2 +

∫ ∞

1

e−(t/y)β dt

t

≤ Log 2 +

∫ ∞

1/y

e−uβ du

u
≤ Log 2 +

∫ 1

1/y

du

u
+

∫ ∞

1

e−uβ du

u

≤ Log(2y) + β−1.
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We continue as follows

W = yβ

∫ ∞

1/y

(Log u− 1 + Log y)uβe−uβ

du+O(1)

= yβ

∫ ∞

0

(Log u− 1 + Log y)uβe−uβ

du+O(1 + β Log y)

= y(Log y − 1)Γ
(
1 + β−1

)
+ yβ−1Γ′

(
1 + β−1

)
+O(1 + β Log y)

and we conclude easily.

4 Linear inequalities for values of Dirichlet

polynomials on difference sets

Difference sets are especially atuned with Dirichlet polynomials and appear in
some important places in the theory of large values of Dirichlet polynomials,
as in [13] and in [9].

Let D(s) =
∑

n≥1 ψnn
−s be a Dirichlet series with non-negative coeffi-

cients and admitting an abscissa of absolute convergence not more than 1.
The examples we have in mind are Log ζ(s) with ψn = Λ(n)/Log n and
−(ζ ′/ζ)(s) with ψn = Λ(n). We restrict our attention to series having non-
negative coefficients for simplicity. The object of this part is to discuss prop-
erties of the shape

(13) ∀(ϕa)a ∈ RA,∀σ > 1, UD(σ) +
∑

1≤a 6=b≤A

ua,bD(σ + i(ϕa − ϕb)) ≥ 0

where U and the ua,b’s are real numbers, ub,a = ua,b and A is a given integer.
The set of such (U, (ua,b)) is obviously a cone and we would like to know the
generators of its extremal half-lines. Clearly such a set depends on D (note
that D can be 0), so we restrict our attention to universal (U, (ua,b)), i.e.
such that (13) holds for all D. In particular, it is enough to take polynomials
instead of series, from which we deduce that it is enough to verify it for the
monomials n−s; changing the ϕa’s, we infer that it is enough to have

(14) ∀(ϕa)a ∈ RA, U +
∑

1≤a 6=b≤A

ua,be
i(ϕa−ϕb) ≥ 0.

Another way of writing (14) is

(15) ∀(za)a ∈ UA, U + <
∑

1≤a 6=b≤A

ua,bzazb ≥ 0,
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where U is the unit circle. The quantity U + <
∑

1≤a 6=b≤A ua,bzazb is an
harmonic function as a function of z1, which is non negative on the unit
circle. By using a Poisson integral, we see that the positivity extends to
|z1| ≤ 1. We treat similarly the other variables and get

(16) ∀(za)a ∈ DA, U +
∑

1≤a 6=b≤A

ua,bzazb ≥ 0,

where D is the unit disk. Set

(17) H((ua,b)) = min
(za)a∈DA

∑
1≤a 6=b≤A

ua,bzazb

which is finite since D is compact and is clearly the largest value possible for
−U . Note that it shows by taking z1 = z2 = · · · = zA = 0 that U ≥ 0. The
above discussion shows that any set {ua,b, 1 ≤ a < b ≤ A} gives rise to an
inequality like (14).

A classical case comes from

(18)

∣∣∣∣ A∑
a=1

uae
iϕa

∣∣∣∣2 =
A∑

a=1

u2
a +

∑
a 6=b

uaub cos(ϕa − ϕb)

This is used to prove that

Lemma 4.1 Let (ua) ∈ RA and (ϕa) ∈ RA. Then

0 ≤
A∑

a=1

u2
a +

∑
a 6=b

uaube
i(ϕa−ϕb).

The reader will readily show that the corresponding H is indeed −
∑A

a=1 u
2
a.

This lemma is commonly employed to show that ζ(1+ it) cannot vanish if
t 6= 0. One takes (u1, u2, u3) = (1, 1, 1) and (ϕ1, ϕ2, ϕ3) = (0, tLog n,−tLog n).
Lemma 2 from [5] or [4] (see (20) below) is a consequence of case A = 3,
(u1, u2, u3) = (1,−1,−1) and (ϕ1, ϕ2, ϕ3) = (0, τ1 Log n, τ2 Log n).

We can use such inequalities for series that do not have positive coeffi-
cients by introducing a majorizing series as in the proof of Lemma 5.2 below.

