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Abstract

Multiphase flow equations for two components (for instance water and hydrogen) and two phases (liquid
and gas), with equilibrium phase exchange, has been used to simulate the process of miscible displacement
in porous media. Laboratory and field studies have shown that this assumption fails under certain circum-
stances especially for accurate description of the pollution and a finite transfer velocity, called here the
kinetics. We propose a numerical scheme based on a two-step convection/diffusion-relaxation strategy to
simulate the non-equilibrium model. In a first step we solve the intra-phase transfer (convection/diffusion)
working with liquid saturation, liquid pressure and dissolved hydrogen concentration as primary vari-
ables. In the second step, we address the interphase transfer using the solubility relation that is solved by
projection on the equilibrium state. This technique also ensures the positivity for the liquid saturation and
produces energy estimates. One important advantage of this approach is the fact that the simulation can
be easily adapted to different linear and non-linear equilibrium laws between phases. Another advantage
is that our proposed method includes the kinetics in a projection step and keeps the displacement of the
components. We implemented this new model in in-house simulation code and present numerical results
comparing the model with equilibrium and non-equilibrium one.

Keywords: two-phase, two components, porous media, finite volume, kinetics

1. Introduction

Understanding the transport migration of radionuclides around a nuclear waste repository and its
environmental impact is valuable to the study of radioactive waste management that represents a critical
issue to tackle for a successful nuclear energy program. In fact, an important quantity of hydrogen can be
produced by corrosion of the steel overpack envelope which can affect all the functions allocated to host
rock and its safety.
Usually, multiphase flow equations of two components (water and hydrogen) and two phases (liquid and
gas) with equilibrium phase exchange, especially the Henry’s law, have been used to simulate this process.
The local mass equilibrium assumption means that the transfer velocity of a dissolved chemical is infinite.
Laboratory and field studies have shown that this assumption fails under certain circumstances especially
for accurate description of the pollution and a finite transfer velocity, called here the kinetics. That last
seems to give a more accurate description of the pollution [11, 12], [13] or [14].
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We propose a numerical scheme based on a two-step convection/diffusion-relaxation strategy to
simulate the non equilibrium model. We start by solving the intra-phase transfer (convection/diffusion)
working with liquid saturation, liquid pressure and dissolved hydrogen concentration as primary variables.
And then, we investigate the interphase transfer using the solubility relation. This technique ensures the
validity of the discrete maximum principle for the liquid saturation. Another important advantage of this
approach is the fact that the simulation can be easily adapted to different linear and non-linear equilibrium
laws between phases. In fact, the first step consists in computing an intermediate solution of mass
conservation of each component without the mass transfer terms (kinetic terms). Consequently a various
numerical scheme can be used to reach this approximation on several meshes. Then the second step is a
simple projection method on the equilibrium state and this step can be modified according to the kinetics.

This paper is organized as follows. In Section 2, we describe the partially miscible two phases two
components flows under the assumption of non equilibrium phase exchange and we also recall the two
phase two components model when the equilibrium is assumed to satisfy the Henry’s law. In Section
3, we present the numerical scheme. For the approximation of the mass conservation system, we detail
the construction of a two point flux approximation finite volume scheme. To ensure stability, we use an
upstream approach for the mobility of each phase and a non classical mean value of densities. We also
describe the projection step. Finally, in Section 4 we compare the solution of our problem with kinetic
mass transfer with the results obtained with the equilibrium model. In particular, we compare our results
to those proposed by the Benchmak detailed in [17, 3] in which all results are computed with the model
with equilibrium.

