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Introduction

Understanding the transport migration of radionuclides around a nuclear waste repository and its environmental impact is valuable to the study of radioactive waste management that represents a critical issue to tackle for a successful nuclear energy program. In fact, an important quantity of hydrogen can be produced by corrosion of the steel overpack envelope which can affect all the functions allocated to host rock and its safety. Usually, multiphase flow equations of two components (water and hydrogen) and two phases (liquid and gas) with equilibrium phase exchange, especially the Henry's law, have been used to simulate this process. The local mass equilibrium assumption means that the transfer velocity of a dissolved chemical is infinite. Laboratory and field studies have shown that this assumption fails under certain circumstances especially for accurate description of the pollution and a finite transfer velocity, called here the kinetics. That last seems to give a more accurate description of the pollution [START_REF] Fabrie | On a system of nonlinear elliptic and degenerate parabolic equations describing compositional water-oil flows in porous media[END_REF][START_REF] Quintard | Convection, dispersion, and interfacial transport of contaminants: Homogeneous porous media[END_REF], [START_REF] Abriola | Mathematical modeling of rate limited transport and biotransformation in the vadose zone[END_REF] or [START_REF] Lam | Mobilization of residual oil under equilibrium and nonequilibrium conditions[END_REF].

We propose a numerical scheme based on a two-step convection/diffusion-relaxation strategy to simulate the non equilibrium model. We start by solving the intra-phase transfer (convection/diffusion) working with liquid saturation, liquid pressure and dissolved hydrogen concentration as primary variables. And then, we investigate the interphase transfer using the solubility relation. This technique ensures the validity of the discrete maximum principle for the liquid saturation. Another important advantage of this approach is the fact that the simulation can be easily adapted to different linear and non-linear equilibrium laws between phases. In fact, the first step consists in computing an intermediate solution of mass conservation of each component without the mass transfer terms (kinetic terms). Consequently a various numerical scheme can be used to reach this approximation on several meshes. Then the second step is a simple projection method on the equilibrium state and this step can be modified according to the kinetics.

This paper is organized as follows. In Section 2, we describe the partially miscible two phases two components flows under the assumption of non equilibrium phase exchange and we also recall the two phase two components model when the equilibrium is assumed to satisfy the Henry's law. In Section 3, we present the numerical scheme. For the approximation of the mass conservation system, we detail the construction of a two point flux approximation finite volume scheme. To ensure stability, we use an upstream approach for the mobility of each phase and a non classical mean value of densities. We also describe the projection step. Finally, in Section 4 we compare the solution of our problem with kinetic mass transfer with the results obtained with the equilibrium model. In particular, we compare our results to those proposed by the Benchmak detailed in [17,[START_REF] Bourgeat | Two-phase, partially miscible flow and transport modeling in porous media; application to gaz migration in a nuclear waste repository[END_REF] in which all results are computed with the model with equilibrium.

Mathematical formulation of the continuous problem

We consider herein a porous medium saturated with a fluid composed of two phases (liquid and gas) and a mixture of two components (water and hydrogen). The water is supposed to be present in the liquid phase only (no vapor of water due to evaporation). We refer to [START_REF] Bourgeat | Two-phase, partially miscible flow and transport modeling in porous media; application to gaz migration in a nuclear waste repository[END_REF]18,[START_REF] Caro | Two-component two-compressible flow in a porous medium[END_REF] for more details. Let T > 0 be the final fixed time, and Ω be a bounded open subset of R ( ≥ 1). We set Q T = (0,T) × Ω with physical boundary Σ T = (0,T) × ∂Ω. In order to define the physical model, we write the mass conservation of each component in each phase

(P)                  ∂ t (Φρ w l s l )(t, x) + div(ρ w l V l + J w l )(t, x) = Ω w l , in Q T ∂ t (Φρ h l s l )(t, x) + div(ρ h l V l + J h l )(t, x) = Ω h l , in Q T ∂ t (Φρ h g s g )(t, x) + div(ρ h g V g + J h g )(t, x) = Ω h g , in Q T ∂ t (Φρ w g s g )(t, x) + div(ρ w g V g (t, x) + J w g )(t, x) = Ω w g , in Q T
where Φ(x) is the given porosity of the medium, s α (t, x) the saturation of the phase α (α = l,g) with the saturation condition s l + s g = 1, ρ β α the density of the component β in the phase α, ρ α = ρ h α + ρ w α the density of the phase α, V α the phase flow velocities, J β α the β-component diffusive flux in α phase, and Ω β α the mass transfer between the components β of each phase α due to chemical reactions and/or phase changes. Note that, as the production of each constituent β in the phase α must be accompanied by destroying this species in the other phase, we have