5 Another linear inequality for values of Dirich-

let polynomials

One can use (18) in a different fashion:
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Lemma 5.1 Let (ua) ∈ RA and (ϕa) ∈ RA. Let U be an upper bound for
(
∑
u2

a)
1/2. Then ∣∣∣∣ A∑

a=1

uae
iϕa

∣∣∣∣ ≤ U +
1

2U

∑
a 6=b

uaube
i(ϕa−ϕb).

Proof: Notice first that the RHS is non-negative since it is equal to

U −
∑
u2

a

2U
+

1

2U

∣∣∣∑ uae
iϕa

∣∣∣2 ≥ 1
2
U.

Then the RHS of (18) is easily seen to be not more than(
U +

1

2U

∑
a 6=b

uaub cos(ϕa − ϕb)
)2

hence the result. � � �

Lemma 5.1 is not a refinement of Lemma 4.1, due to the factor 1/2.
To derive an inequality on Dirichlet polynomials from such inequalities,

the reader may simply adapt the proof of Lemma 5.2 that follows.

Lemma 5.2 Let h be a completely multiplicative function such that D(h, s)
is absolutely convergent for <s > 1. Let h] be another completely multi-
plicative function that majorizes |h|. Let σ > 1, (ua) ∈ RA, (ta) ∈ RA and
(χa) be a family of Dirichlet characters. Let finally U be an upper bound for
(
∑
u2

a)
1/2. Then

∏A
a=1 |D(hχa, σ + ita)|ua is not more than

D(h], σ)U
(∏

a 6=b

|D(h]χaχb, σ + i(ta − tb))|uaub

)1/2U

.

Proof: We simply use Lemma 5.1 over the quantity

1

2

∑
a

ua

{
LogD(hχa, σ + ita) + LogD(hχa, σ − ita)

}
expanded in Dirichlet series:∑

n≥2

Λ(n)

nσ Log n
<h(n)

∑
a

χa(n)uae
−ita Log n.

� � �
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One can extend these inequalities from completely multiplicative to mul-
tiplicative functions as in [7] or [8]. This essentially relies on a hypothesis
asserting that the values on powers of primes are small enough. If we as-
sume like in this work that they are indeed bounded by one, we loose only a
multiplicative constant on our upper bound.

While the theory of inequalities for values of Dirichlet series on difference
sets runs rather smoothly, we have not been able to build a comfortable
setting for inequalities similar to above one. On taking A = 2, u1 = u2 = 1,
t1 = t+ τ and t2 = τ , we reach

(19) |D(h, σ + iτ)D(h, σ + it+ iτ)| ≤ D(h], σ)
√

2|D(h], σ + it)|1/
√

2

while inequality of Lemma 2 from [5] or [4] reads

(20) |D(h, σ + iτ)D(h, σ + it+ iτ)| ≤ D(h], σ)3/2|D(h], σ + it)|1/2.

The latter is better when t is small due to the smaller sum 3
2

+ 1
2

= 2 <√
2+1/

√
2 while ours is better otherwise. On using this inequality, we would

get our Theorem but with an exponent (2
√

2 − 2)/(1 + 4
√

2) = 1/8.03 · · ·
when w is constant. We continue by deriving stronger inequalities, though
they will lead only to a minor numerical improvement of this exponent. In
a different context, Barrucand & Louboutin use (20) and (19) in [1], but for
characters:

(21)

{
|D(hχ1, σ)D(hχ2, σ)| ≤ D(h], σ)3/2|D(h]χ1χ2, σ)|1/2,

|D(hχ1, σ)D(hχ2, σ)| ≤ D(h], σ)
√

2|D(h]χ1χ2, σ)|1/
√

2

for χ2 = χ1 and h = h] = 11. The first of these is already stated in Lemma 2
of [4]. We dwelve more on this aspect in section 7.

6 A bilinear inequality for values of a Dirich-

let series

The proof of Lemma 5.1 goes by ”completion of the square” and some pre-
cision is lost in the process. It can be recovered by working directly with
squares.

Here is the line of approach. We start with ‖f −
∑

i ξiϕi‖2 ≥ 0, valid in
any vector space equipped with a hermitian form 〈f |g〉, and expand it into

(22) ‖f‖2 −
∑

i

ξi〈ϕi|f〉 −
∑

i

ξi〈f |ϕi〉+
∑
i,j

ξiξj〈ϕi|ϕj〉 ≥ 0.
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The way to handle the last double sum will yield different results. We prove
three of them, though we shall use only the last one in this paper. The first
one is a now classical path to prove the large sieve inequality, see for instance
[2].