2. Mathematical formulation of the continuous problem

We consider herein a porous medium saturated with a fluid composed of two phases (liquid and gas)
and a mixture of two components (water and hydrogen). The water is supposed to be present in the liquid
phase only (no vapor of water due to evaporation). We refer to [3, 18, 6] for more details. Let T > 0 be
the final fixed time, and Ω be a bounded open subset of R` (` ≥ 1). We set QT = (0,T)×Ω with physical
boundary ΣT = (0,T)×∂Ω. In order to define the physical model, we write the mass conservation of each
component in each phase

(P)



∂t (Φρ
w
l sl)(t,x)+div(ρwl Vl + Jwl )(t,x) =Ω

w

l , in QT

∂t (Φρ
h
l sl)(t,x)+div(ρhl Vl + Jhl )(t,x) =Ω

h

l , in QT

∂t (Φρ
h
gsg)(t,x)+div(ρhgVg + Jhg )(t,x) =Ω

h

g, in QT

∂t (Φρ
w
g sg)(t,x)+div(ρwg Vg(t,x)+ Jwg )(t,x) =Ω

w

g , in QT

where Φ(x) is the given porosity of the medium, sα(t,x) the saturation of the phase α (α = l,g) with
the saturation condition sl + sg = 1, ρβα the density of the component β in the phase α, ρα = ρhα + ρwα
the density of the phase α, Vα the phase flow velocities, Jβα the β-component diffusive flux in α phase,
and Ω

β

α the mass transfer between the components β of each phase α due to chemical reactions and/or
phase changes. Note that, as the production of each constituent β in the phase α must be accompanied by
destroying this species in the other phase, we have∑

α

Ω
h

α = 0 and
∑
α

Ω
w

α = 0. (1)

The velocity of each fluid Vα is given by the Darcy law

Vα = −K
krα (sα)
µα

(∇pα − ρα(pα)g),
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whereK(x) is the intrinsic (given) permeability tensor of the porous medium, krα the relative permeability
of the α phase, µα the constant α-phase’s viscosity, pα the α-phase’s pressure and g the gravity. The
mobility of each phase is defined as Mα(sα) = krα (sα)/µα.

Following the Fick’s law, the diffusive flux of a component β in the phase α is given by

Jβα = −ραDβ
α∇Xβ

α , (2)

where the coefficient Dβ
α is the Darcy scale molecular diffusion coefficients of β-component in α-phase

and Xβ
α is the component β molar fraction in phase α. In a binary system, diffusive fluxes satisfy∑

β

Jβα = 0, ∀α. (3)

To close the system, we introduce the capillary pressure law which links the jump of pressure of the two
phases to the saturation

pc(sl) = pg − pl, (4)

the application sl 7→ pc(sl) is decreasing. This model also corresponds to the application of CO2 storage
when hydrogen is replaced by CO2.

2.1. Model assuming water incompressibility and no water vaporization
We assume now that the water is incompressible and the water vapor quantity is negligible, i.e., the

gas phase contains only hydrogen, then ρwg = 0, pwg = 0. Leading to

pg = phg, ρg = ρ
h
g, Jhg = Jwg = 0 and Ω

w

l =Ω
w

g = 0. (5)

Formulas of (P) could be rewritten as

(P)


∂t (Φρ

w
l sl)+div(ρwl Vl + Jwl ) = 0,

∂t (Φρ
h
gsg)+div(ρhgVg) =Ω

h

g,

∂t (Φρ
h
l sl)+div(ρhl Vl + Jhl ) =Ω

h

l .

2.2. Dynamical phase change between two phases
There are two ways to prescribe the mass transfer between the phases. The first one is to consider a

static mass transfer that leads to impose the Henry’s law into the system of conservation of the mass of
each component [3, 19]. The second approach, used in this paper, is to consider a dynamic mass transfer
between gaseous hydrogen and dissolved hydrogen. Dynamic mass transfer means that the equilibrium
between the gaseous hydrogen and the dissolved hydrogen is not instantaneous and therefore one has to
specify a mass transfer between hydrogen gas and dissolved hydrogen. We prescribe the mass transfer as
follows

Ω
h

l = −σρl(X
h
l − Xeq), Ω

h

g = −Ω
h

l , (6)

whereσ is the inverse characteristic time to recover the equilibriumbetween both phases and Xeq represents
an equilibrium concentration. The system (P) becomes

(P)


∂t (Φρ

w
l sl)+div(ρwl Vl + Jwl ) = 0,

∂t (Φρ
h
gsg)+div(ρhgVg) = σρl(Xh

l − Xeq),

∂t (Φρ
h
l sl)+div(ρhl Vl + Jhl ) = −σρl(X

h
l − Xeq),
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which is equivalent to

(P)


∂t (Φρ

w
l sl)−div(ρwl KMl∇pl)+div(ρlDh

l ∇Xh
l ) = 0,

∂t (Φρ
h
gsg)−div(ρhgKMg∇pg) = σρl(Xh

l − Xeq),

∂t (Φρ
h
l sl)−div(ρhl KMl∇pl)−div(ρlDh

l ∇Xh
l ) = −σρl(X

h
l − Xeq).