α Ω h α = 0 and α Ω w α = 0. ( 1 
)
The velocity of each fluid V α is given by the Darcy law

V α = -K k r α (s α ) µ α (∇p α -ρ α (p α )g),
where K(x) is the intrinsic (given) permeability tensor of the porous medium, k r α the relative permeability of the α phase, µ α the constant α-phase's viscosity, p α the α-phase's pressure and g the gravity. The mobility of each phase is defined as M α (s α ) = k r α (s α )/µ α .

Following the Fick's law, the diffusive flux of a component β in the phase α is given by

J β α = -ρ α D β α ∇X β α , (2) 
where the coefficient D β α is the Darcy scale molecular diffusion coefficients of β-component in α-phase and X β α is the component β molar fraction in phase α. In a binary system, diffusive fluxes satisfy

β J β α = 0, ∀α. (3) 
To close the system, we introduce the capillary pressure law which links the jump of pressure of the two phases to the saturation

p c (s l ) = p g -p l , (4) 
the application s l → p c (s l ) is decreasing. This model also corresponds to the application of CO 2 storage when hydrogen is replaced by CO 2 .

Model assuming water incompressibility and no water vaporization

We assume now that the water is incompressible and the water vapor quantity is negligible, i.e., the gas phase contains only hydrogen, then ρ w g = 0, p w g = 0. Leading to

p g = p h g , ρ g = ρ h g , J h g = J w g = 0 and Ω w l = Ω w g = 0. (5) 
Formulas of (P) could be rewritten as

(P)            ∂ t (Φρ w l s l ) + div(ρ w l V l + J w l ) = 0, ∂ t (Φρ h g s g ) + div(ρ h g V g ) = Ω h g , ∂ t (Φρ h l s l ) + div(ρ h l V l + J h l ) = Ω h l .

Dynamical phase change between two phases

There are two ways to prescribe the mass transfer between the phases. The first one is to consider a static mass transfer that leads to impose the Henry's law into the system of conservation of the mass of each component [START_REF] Bourgeat | Two-phase, partially miscible flow and transport modeling in porous media; application to gaz migration in a nuclear waste repository[END_REF][START_REF] Saad | Numerical study of compositional compressible degenerate twophase flow in saturated-unsaturated heterogeneous porous media[END_REF]. The second approach, used in this paper, is to consider a dynamic mass transfer between gaseous hydrogen and dissolved hydrogen. Dynamic mass transfer means that the equilibrium between the gaseous hydrogen and the dissolved hydrogen is not instantaneous and therefore one has to specify a mass transfer between hydrogen gas and dissolved hydrogen. We prescribe the mass transfer as follows

Ω h l = -σρ l (X h l -X eq ), Ω h g = -Ω h l , (6) 
where σ is the inverse characteristic time to recover the equilibrium between both phases and X eq represents an equilibrium concentration. The system (P) becomes

(P)          ∂ t (Φρ w l s l ) + div(ρ w l V l + J w l ) = 0, ∂ t (Φρ h g s g ) + div(ρ h g V g ) = σρ l (X h l -X eq ), ∂ t (Φρ h l s l ) + div(ρ h l V l + J h l ) = -σρ l (X h l -X eq ),
which is equivalent to

(P)          ∂ t (Φρ w l s l ) -div(ρ w l KM l ∇p l ) + div(ρ l D h l ∇X h l ) = 0, ∂ t (Φρ h g s g ) -div(ρ h g KM g ∇p g ) = σρ l (X h l -X eq ), ∂ t (Φρ h l s l ) -div(ρ h l KM l ∇p l ) -div(ρ l D h l ∇X h l ) = -σρ l (X h l -X eq ).
We complete the description of the above model by introducing boundary conditions and initial conditions. We note Γ l the part the boundary of Ω where the liquid saturation is imposed at given pressure and Γ n = Γ\Γ l the part of the boundary with no fluxes. The chosen mixed boundary conditions on the pressures are