Lemma 6.1 (Selberg)
∑

i |〈f |ϕi〉|2/
∑

j |〈ϕi|ϕj〉| ≤ ‖f‖2.

Proof: In (22), use

(23)
∑
i,j

ξiξj〈ϕi|ϕj〉 ≤
∑
i,j

|ξi||ξj||〈ϕi|ϕj〉| ≤
∑
i,j

1
2

(
|ξi|2 + |ξj|2

)
|〈ϕi|ϕj〉|.

The choice ξi = 〈f |ϕi〉/
∑

j |〈ϕi|ϕj〉| yields the Lemma. � � �

Lemma 6.2
∑

i |<〈f |ϕi〉|2/
∑

j |<〈ϕi|ϕj〉| ≤ ‖f‖2.

Proof: In (22), assume ξi to be real numbers. We can insert real part signs
and proceed as before with the choice ξi = <〈f |ϕi〉/

∑
j |<〈ϕi|ϕj〉| to get the

stated Lemma. � � �

In our application, 〈f |ϕi〉 will be LogF (xi), so its real part will be
Log |F (xi)|. The previous Lemma majorizes the absolute value of this quan-
tity, i.e. majorizes and minorizes |F (xi)|. This precision is obtained because
bounding |<〈ϕi|ϕj〉| will also require some lower bounds. This is avoided in
the next Lemma.

Lemma 6.3 Assume <〈f |ϕi〉 ≥ 0 for all i. Then

∑
i

|<〈f |ϕi〉|2∑
j/<〈ϕi|ϕj〉≥0<〈ϕi|ϕj〉

≤ ‖f‖2.

Proof: In (22), take nonnegative real ξi’s. Insert real parts, discard the
<〈ϕi|ϕj〉 that are non positive and choose ξi = <〈f |ϕi〉/

∑
j/<〈ϕi|ϕj〉≥0<〈ϕi|ϕj〉.

The Lemma readily follows. � � �

Lemma 6.4 Let D(s) =
∑

n ψnn
−s be a Dirichlet series absolutely conver-

gent for <s > 1. We fix an upper bound ψ]
n of |ψn|. Let σ > 1 and t be

fixed real numbers. We put D](s) =
∑

n ψ
]
nn

−s and for ∆ and δ ≥ 0 two real
parameters we introduce

(24) ∆+(δ,∆) = sup
δ≤|t′|≤2∆

<D](σ + it′).
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Let (ua) ∈ RA be a family of points satisfying |ua| ≤ ∆ and |ua − ub| ≥ δ for
a 6= b. Assume that for all a, we have <D(σ + iua + it) ≥ 0. We have

A∑
a=1

|<D(σ + iua + it)|2 ≤ D](σ)(D](σ) + (A− 1)∆+(δ,∆)).

Proof: We simply apply Lemma 6.3 to the Hilbert space of sequences (rn)
such that

∑
n≥1 |rn|2n−σ < ∞ equipped with the hermitian product 〈r|s〉 =∑

n≥1 rnsnn
−σ. � � �

Lemma 6.5 Let 0 ≤ T0 ≤ T1 be two real parameters. Let h be a completely
multiplicative function of modulus bounded by 1. There exists τ ∈ [−T1, T1]
such that

max
T0≤t≤T1

max(0,Log |D(h, α + i(t+ τ))|)2

Log2 ζ(α)

≤ 1− max
T0≤|t|≤2T1

Log
(
ζ(α)/|ζ(α+ it)|

)
2 Log ζ(α)

= B.

Moreover, either τ = 0, or |τ | ≥ T0 and∑
p≥2

(1−<h(p)p−iτ )/pα ≤ −(1−
√
B) Log(α− 1) +O(1).

Proof: Either the right-hand side of our first inequality is ≤ B for τ = 0 or
there exists a t ∈ ±[T0, T1], which we call τ , and such that

Log2 |D(h, α + iτ)| > B Log2 ζ(α).