We complete the description of the above model by introducing boundary conditions and initial
conditions. We note Γl the part the boundary ofΩwhere the liquid saturation is imposed at given pressure
and Γn = Γ\Γl the part of the boundary with no fluxes. The chosen mixed boundary conditions on the
pressures are {

pl(t,x) = pg(t,x) = 0 on (0,T)×Γl,
KMl∇pl ·n =KMg∇pg ·n = Dh

l
∇Xh

l
·n on (0,T)×Γn = 0.

(7)

The initial conditions are defined on pressures

pα(0,x) = p0
α(x), in Ω, for α = l,g. (8)

We call this system, DYNMOD "DYNamical Mass transfert mODel”. In [21] the authors propose a
numerical scheme to solve the system and they consider the velocity σ as a given function but numerical
experiments were not performed due to the lack of data for the velocity. Our aim here is to propose a
numerical scheme for which this difficulty is to overcome the lack of data by using a projection step on
the equilibrium state. We elaborate our method in the next section.

In order to compare the two models, we recall here the system with equilibrium (see [6, 19]). We
write the mass conservation of each component in QT{

∂t (Φslρhl +Φsgρhg)+div(ρhl Vl + ρ
h
gVg)−div(ρlDh

l ∇Xh
l ) = 0, (9)

∂t (Φslρwl )+div(ρwl Vl) = 0. (10)

We complete this system by the same boundary and initial conditions (7) and (8).
To define the hydrogen densities, we use the ideal gas law and the Henry law

ρhg =
Mh

RT
pg, ρhl = MhHhpg, (11)

where the quantities Mh , Hh , R and T represent respectively the molar mass of hydrogen, the Henry
constant for hydrogen, the universal constant of perfect gases and T the temperature. From (11), we get

ρhg = C1ρ
h
l where C1 =

1
HhRT

(= 52.51). (12)

In the sequel, we call the system (9)–(10) HELMOD " Henry’s Law MODel".

3. Numerical Scheme

We propose a numerical scheme based on a two-step convection/diffusion-relaxation strategy to
simulate the non equilibrium model. In a first step we solve the intra-phase transfer (convection/diffusion)
working with liquid saturation, liquid pressure and dissolved hydrogen concentration as primary variables.
The second step solves the interphase transfer, using the solubility relation.

In the following, firstly we describe the semi discretization in time of the numerical method and next
we detail the discretization in space.
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ConsiderUn = ((sl)n,(pl)n,(ρhl )
n) is given at time tn, then to compute the solution at the next time step

Un+1 = ((sl)n+1,(pl)n+1,(ρh
l
)n+1), we consider an intermediate solution, named U∗ = ((sl)∗,(pl)∗,(ρhl )

∗), of
the system (P) without the reaction terms

∂t (Φρ
w
l sl)+div(ρwl Vl + Jwl ) = 0, (13)

∂t (Φρ
h
gsg)+div(ρhgVg) = 0, (14)

∂t (Φρ
h
l sl)+div(ρhl Vl + Jhl ) = 0. (15)

The approximation of the solution of the above system is detailed in section 3.1. Then, the second step to
compute Un+1 = ((sl)n+1,(pl)n+1,(ρh

l
)n+1) is to ensure the equilibrium when the σ goes to infinity which

gives {Xh
l
= Xeq}, and leads to the following state :{

∂t (ρ
w
l sl) = 0

∂t (ρ
h
gsg + ρhl sl) = 0

(16)

In section 3.2, we detail this projection step.
In the sequel, we consider an isotropic medium, and we set K = kId , where Id is the identity matrix.