p l (t, x) = p g (t, x) = 0 on (0,T) × Γ l , KM l ∇p l • n = KM g ∇p g • n = D h l ∇X h l • n on (0,T) × Γ n = 0. (7) 
The initial conditions are defined on pressures

p α (0, x) = p 0 α (x), in Ω, for α = l,g. (8) 
We call this system, DYNMOD "DYNamical Mass transfert mODel". In [START_REF] Saad | Numerical analysis of a non equilibrium two-component two-compressible flow in porous media[END_REF] the authors propose a numerical scheme to solve the system and they consider the velocity σ as a given function but numerical experiments were not performed due to the lack of data for the velocity. Our aim here is to propose a numerical scheme for which this difficulty is to overcome the lack of data by using a projection step on the equilibrium state. We elaborate our method in the next section.

In order to compare the two models, we recall here the system with equilibrium (see [START_REF] Caro | Two-component two-compressible flow in a porous medium[END_REF][START_REF] Saad | Numerical study of compositional compressible degenerate twophase flow in saturated-unsaturated heterogeneous porous media[END_REF]). We write the mass conservation of each component in

Q T ∂ t (Φs l ρ h l + Φs g ρ h g ) + div(ρ h l V l + ρ h g V g ) -div(ρ l D h l ∇X h l ) = 0, (9) ∂ t (Φs l ρ w l ) + div(ρ w l V l ) = 0. ( 10 
)
We complete this system by the same boundary and initial conditions [START_REF] Eymard | Finite Volume Methods, Handbook of Numerical Analysis[END_REF] and [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF].

To define the hydrogen densities, we use the ideal gas law and the Henry law

ρ h g = M h RT p g , ρ h l = M h H h p g , (11) 
where the quantities M h , H h , R and T represent respectively the molar mass of hydrogen, the Henry constant for hydrogen, the universal constant of perfect gases and T the temperature. From [START_REF] Fabrie | On a system of nonlinear elliptic and degenerate parabolic equations describing compositional water-oil flows in porous media[END_REF], we get

ρ h g = C 1 ρ h l where C 1 = 1 H h RT (= 52.51). (12) 
In the sequel, we call the system ( 9)-( 10) HELMOD " Henry's Law MODel".

Numerical Scheme

We propose a numerical scheme based on a two-step convection/diffusion-relaxation strategy to simulate the non equilibrium model. In a first step we solve the intra-phase transfer (convection/diffusion) working with liquid saturation, liquid pressure and dissolved hydrogen concentration as primary variables. The second step solves the interphase transfer, using the solubility relation.

In the following, firstly we describe the semi discretization in time of the numerical method and next we detail the discretization in space.

Consider U n = ((s l ) n ,(p l ) n ,(ρ h l ) n
) is given at time t n , then to compute the solution at the next time step U n+1 = ((s l ) n+1 ,(p l ) n+1 ,(ρ h l ) n+1 ), we consider an intermediate solution, named U * = ((s l ) * ,(p l ) * ,(ρ h l ) * ), of the system (P) without the reaction terms

         ∂ t (Φρ w l s l ) + div(ρ w l V l + J w l ) = 0, ( 13 
)
∂ t (Φρ h g s g ) + div(ρ h g V g ) = 0, ( 14 
)
∂ t (Φρ h l s l ) + div(ρ h l V l + J h l ) = 0. ( 15 
)
The approximation of the solution of the above system is detailed in section 3.1. Then, the second step to compute

U n+1 = ((s l ) n+1 ,(p l ) n+1 ,(ρ h l ) n+1
) is to ensure the equilibrium when the σ goes to infinity which gives {X h l = X eq }, and leads to the following state :

∂ t (ρ w l s l ) = 0 ∂ t (ρ h g s g + ρ h l s l ) = 0 (16) 
In section 3.2, we detail this projection step.

In the sequel, we consider an isotropic medium, and we set K = k I d , where I d is the identity matrix.

3.1.

Step 1. The TPFA scheme to solve system (13)- [START_REF] Marchand | Fully coupled generalised hybrid-mixed finite element approximation of two-phase two-component flow in porous media. part II : nu-merical scheme and numerical results[END_REF] In this section, we detail the construction of the Two Point Flux Approximation (TPFA) scheme based on upstream approximation of mobilities according to the sign of the pressure of each phase at the interfaces of mesh and on a specific choice of densities on the mesh interfaces. We will describe the space and time discretization, define the approximation spaces, and introduce the finite volume scheme.