Let then t such that T0 ≤ |t| ≤ T1. By Lemma 8.1, we have

max(0,Log |D(h, α + i(t+ τ))|)2

Log2 ζ(α)
+

Log2 |D(h, α + iτ)|
Log2 ζ(α)

≤ 1 + max
T0≤|t|≤2T1

Log |ζ(α+ it)|
Log ζ(α)

= 2B

and we use our lower bound on Log |D(h, α + iτ)| to conclude. � � �
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7 A detour towards L-functions and a proof

of Theorem 1.2

It is immediate to work out a version Lemma 6.4 with Dirichlet characters.
In case of two characters and by applying this Lemma to the logarithm of
the corresponding L-series multiplied by ε = ±1, this reads

(25) max
(
0, εLog |L(σ, χ1)|

)2
+ max

(
0, εLog |L(σ, χ2)|

)2
≤ Log ζ(σ)

(
Log ζ(σ) + max

(
0,Log |L(σ, χ1χ2)|

))
.

We specialize it to χ2 = χ1 and get

2 max
(
0, εLog |L(σ, χ)|

)2 ≤ Log ζ(σ)
(
Log ζ(σ) + max

(
0,Log |L(σ, χ2)|

))
.

Let us assume that χ2 has conductor f′ 6= 1 while χ is primitive of conductor
f and let χ′ the primitive character associated with χ2. For σ ≥ 1, we have

|L(σ, χ2)| ≤ |L(σ, χ′)| f/f′

φ(f/f′)

so that

Log |L(σ, χ2)| ≤ Log Log f′ +O(Log Log Log(10f/f′)).

Let us borrow the estimate (this is for instance a consequence of Lemma d
of [14] used in equation (1) therein)

|L(1, χ)| � |L(σ, χ)|

for σ = 1 + 1/Log f and let us assume that |L(1, χ)| ≤ 1. We set

(Log f)ξ = Log f′

and Theorem 1.2 follows from our inequality with ε = −1.

8 A bilinear inequality for values of real Dirich-

let series

In case of Dirichlet series with real coefficients, we can look simultaneously
at the contribution of D(σ+ it) and D(σ− it) which are equal. In this case,
it is slightly better to start the proof anew:
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Lemma 8.1 Let D(s) =
∑

n ψnn
−s be a Dirichlet series absolutely conver-

gent for <s > 1. We assume that all ψn are real numbers and we fix an
upper bound ψ]

n of |ψn|. Let σ > 1 and t be fixed real numbers. We put
D ](s) =

∑
n ψ

]
nn

−s and for ∆ and δ > 0 two real parameters we introduce

(26) ∆+(δ,∆) = sup
δ≤|t′|≤2∆

<D ](σ + it′), W+(∆) = sup
|2t−t′|≤2∆

<D ](σ + it′)

Let (ua) ∈ RA be a family of points satisfying |ua| ≤ ∆ and |ua − ub| ≥ δ for
a 6= b. Assume that for all a, we have <D(σ + iua + it) ≥ 0. We have

A∑
a=1

|<D(σ + iua + it)|2 ≤ 1
2
D ](σ)(D ](σ) + (A− 1)∆+(δ,∆) + AW+(∆)).

This yields for A = 1:

(27) 2|<D(σ + it)|2 ≤ max
(
2,D ](σ)(D ](σ) + <D ](σ + 2it))

)
.

Proof: We have∣∣∣∣ A∑
a=1

wk<D(σ + it+ iua)

∣∣∣∣2 =

∣∣∣∣∑
n≥1

ψn

nσ

A∑
a=1

wa<n−it−iua

∣∣∣∣2
≤ D ](σ)

{∑
n≥1

ψ]
n

nσ

∑
a,b

wawb<nit+iua<nit+iub

}
where the wa’s are non-negative real numbers. This last expression reads
also

1
2
D ](σ)

(∑
a

w2
aD

](σ) +
∑
a 6=b

wawb<D ](σ + i(ua − ub))

+
∑
a,b

wawb<D ](σ + i(2t+ ua + ub))

)
.

We discard the <D ](σ+iw) that are negative. Appealing to xy ≤ (x2+y2)/2,
we get ∑

a 6=b,
<D](σ+i(ua−ub))≥0

wawb ≤ (A− 1)
∑

a

w2
a

and a similar inequality for the part with D ](σ + i(ua + ub)). We thus reach
the upper bound

1
2
D ](σ)

∑
a

w2
a

(
D ](σ) + (A− 1)∆+(δ,∆) + AW+(∆)

)
.