3.1. Step 1. The TPFA scheme to solve system (13)–(15)
In this section, we detail the construction of the Two Point Flux Approximation (TPFA) scheme

based on upstream approximation of mobilities according to the sign of the pressure of each phase at the
interfaces of mesh and on a specific choice of densities on the mesh interfaces. We will describe the space
and time discretization, define the approximation spaces, and introduce the finite volume scheme.

3.1.1. The orthogonal mesh
Following [7] and [2], let us specify a finite volume discretization of Ω×(0,T).

Definition 3.1. (Admissible mesh of Ω). An admissible mesh T of Ω is given by a set of open bounded
polygonal convex subsets of Ω called control volumes and a family of points (the ”centers” of control
volumes) satisfying the following properties:

1. The closure of the union of all control volumes is Ω. We denote by |K | the measure of K , and define
size(T ) = max{diam(K),K ∈ T }.

2. For any (K,L) ∈ T 2 with K , L, then K ∩ L = ∅. One denotes by E ⊂ T 2 the set of (K,L) such that
the (`−1)-Lebesgue measure of K ∩ L is positive. For (K,L) ∈ E, one denotes σK |L = K ∩ L and
|σK |L | the (`−1)-Lebesgue measure of σK |L . And one denotes ηK |L the unit normal vector to σK |L

outward to K

3. For any K ∈ T , one defines N(K) = {L ∈ T ,(K,L) ∈ E} and one assumes that ∂K = K\K =
(K ∩ ∂Ω)∪ (∪L∈N (K)σK |L).

4. The family of points (xK )K ∈T is such that xK ∈ K (for all K ∈ T ) and, if L ∈ N(K), it is assumed
that the straight line (xK ,xL) is orthogonal to σK |L . We set dK |L = d(xK ,xL) the distance between
the points xK and xL , and τK |L =

|σK |L |

dK |L
the transmissibility coefficient through σK |L (see Figure

1).

5. We assume the following regularity of the mesh : there exists ξ > 0, such that

∀K ∈ T ,
∑

L∈N (K)

|σK |L |dK |L ≤ ξ |K |.

5



K

xK

xL
σK,L

LTK,L

T

Figure 1: Finite volume mesh T : control volumes, centers and diamonds.

Discrete functions and notations. The problem under consideration is time-dependent, the time dis-
cretization of (0,T) is given by an integer value N and a uniform time step δt = T/(N + 1), we denote
(tn = nδt)n∈[0,N+1] with t0 = 0 and tN+1 = T . Let Tδt be a discretization of QT .We denote any function u
from [0,N +1]×T to R by using the subscript Tδt and we denote its value at the point (tn,xK ) as un

K , we
then denote uTδ t = (u

n
K )K ∈T ,n∈[0,N+1]. To any discrete function uTδ t corresponds an approximate function

defined almost everywhere on QT by:

uTδ t (t,x) = un+1
K , for a.e. (t,x) ∈ (tn,tn+1)×K,∀K ∈ T ,∀n ∈ [0,N].

In the same way, we denote the discrete function un+1
T

defined from T to R associated to the vector
(un+1

K )K ∈T as
un+1
T
(x) = un+1

K , for a.e. x ∈ K,∀K ∈ T .

The discrete gradient. For each interface σK |L , we associate a diamond TK |L when the two elements
K and L exist by connecting the vertices of interface and the centers of K and L, and in the case where
the interface lies on ∂Ω, we associate a half of diamond denoted Text

K |σ
associated to the element K with

σ ⊂ ∂Ω.
For each discrete function un+1

T
= (un+1

K )K ∈T , we associate ∇Dun+1
T

, R`-valued function, defined on the
dual mesh as the constant per diamond

∇Dun+1
T
(x) =


` uL−uK

dK |L
ηK |L if x ∈ TK |L,

` uσ−uK

dK ,σ
ηK |σ if x ∈ Text

K |σ
.