The orthogonal mesh

Following [START_REF] Eymard | Finite Volume Methods, Handbook of Numerical Analysis[END_REF] and [START_REF] Bendahmane | Convergence of a finite volume scheme for gas-water flow in a multi-dimensional porous medium[END_REF], let us specify a finite volume discretization of Ω × (0,T). 

∂K = K\K = (K ∩ ∂Ω) ∪ (∪ L ∈N (K) σ K |L ).

The family of points

(x K ) K ∈ T is such that x K ∈ K (for all K ∈ T ) and, if L ∈ N(K), it is assumed that the straight line (x K , x L ) is orthogonal to σ K |L . We set d K |L = d(x K , x L ) the distance between
the points x K and x L , and 1). 5. We assume the following regularity of the mesh : there exists ξ > 0, such that

τ K |L = |σ K | L | d K | L the transmissibility coefficient through σ K |L (see Figure
∀K ∈ T , L ∈N (K) |σ K |L |d K |L ≤ ξ |K |. K x K x L σ K,L L T K,L
T Figure 1: Finite volume mesh T : control volumes, centers and diamonds.

Discrete functions and notations. The problem under consideration is time-dependent, the time discretization of (0,T) is given by an integer value N and a uniform time step δt = T/(N + 1), we denote (t n = nδt) n∈[0, N +1] with t 0 = 0 and t N +1 = T. Let T δt be a discretization of Q T . We denote any function u from [0, N + 1] × T to R by using the subscript T δt and we denote its value at the point (t n , x K ) as u n K , we then denote u

T δ t = (u n K ) K ∈ T,n∈[0, N +1] .
To any discrete function u T δ t corresponds an approximate function defined almost everywhere on Q T by: u T δ t (t, x) = u n+1 K , for a.e. (t, x) ∈ (t n ,t n+1 ) × K,∀K ∈ T ,∀n ∈ [0, N]. In the same way, we denote the discrete function u n+1 T defined from T to R associated to the vector (u n+1 K ) K ∈ T as u n+1 T (x) = u n+1 K , for a.e. x ∈ K,∀K ∈ T .

The discrete gradient. For each interface σ K |L , we associate a diamond T K |L when the two elements K and L exist by connecting the vertices of interface and the centers of K and L, and in the case where the interface lies on ∂Ω, we associate a half of diamond denoted T ext K |σ associated to the element K with σ ⊂ ∂Ω. For each discrete function u n+1 T = (u n+1 K ) K ∈T , we associate ∇ D u n+1 T , R -valued function, defined on the dual mesh as the constant per diamond

∇ D u n+1 T (x) =          u L -u K d K | L η K |L if x ∈ T K |L , u σ -u K d K , σ η K |σ if x ∈ T ext K |σ .
To take into account the no flux boundary we impose u σ = u K and for imposing pressure or saturation, we consider u σ to be the given value at the boundary. For any discrete function defined on diamonds

u n+1 D = (u n+1 K |L ) σ K | L ∈E corresponds to u n+1 D (x) = u n+1 K |L , for a.e. x ∈ T K |L . (17) 

The coupled finite volume scheme

The finite volume scheme consists in writing the balance equations of the fluxes on each control volume. Let T δt be a discretization of Ω × (0,T). Let us integrate the liquid saturation equation ( 13), the hydrogen in the gaseous form [START_REF] Lam | Mobilization of residual oil under equilibrium and nonequilibrium conditions[END_REF] and dissolved hydrogen concentration (15) over each control volume K.