We simply take wa = <D(σ + it+ iua). � � �
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9 On the Dirichlet series of a multiplicative

function of modulus ≤ 1

In this section, g is a multiplicative function of modulus ≤ 1 and we stress
that none of the constants implied in the �-symbols depend on g. We first
quote a result from section 10 of [15]:

Lemma 9.1 We write D(g, s) = D0(g
∗, s)J(s) with

D0(g
∗, s) =

∏
p≥2

(
1− g(p)

ps

)−1

and where J(s) is holomorphic for <s > 1/2 and verifies

1 � J(s) � 1, J ′(s) � 1 (<s ≥ 1).

The function g∗ is completely multiplicative and still bounded in modulus
by 1. We next quote Lemma 1 from [5] (see also (9.18 − 20) of [15] or pp
337-338 of [7]).

Lemma 9.2 For 1 < σ ≤ 2 and N ≥ 0, we have∫
|τ |≥N

∣∣∣∣D′(g, s)

sD(g, s)

∣∣∣∣2 dτ ≤ 2πe42

(N + 1)(σ − 1)

with s = σ + iτ . Moreover, if δ > 0,∫ σ+i∞

σ−i∞

|D(g, s)|1+δ

|s|2
|ds| � 1

δ(σ − 1)δ
.

Lemma 9.3 (Stirling) Suppose σ0 ≤ σ ≤ σ1 and |t| ≥ 1. Then

|Γ(σ + it)| =
√

2π|t|σ−1/2 exp(−π|t|/2)
(
1 +Oσ0,σ1(1 + 1/|t|)

)
.

Lemma 9.4 When σ > 1 and β ≥ 2, we have

(σ − 1)

∫
|t|≥T0

|D′(g, s)Γ(s/β)| dt/β

�
(
(σ − 1) maxβ3≥|t|≥T0

|D(g, s)|
)λ/2

√
1− λ

Log β + e−β2

for any λ ∈]0, 1[.

We can of course replace D(g, s) by D(g∗, s) on the right-hand side, where
g∗ is defined in Lemma 9.1.
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Proof: Let us first study the contribution of large |t|’s. We first note that

|Γ((σ + it)/β)/β| � e−|t|/β/(σ + |t|) (0 < σ ≤ β).

This holds because, when |t| ≤ β, we use the pole of Γ at s = 0, while for
|t| ≥ |β, we use Lemma 9.3. We then proceed as in [15].∫

|t|≥T0

|D′(g, s)||Γ((σ + it)/β)/β|dt ≤
∑
k∈Z

e−|k|/β

1 + |k|

∫ σ+i(k+1)

σ+ik,
|s|≥T0

|D′(g, s)|dt

Let us call I a typical set of integration (depending on k). We use Cauchy’s
inequality and appeal to Lemma 9.2 concerning the part withD′(g, ·)/D(g, ·).
We write s = s′ + ik, where s′ ranges I ′ and note that D′(g, s) = D′(gk, s

′)
(gk is defined in (11)). We get(∫

I′
|D′(gk, s

′)|dt
)2

=

(∫
I′
|D′/D(gk, s

′)||D(gk, s
′)|dt

)2

�
∫

I′
|D′/D(gk, s

′)|2dt
∫

I′
|D(gk, s

′)|2dt

≤
∫ ∞

−∞
|D′/D(gk, s

′)|2 dt

|s′|2

∫ ∞

−∞
|D(gk, s

′)|2 dt

|s′|2

≤ 1

σ − 1

∫ ∞

−∞
|D(gk, s

′)|2 dt

|s′|2
.

When |k| ≥ β3, we bound the last integral simply by 1/(σ − 1). Otherwise,
we need to save some more and we proceed as follows. For any λ ∈]0, 1], we
have: ∫ ∞

−∞

∣∣∣∣D(gk, s
′)

s′

∣∣∣∣2 dt =

∫ ∞

−∞

|D(gk, s
′)|λ|D(gk, s

′)|2−λ

|s′|2
dt

� max
β3≥|t|≥T0

|D(g, s)|λ(σ − 1)λ−1/(1− λ)

and the Lemma follows readily. � � �

Lemma 9.5 Assume g to be real-valued. When σ > 1 and T0 ∈ [σ − 1, 1],
we have

|D(g, σ + iT0)| � (σ − 1)−3/4T
−1/4
0 .