To take into account the no flux boundary we impose uσ = uK and for imposing pressure or saturation,
we consider uσ to be the given value at the boundary.
For any discrete function defined on diamonds un+1

D
= (un+1

K |L
)σK |L ∈E corresponds to

un+1
D
(x) = un+1

K |L, for a.e. x ∈ TK |L . (17)
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3.1.2. The coupled finite volume scheme
The finite volume scheme consists in writing the balance equations of the fluxes on each control

volume. Let Tδt be a discretization of Ω×(0,T). Let us integrate the liquid saturation equation (13), the
hydrogen in the gaseous form (14) and dissolved hydrogen concentration (15) over each control volume
K .

For clarity and simplicity, we restrict the theoretical demonstration to a horizontal field, i.e. we
neglect the gravity effect. The resulting equation is discretized with an implicit Euler scheme in time; the
normal gradients across the interfaces are discretized with a centered finite difference scheme whereas the
mobilities are approximated with an upwind scheme.
Denote by sl,Tδ t = (s

n
l,K
)K ∈T ,n∈[0,N+1], pl,Tδ t = (p

n
l,K
)K ∈T ,n∈[0,N+1] and ρhl,Tδ t = (ρ

h,n
l,K
)K ∈T ,n∈[0,N+1] the

discrete unknowns corresponding to sl , pl , ρhl . The finite volume scheme is the following set of equations
:

q0
K =

1
|K |

∫
K

q0(x)dx, for all K ∈ T , and q = sl,pl, ρhl (18)

For n = 0, N

|K |ΦK ρ
w
l

sn+1
l,K
− sn

l,K

δt
−

∑
L∈N (K)

τK |Lρ
w
l Mn+1

l,K |L(p
n+1
l,L − pn+1

l,K )

+
∑

L∈N (K)

τK |Lρ
n+1
l,K |LDh,n+1

l,K |L
(Xh,n+1

l,L
− Xh,n+1

l,K
) = 0 (19)

|K |ΦK

ρh,n+1
g,K sn+1

g,K − ρ
h,n
g,K sng,K

δt
−

∑
L∈N (K)

τK |Lρ
n+1
g,K |LMn+1

g,K |L(p
n+1
g,L − pn+1

g,K ) = 0 (20)

|K |ΦK

ρh,n+1
l,K

sn+1
l,K
− ρh,n

l,K
sn
l,K

δt
−

∑
L∈N (K)

τK |Lρ
h,n+1
l,K |L

Mn+1
l,K |L(p

n+1
l,L − pn+1

l,K )

−
∑

L∈N (K)

τK |Lρ
n+1
l,K |LDh,n+1

l,K |L
(Xh,n+1

l,L
− Xh,n+1

l,K
) = 0 (21)

The mean value of the densities of each phase on interfaces is not classical since it is given as, for all
function ρ(p) = ρl(pl), ρhg(pg), and ρhl (pl) as

1
ρn+1
K |L

=


1

pn+1
L −pn+1

K

∫ pn+1
L

pn+1
K

1
ρ(ζ ) dζ if pn+1

K , pn+1
L ,

1
ρn+1
K

otherwise,
(22)

and where Mn+1
α,K |L

= Mα(sn+1
αK |L
) denotes the upwind approximation of the mobility on the interface σK |L

with

sn+1
α,K |L =

{
sn+1
α,K if pn+1

α,K ≥ pn+1
α,L,

sn+1
α,L otherwise.

(23)

This choice is crucial to obtain estimates on discrete global pressure and on saturation.

This scheme consists in a two point flux approximation finite volume method together with a phase-
by-phase upstream scheme and a nonclassical mean value for densities. The Euler implicit discretization

7



in time and the proposed finite volume scheme satisfy industrial constraints of robustness and stability.
In comparison with incompressible fluid, compressible fluids require more powerful techniques. The
treatment of the degeneracy and the nonlinearly need the introduction of powerful techniques to link the
velocities to the global pressure and the capillary pressure on the discrete form, we refer to [21, 2, 6].