For clarity and simplicity, we restrict the theoretical demonstration to a horizontal field, i.e. we neglect the gravity effect. The resulting equation is discretized with an implicit Euler scheme in time; the normal gradients across the interfaces are discretized with a centered finite difference scheme whereas the mobilities are approximated with an upwind scheme. Denote by s l,

T δ t = (s n l,K ) K ∈ T,n∈[0, N +1] , p l, T δ t = (p n l,K ) K ∈T,n∈[0, N +1] and ρ h l, T δ t = (ρ h,n l,K ) K ∈T,n∈[0, N +1] the discrete unknowns corresponding to s l , p l , ρ h l .
The finite volume scheme is the following set of equations :

q 0 K = 1 |K | ∫ K q 0 (x)dx, for all K ∈ T , and q = s l , p l , ρ h l ( 18 
)
For n = 0, N

|K | Φ K ρ w l s n+1 l,K -s n l,K δt - L ∈N (K) τ K |L ρ w l M n+1 l,K |L (p n+1 l,L -p n+1 l,K ) + L ∈N (K) τ K |L ρ n+1 l,K |L D h,n+1 l,K |L (X h,n+1 l,L -X h,n+1 l,K ) = 0 (19) |K | Φ K ρ h,n+1 g,K s n+1 g,K -ρ h,n g,K s n g,K δt - L ∈N (K) τ K |L ρ n+1 g,K |L M n+1 g,K |L (p n+1 g,L -p n+1 g,K ) = 0 (20) |K | Φ K ρ h,n+1 l,K s n+1 l,K -ρ h,n l,K s n l,K δt - L ∈N (K) τ K |L ρ h,n+1 l,K |L M n+1 l,K |L (p n+1 l,L -p n+1 l,K ) - L ∈N (K) τ K |L ρ n+1 l,K |L D h,n+1 l,K |L (X h,n+1 l,L -X h,n+1 l,K ) = 0 (21)
The mean value of the densities of each phase on interfaces is not classical since it is given as, for all function ρ(p) = ρ l (p l ), ρ h g (p g ), and ρ h l (p l ) as

1 ρ n+1 K |L =        1 p n+1 L -p n+1 K ∫ p n+1 L p n+1 K 1 ρ(ζ) dζ if p n+1 K p n+1 L , 1 ρ n+1 K otherwise, (22) 
and where M n+1 α,K |L = M α (s n+1 αK |L ) denotes the upwind approximation of the mobility on the interface σ K |L with

s n+1 α,K |L = s n+1 α,K if p n+1 α,K ≥ p n+1 α,L , s n+1 α,L otherwise. ( 23 
)
This choice is crucial to obtain estimates on discrete global pressure and on saturation.

This scheme consists in a two point flux approximation finite volume method together with a phaseby-phase upstream scheme and a nonclassical mean value for densities. The Euler implicit discretization in time and the proposed finite volume scheme satisfy industrial constraints of robustness and stability. In comparison with incompressible fluid, compressible fluids require more powerful techniques. The treatment of the degeneracy and the nonlinearly need the introduction of powerful techniques to link the velocities to the global pressure and the capillary pressure on the discrete form, we refer to [START_REF] Saad | Numerical analysis of a non equilibrium two-component two-compressible flow in porous media[END_REF][START_REF] Bendahmane | Convergence of a finite volume scheme for gas-water flow in a multi-dimensional porous medium[END_REF][START_REF] Caro | Two-component two-compressible flow in a porous medium[END_REF]. Proposition 3.1. The finite volume scheme (19)-( 21) is equivalent to the variational discrete formulation:

∫ Ω Φ T ρ w l s n+1 l, T -s n l, T δt ϕ n+1 T dx + 1 ∫ Ω ρ w l M n+1 l, D ∇ T p n+1 l, T • ∇ D ϕ n+1 T dx (24) 
- 1 ∫ Ω ρ n+1 l, D D h,n+1 l, D ∇ D X h,n+1 l, T • ∇ D ϕ n+1 T dx = 0 ∫ Ω Φ T ρ h,n+1 g, T s n+1 g, T -ρ h,n g, T s n g, T δt ξ n+1 T dx (25) 
+ 1 ∫ Ω ρ h,n+1 g, D M n+1 g, D ∇ D p n+1 g, T • ∇ D ξ n+1 T dx = 0 ∫ Ω Φ T ρ h,n+1 l, T s n+1 l, T -ρ h,n l, T s n l, T δt ψ n+1 T dx + 1 ∫ Ω ρ h,n+1 l, D M n+1 l, D ∇ D p n+1 l, T • ∇ D ψ n+1 T dx + 1 ∫ Ω ρ n+1 l, D D h,n+1 l, D ∇ D X h,n+1 l, T • ∇ D ψ n+1 T dx = 0 (26) for all ϕ T , ξ T , ψ T ∈ H h , where the function M n+1 l, D , M n+1 g, D , M n+1
D are defined to be constant by diamonds as in (17).