Proof: By Lemma 9.1, it is enough to consider the case where g is completely
multiplicative. We set L = 1/(σ − 1). In case |D(σ + iT0)| is larger than 1,
we get

2 Log2 |D(σ + iT0)| ≤ (LogL+O(1))
(
2 LogL+O(1)− Log

√
1 + (LT0)2

)
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so that

Log |D(σ + iT0)| ≤ LogL
(
1−

Log
√

1 + (LT0)2

4 LogL

)
+O(1)

as required. � � �

10 Continuity around <s = 0 when g is real

valued

The aim of this section is to study the difference

(28) Θ =
−1

2iπ

∫ K(α−1)

−K(α−1)

D′(g, s)Γ(s/β)(xs−1 − (x/w)s−1)ds/β

where s = α+ it. Since K(α− 1) ≤ 1 ≤ β, the factor Γ(s/β)/β is essentially
constant. We handle the wz−1 − 1 in a standard fashion:

wz−1 − 1

z − 1
=

∫ Log w

0

e(z−1)udu

so that, when w ≥ 1

|ws−1 − 1| ≤ w<s−1|s− 1|Logw.

As a consequence, we could majorize |ws−1− 1| uniformly by (1 +K)(α− 1)
as in [5] but some more precision results in a much better outcome. First
note that, with the shorthand T0 = K(α− 1),∫ T0

−T0

|D′/D(g, s)|2dt� 1/(α− 1).

We handle the part with D(g, s) somewhat more carefully and write∫ T0

−T0

|D(g, s)|2|s− 1|2dt ≤ max
|t|≤T0

(|D(g, s)|λ|s− 1|2)
∫ T0

−T0

|D(g, s)|2−λdt.

The reader may better understand what happens here by invoking Lemma 9.5.
Our actual treatment is more precise. Since g is real-valued, we can ap-
ply (27) to g∗ of Lemma 9.1 and get

(29) 2
Log2 |D(g∗, s)|

Log2 ζ(α)
≤ 1 +

Log
(

1√
(α−1)2+4t2

+O(1)
)

2 Log ζ(α)
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with s = α+ it. We can majorize λLog |D(g∗, s)|+ 2 Log
√

(α− 1)2 + t2 by

λLog ζ(α)√
2

√√√√
1 +

Log
(

1√
(α−1)2+4t2

+O(1)
)

2 Log ζ(α)
+ 2 Log

√
(α− 1)2 + 4t2.

We can rewrite this upper bound as a
√

1 + bLog(u−1 + c) + 2 Log u whose
derivative reads(

− ab

4(1 + cu)
√

1 + bLog(u−1 + c)
+ 1

)
2

u
> 0.

We can thus majorize this quantity by its value in T0. Majorizing that by
the value over the interval [T0, β

3], we reach

(30)

∫ K(α−1)

−K(α−1)

|D′(g, s)||xs−1 − (x/w)s−1|dt� K
µλ/2

√
1− λ

Logw

where µ is defined in (10).

11 The proof of Theorem 1.3

We first quantify the error term named error in (12). From (27) applied to
g∗ of Lemma 9.1, we get

(31)
Log2 |D(g∗, s)|

Log2 ζ(α)
≤ 1 +

Log
(

1√
4K2+1

+ c(α− 1) Log β
)

2 Log ζ(α)
= 1− u

for a constant c and we feed this information in Lemma 9.4. We further
use (30). The resulting error term is O of:

(α− 1)λ(1−
√

1−u)/2

√
1− λ

(
Log β +K

Logw

Log x

)
+

1

β
+

1

Log x
+
β Log(x/w0)

(x/w0) Log x
.

To compare with [5], our way of handling the smoothing yields a Log β instead
of a β. To compare with [15], we would get a Log β but only for β �
Log xLog Log x.

We take

(32) K = β = κ and λ = 1− (Log κ)−1.

We can majorize K by
√

4K2 + 1 and the latter by c2(Log x)2u Log κ for some
constant c2 since

2uLog Log x+O(1) = 1
2
Log(4K2 + 1)− Log

(
1 + c(α− 1)

√
4K2 + 1 Log β

)
.

Note next that

(α− 1)(1−
√

1−u)/2 = (α− 1)
u

2(1+
√

1−u) � κ
1

4(1+
√

1−u) (Log κ)1/4.
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12 The proof of Theorem 1.1

To handle the case of a complex valued g, we proceed as in [5] by replacing
our appeal of (27) by Lemma 6.5. We first prove that

(33) S0(gτ , x) = S0(gτ , x/w) +O(x · ε) with ε = (Log κ) /κ
2

9+
√

81−32ξ .