Proposition 3.1. The finite volume scheme (19)–(21) is equivalent to the variational discrete formulation:∫
Ω

ΦT ρ
w
l

sn+1
l,T
− sn

l,T

δt
ϕn+1
T

dx +
1
`

∫
Ω

ρwl Mn+1
l,D ∇Tpn+1

l,T · ∇Dϕ
n+1
T

dx (24)

−
1
`

∫
Ω

ρn+1
l,DDh,n+1

l,D
∇DXh,n+1

l,T
· ∇Dϕ

n+1
T

dx = 0

∫
Ω

ΦT

ρh,n+1
g,T

sn+1
g,T
− ρh,n

g,T
sn
g,T

δt
ξn+1
T

dx (25)

+
1
`

∫
Ω

ρh,n+1
g,D

Mn+1
g,D∇Dpn+1

g,T · ∇Dξ
n+1
T

dx = 0

∫
Ω

ΦT

ρh,n+1
l,T

sn+1
l,T
− ρh,n

l,T
sn
l,T

δt
ψn+1
T

dx+
1
`

∫
Ω

ρh,n+1
l,D

Mn+1
l,D ∇Dpn+1

l,T · ∇Dψ
n+1
T

dx

+
1
`

∫
Ω

ρn+1
l,DDh,n+1

l,D
∇DXh,n+1

l,T
· ∇Dψ

n+1
T

dx = 0 (26)

for all ϕT , ξT , ψT ∈ Hh , where the function Mn+1
l,D

, Mn+1
g,D

, Mn+1
D

are defined to be constant by diamonds
as in (17).

Proof. Multiply the equations (19), (20), and (21) respectively by ϕK , ξK and ψK and sum over all
K ∈ T , then integrating by parts we obtain (24), (25) and (26)

We summarize the main energy estimates on the problem :

Proposition 3.2 (Maximum principle). Let (s0
α,K )K ∈T ∈ [0,1]. Then, the saturation (s

n
l,K
)K ∈T ,n∈{0,...,N }

is nonnegative.

Proposition 3.3 (Energy estimates). The solution of the TPFA scheme satisfies

N∑
n=0

∫
Ω

(
Mn+1

l,D |∇Tpn+1
l,T |

2+Mn+1
g,D |∇Tpn+1

g,T |
2
)

dx ≤ C, (27)

Proof. We give here some elements of the proof and we refer to [21, 20]. To prove the estimate (27), we
consider in (24) the test function C1pn+1

l,T
− pn+1

g,T
, where C1 is defined in (12), and in equations (25)–(26) we

take the nonlinear test function gg(pn+1
g,K ) =

∫ pn+1
g ,K

0
1

ρh
l
(z)

dz, then summing the resulting equation to deduce
the estimates on velocities.

3.2. Step 2. Projection at equilibrium state
In the following, we describe the second step, called projection (relaxation) step, of the numerical

method to simulate (P).
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In the first step, using the finite volume TPFA scheme (19)–(21) to solve the mass conservation
system (P) without the source term, gives from Un

K = ((sl)
n
K ,(pl)

n
K ,(ρ

h
l
)nK ) an intermediate state U∗K =

((sl)∗K ,(pl)
∗
K ,(ρ

h
l
)∗K ). Formally, as σ tends to +∞, which is to look for Un+1

K solution of {Xh
l
= Xeq}.

Remark that as σ is finite, we have the conservation of mass{
∂t (ρ

w
l sl) = 0

∂t (ρ
h
gsg + ρhl sl) = 0

(28)

at the discrete level . As ρw
l
is constant, the first equation gives (sl)n+1

K = (sl)∗K . Define ρ
h = ρhgsg + ρhl sl ,

the second equation imposes

(U)n+1
K + (V)n+1

K = (ρh)∗K , ∀K ∈ T , (29)

whereU = ρhgsg, V = ρhl sl and (ρh)∗K = (ρ
h
gsg+ ρhl sl)∗K which can be computed from (sl)∗i , (pl)

∗
i and (ρ

h
l
)∗i .

From the Henry’s law that connects sl , pl and ρhl

MhH(T)pg − ρhl = 0, (30)

we have the following:

slHhRTU − sgV = 0.

Considering the above equality at time tn+1 and for all K , one gets

(sl)n+1
K HhRTUn+1

K −(sg)n+1
K Vn+1

K = (sl)∗KHhRTUn+1
K −(sg)∗KVn+1

K = 0

that gives by using (29), the following relation

Vn+1
K =

(sl)∗K HhRT(ρh)∗

(sg)∗K + (sl)
∗
K HhRT

. (31)

Then, from Vn+1
K we can compute (ρh

l
)n+1
K , using (29) we can compute Un+1

K and consequently pn+1
l,K

.