Proof. Multiply the equations ( 19), [START_REF] Saad | Study of full implicit petroleum engineering finite volume scheme for compressible two phase flow in porous media[END_REF], and (21) respectively by ϕ K , ξ K and ψ K and sum over all K ∈ T , then integrating by parts we obtain (24), (25) and (26)

We summarize the main energy estimates on the problem :

Proposition 3.2 (Maximum principle). Let (s 0 α,K ) K ∈T ∈ [0,1].
Then, the saturation (s n l,K ) K ∈T,n∈ {0,..., N } is nonnegative.

Proposition 3.3 (Energy estimates). The solution of the TPFA scheme satisfies

N n=0 ∫ Ω M n+1 l, D |∇ T p n+1 l, T | 2 + M n+1 g, D |∇ T p n+1 g, T | 2 dx ≤ C, (27) 
Proof. We give here some elements of the proof and we refer to [START_REF] Saad | Numerical analysis of a non equilibrium two-component two-compressible flow in porous media[END_REF][START_REF] Saad | Study of full implicit petroleum engineering finite volume scheme for compressible two phase flow in porous media[END_REF]. To prove the estimate (27), we consider in (24) the test function C 1 p n+1 l, Tp n+1 g, T , where C 1 is defined in [START_REF] Quintard | Convection, dispersion, and interfacial transport of contaminants: Homogeneous porous media[END_REF], and in equations ( 25)-( 26) we take the nonlinear test function

g g (p n+1 g,K ) = ∫ p n+1 g , K 0 1 ρ h l (z)
dz, then summing the resulting equation to deduce the estimates on velocities.

Step 2. Projection at equilibrium state

In the following, we describe the second step, called projection (relaxation) step, of the numerical method to simulate (P). Due to the boundary conditions the solution of system is then expected to evolve from this initial condition out of equilibrium state towards a stationary state.

[-] 0.3 D h l [m 2 • s -1 ] 3 × 10 -9 K [m 2 ] 1.10 -16 µ l [Pa • s] 1 × 10 -3 p r [Pa] 2 × 10 6 µ g [Pa • s] 9 × 10 -6 n [-] 1.54 H h [mol.Pa -1 .m -3 ] 7.65 × 10 -6 s lr [-] 0.01 M h [Kg • mol -1 ] 2 × 10 -3 s gr [-] 0 ρ w l [Kg • mol -3 ] 10 3
We compare our results to four contributions. The four works have used the same formulation by using the Henry's law to the solvability reaction. In [18] and in [START_REF] Angelini | Finite Volume Approximation of a diffusion-dissolution model and application to nuclear waste storage[END_REF] the authors use the same primary variables two of the three pressures and recover the thermodynamically extended phase saturation from the retention curve. In [START_REF] Marchand | Fully coupled generalised hybrid-mixed finite element approximation of two-phase two-component flow in porous media. part II : nu-merical scheme and numerical results[END_REF] the authors formulate the solubility conditions as complementary conditions. Our results named HELMOD are the results obtained by the model HELMOD with the numerical scheme presented in [START_REF] Saad | Numerical study of compositional compressible degenerate twophase flow in saturated-unsaturated heterogeneous porous media[END_REF]. The results presented as DYNMOD are the only results using the non-equilibrium and approximated in this paper. All numerical tests are obtained with time step δt = 10 -2 s and space step δx = 10 -2 m.

Figure 3 shows the evolution of liquid saturation, liquid pressure and dissolved hydrogen density. This figure illustrates the efficiency of our scheme since all quantities reach a stationary state. Figures 4,[START_REF] Cai | On the finite volume element method[END_REF][START_REF] Caro | Two-component two-compressible flow in a porous medium[END_REF][START_REF] Eymard | Finite Volume Methods, Handbook of Numerical Analysis[END_REF] give a comparison between five works at t = 10s, t = 50,000s, t = 200,000s and t = 500,000s. All results obtained in the different contributions seem very close and show similar trends.