Proof: We again quantify the error term named error in (12). From
Lemma 6.5 applied to g∗τ of Lemma 9.1, we get

(34)
Log2 |D(g∗τ , s)|

Log2 ζ(α)
≤ 1 +

Log
(

1√
4K2+1

+ c(α− 1) Log β
)

2 Log ζ(α)
= 1− u

for a constant c and where s = α+ it with K(α− 1)T0 ≤ |t| ≤ T1 = β3. We
feed this information in Lemma 9.4. The resulting error term is O of:

(α− 1)λ(1−
√

1−u)/2

√
1− λ

Log β +
1

β
+

1

Log x
+
β Log(x/w0)

(x/w0) Log x
+K

Logw0√
1− λLog x

To compare with [5], our way of handling the smoothing yields a Log β instead
of a β. To compare with [15], we would get a Log β but only for β �
Log xLog Log x.

We select

(35) β = κ =
2 Log x

Log 2w0

.

We can majorize K by
√

4K2 + 1 and the latter by c2(Log x)2u for some
constant c2 since

2uLog x+O(1) = 1
2
Log(4K2 + 1)− Log

(
1 + c(α− 1)

√
K2 + 1 Log β

)
and we assume K = O(Log x/Log β). Indeed K will be chosen of size

about (Log x)2u = κ
1− 2

9+
√

81−32ξ which is at most κ8/9. Furthermore K �
(Log x)2u/Log κ. We majorize w by w0 and solve

(α− 1)(1−
√

1−u)/2 = (Log x)2u/κ.

Recall that κ = (Log x)ξ. We thus need 1−
√

1− u = 2ξ − 4u i.e. 1 + 4u−√
1− u = 2ξ. If 1 + 4u− 2ξ ≥ 0, it is equivalent to

(1 + 4u)2 + (−4ξ + 1
4
)(1 + 4u) + 4ξ2 − 5

4
= 0.
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This gives

(36) u =
16ξ − 9 +

√
81− 32ξ

32
.

Next, 1 + 4u − 2ξ ≥ 0 iff
√

81− 32ξ ≥ 1 i.e. ξ ≤ 5/4 which is always true.
We get the upper bound

(37) O
(
(Log x)−1 + β−1 + κ−(1−2uξ)λ/

√
1− λ

)
where the exponent reads

1− 2u/ξ =
9−

√
81− 32ξ

16ξ
=

2

9 +
√

81− 32ξ
.

Finally, the choice λ = 1− (Log κ)−1 is nearly optimal. � � �
From (33), we deduce

xiτ

1 + iτ

∑
n≤x

g(n)n−iτ =
(x/w)iτw1+iτ

1 + iτ

∑
n≤x/w

g(n)n−iτ +O (x · ε/(1 + |τ |)) .

On using Lemma 2.2 for gτ and b = τ , we get∑
n≤y

g(n) =
yiτ

1 + iτ

∑
n≤y

g(n)n−iτ +O
(
y · (eLy/Log y)1/2 Log2(2β)

)
for all y ≤ x and where Ly =

∑
p≤y |1− g(p)p−iτ |/p . [5] proves that

L2
y ≤ 2 Log Log(3y)

(
(1−

√
B) Log Log x+O(1)

)
where B is defined in Lemma 6.5 with T0 = K(α − 1) and T1 = β3. Recall-
ing (31), we discover that B = 1−u. Note that 1−

√
1− u = 2ξ−4u ≤ 2ξ/8,

and thus (see (1))

L2
y ≤ 1

2
Log Log(3y)

(
Log κ+O(1)

)
and thus∑

n≤y

g(n) =
yiτ

1 + iτ

∑
n≤y

g(n)n−iτ +O
(
y · κ

1
2
√

2

√
η(1+O(1/ Log κ))−1

2
η
Log2(2β)

)
with η Log κ = Log Log 3y. We need the exponent of κ ot be strictly less
than −1/8. To prove Theorem 1, it is enough to consider the case when κ
is large enough. This implies in turn that η can be assumed large enough to
ensure that the exponent is indeed ≤ 1/7.

This argument shows also that S(g, x) and S(g, x/w) are smaller than the
error term in Theorem 1.1 when τ is larger than the saving there, namely

κ
2

9+
√

81−32ξ (Log κ)−3/2.
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