4. Numerical results: Gas phase (dis)appearance (quasi-1D)

In this section, we evaluate numerically the numerical scheme derived in the above section on a test
case dedicated to gas-phase (dis)appearance(see the Couplex-Gas benchmark [17, 4] for more details).
The method has been implemented into in-house code.

In order to investigate numerically the phenomena of the evolution of an non-equilibrium state to a
stabilized one, which stands to be a particular case of the configuration where a non saturated porous
block is placed within a water saturated porous structure, we consider a sealed porous medium. In this
numerical test, we intend to describe the recovery of the mechanical balance in a porous medium that is
initially out of the equilibrium. The initial non-equilibrium is characterized with the occurrence of jumps
in the phase pressures, which are typically noticed when the engineered barriers are set quite close to the
waste packages.

LetΩ be the porousmediumwhich contains subdomainsΩ1 andΩ2. The porousmedium is considered
to be homogeneous and sealed core, thus we impose no fluxes boundary on ∂Ω. The length ofΩ is Lx = 1m
and the length of Ω1 is L1 = 0.5m and the width of Ω is Ly = 0.1m see figure 2.

The porous medium and fluid characteristics are presented in [17] and summarized in Table 1.
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L1

Lx

Ly

Figure 2: Geometrical configuration of the domain

Porous medium Fluid characteristics
Parameter Value Parameter Value
Φ [-] 0.3 Dh

l
[m2 · s−1] 3×10−9

K [m2] 1.10−16 µl [Pa · s] 1×10−3

pr [Pa] 2×106 µg [Pa · s] 9×10−6

n [-] 1.54 Hh [mol.Pa−1.m−3] 7.65×10−6

slr [-] 0.01 Mh [Kg ·mol−1] 2×10−3

sgr [-] 0 ρw
l
[Kg ·mol−3] 103

Table 1: Parameter values for the porous medium and fluid characteristics used in this test

The initial conditions are given as follows

pl = 106 Pa and pg = 1.5×106 Pa in Ω1,

pl = 106 Pa and pg = 2.5×106 Pa in Ω2.

Due to the boundary conditions the solution of system is then expected to evolve from this initial
condition out of equilibrium state towards a stationary state.

We compare our results to four contributions. The four works have used the same formulation by
using the Henry’s law to the solvability reaction. In [18] and in [1] the authors use the same primary
variables two of the three pressures and recover the thermodynamically extended phase saturation from
the retention curve. In [15] the authors formulate the solubility conditions as complementary conditions.
Our results named HELMOD are the results obtained by the model HELMODwith the numerical scheme
presented in [19]. The results presented as DYNMOD are the only results using the non-equilibrium and
approximated in this paper. All numerical tests are obtained with time step δt = 10−2s and space step
δx = 10−2m.

Figure 3 shows the evolution of liquid saturation, liquid pressure and dissolved hydrogen density. This
figure illustrates the efficiency of our scheme since all quantities reach a stationary state.

Figures 4, 5, 6, 7 give a comparison between five works at t = 10s, t = 50,000s, t = 200,000s and
t = 500,000s. All results obtained in the different contributions seem very close and show similar trends.

From Figure 4 to figure 7 we observe the gas flowing in the reverse direction of the physical direction,
for the earlier times, resulting from the high gas pressure in the unsaturated zone of the porous medium.
That induces a compression of the liquid phase at the left interface, and liberates more space of the water
at the opposite side of the domain promoting a decrease of the pressure in that area. One also notices
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Figure 3: Liquid saturation, liquid pressure and density of dissolved hydrogen at different time with DYNMOD model

also a continuous propagation of the shock up to the pressure equilibrium, that subsequently converges
the global system to the equilibrium state. The main difference between the first and the rest of the test
cases is the reaching time of the equilibrium.
Acknowledgment. The authors would like to recognize the support of College of Petroleum Engineering
and Geosciences, King Fahd University of Petroleum and Minerals (KFUPM).
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