From Figure 4 to figure 7 we observe the gas flowing in the reverse direction of the physical direction, for the earlier times, resulting from the high gas pressure in the unsaturated zone of the porous medium. That induces a compression of the liquid phase at the left interface, and liberates more space of the water at the opposite side of the domain promoting a decrease of the pressure in that area. One also notices 

Definition 3 . 1 .

 31 (Admissible mesh of Ω). An admissible mesh T of Ω is given by a set of open bounded polygonal convex subsets of Ω called control volumes and a family of points (the "centers" of control volumes) satisfying the following properties:1. The closure of the union of all control volumes is Ω. We denote by |K | the measure of K, and define size(T ) = max{diam(K),K ∈ T }. 2. For any (K, L) ∈ T 2 with K L, then K ∩ L = ∅. One denotes by E ⊂ T 2 the set of (K, L) such that the ( -1)-Lebesgue measure of K ∩ L is positive. For (K, L) ∈ E, one denotes σ K |L = K ∩ L and |σ K |L | the ( -1)-Lebesgue measure of σ K |L . And one denotes η K |L the unit normal vector to σ K |L outward to K 3. For any K ∈ T , one defines N(K) = {L ∈ T ,(K, L) ∈ E} and one assumes that

Figure 2 :

 2 Figure 2: Geometrical configuration of the domain

Table 1 :

 1 Parameter values for the porous medium and fluid characteristics used in this test The initial conditions are given as follows p l = 10 6 Pa and p g = 1.5 × 10 6 Pa in Ω 1 , p l = 10 6 Pa and p g = 2.5 × 10 6 Pa in Ω 2 .

Figure 3 :

 3 Figure 3: Liquid saturation, liquid pressure and density of dissolved hydrogen at different time with DYNMOD model

Figure 5 :

 5 Figure 5: Benchmark test. Comparaison between DYNMOD model and four equilibrium models at time T=50000s

Figure 6 :

 6 Figure 6: Benchmark test. Comparaison between DYNMOD model and four equilibrium models at time T=200000s
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 7 Figure 7: Benchmark test. Comparaison between DYNMOD model and four equilibrium models at time T=500000s
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In the first step, using the finite volume TPFA scheme ( 19)- [START_REF] Saad | Numerical analysis of a non equilibrium two-component two-compressible flow in porous media[END_REF] to solve the mass conservation system (P) without the source term, gives from U n K = ((s l ) n K ,(p l ) n K ,(ρ h l ) n K ) an intermediate state

Formally, as σ tends to +∞, which is to look for U n+1 K solution of {X h l = X eq }. Remark that as σ is finite, we have the conservation of mass

at the discrete level . As ρ w l is constant, the first equation gives (s l ) n+1 K = (s l ) * K . Define ρ h = ρ h g s g + ρ h l s l , the second equation imposes

where

From the Henry's law that connects s l , p l and ρ h l

we have the following:

Considering the above equality at time t n+1 and for all K, one gets

that gives by using (29), the following relation

Then, from V n+1 K we can compute (ρ h l ) n+1 K , using (29) we can compute U n+1 K and consequently p n+1 l,K .

Numerical results: Gas phase (dis)appearance (quasi-1D)

In this section, we evaluate numerically the numerical scheme derived in the above section on a test case dedicated to gas-phase (dis)appearance(see the Couplex-Gas benchmark [17,[START_REF] Bourgeat | Compositional two-phase flow in saturated-unsaturated porous media: benchmarks for phase appearance/disappearance[END_REF] for more details). The method has been implemented into in-house code.

In order to investigate numerically the phenomena of the evolution of an non-equilibrium state to a stabilized one, which stands to be a particular case of the configuration where a non saturated porous block is placed within a water saturated porous structure, we consider a sealed porous medium. In this numerical test, we intend to describe the recovery of the mechanical balance in a porous medium that is initially out of the equilibrium. The initial non-equilibrium is characterized with the occurrence of jumps in the phase pressures, which are typically noticed when the engineered barriers are set quite close to the waste packages.

Let Ω be the porous medium which contains subdomains Ω 1 and Ω 2 . The porous medium is considered to be homogeneous and sealed core, thus we impose no fluxes boundary on ∂Ω. The length of Ω is L x = 1m and the length of Ω 1 is L 1 = 0.5m and the width of Ω is L y = 0.1m see figure 2.

The porous medium and fluid characteristics are presented in [17] and summarized in Table 1.