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Approximate formulae for L(1, χ), II

by

Olivier Ramaré (Lille)

1. Introduction and results. Upper bounds of |L(1, χ)| are mainly
useful in number theory to study class numbers of algebraic extensions.
In [1]–[3] Louboutin establishes bounds for |L(1, χ)| that take into account
the behavior of χ at small primes. His method uses special representations
of L(1, χ) and does not extend to odd characters. For instance in [2] he uses
L(1, χ) = 2

∑

n

∑

l≤n χ(l)/(n(n + 1)(n + 2)) which comes from an integra-
tion by parts; such a formula fails in the odd case. But the effect of this
integration by parts is in fact similar to the introduction of a smoothing,
something we did in [5], the only difficulty being to handle properly the
Fourier transform of functions behaving like 1/t near ∞. This method gives
good numerical results in a uniform way.

In this note we improve on the results given in [2] and [3] and extend
them to the odd character case. Let us mention that we take this opportunity
to correct several typos occurring in [5].

We first state a general formula.

Theorem. Let χ be a primitive Dirichlet character modulo q and let h
be an integer prime to q. Let F : R → R be such that f(t) = F (t)/t is in
C2(R) (also at 0), vanishes at ±∞ and f ′ and f ′′ are in L1(R). Assume
also that F is even if χ is odd , and odd if χ is even. Then, for every δ > 0,
we have

∏

p|h

(

1− χ(p)

p

)

L(1, χ) =
∑

n≥1
(n,h)=1

χ(n)
1− F (δn)

n

+
χ(−h)τ(χ)

qh

∑

m≥1

ch(m)χ(m)

∞
\

−∞

F (t)

t
e(mt/(δqh)) dt.
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Here the Gauss sum τ(χ) is defined by

τ(χ) =
∑

amod q

χ(a)e(a/q)(1)

and the Ramanujan sums ch(m) by

ch(m) =
∑

amod∗ h

e(ma/q).(2)

Of course e(·) = e2iπ·, and amod∗ h denotes summation over all invertible
residue classes modulo h. We further restrict our attention to square-free h.

Here are two interesting choices for F which we take directly from Propo-
sition 2 of [5]. Set

F3(t) =

(

sinπt

π

)2(2

t
+
∑

m∈Z

sgn(m)

(t−m)2
)

,(3)

j(u) =

∞
\

−∞

F3(t)

t
e(ut) dt = 1[−1,1](u)

1
\

|u|

(π(1− t) cot πt+ 1) dt,(4)

F4(t) = 1−
(

sinπt

πt

)2

(5)

which satisfies
∞
\

−∞

F4(t)

t
e(ut) dt = −iπ(1− |u|)21[−1,1](u).(6)

Notice furthermore that F3 and F4 take their values in [0, 1].

In order to compute efficiently the resulting sums we select several levels
of hypotheses, starting by the most general ones. We use the Euler φ-function
and the number ω(t) of distinct prime factors of t.

Corollary 1. Let χ be a primitive Dirichlet character modulo q and
h an integer prime to q. Assume q is divisible by a square-free k and set
κχ = 0 if χ is even, and κχ = 5− 2 log 6 = 1.41648 . . . if χ is odd. Then
∣

∣

∣

∣

∏

p|h

(

1− χ(p)

p

)

L(1, χ)

∣

∣

∣

∣

− φ(hk)

2hk

[

log q + 2
∑

p|hk

log p

p− 1 + ω(h) log 4 + κχ
]

is bounded from above if χ is even and q ≥ k24ω(h) by
φ(h)2ω(k)−1

h
√
q

×
{

log(q4−ω(h)+1) if q ≥ k24ω(h),
1.81 + ω(h) log 4− log q if k = 1,
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and if χ is odd by

3πφ(hk)

2hkq

∏

p|hk

p2 − 1
4p2

+







πφ(h)2ω(k)

2h
√
q

if k2max

(

11

10
· 4ω(h), h24−ω(h)+1

)

,

0 if k = 1.

This improves on Theorems 1, 4 and 5 of [3] in the quality of the bounds
and in their range, and also by the fact that it covers the case of odd char-
acters. For instance in Theorem 5 of [3], where Louboutin studies separately
the cases h = 3 and k = 2, he gets the upper bound 16(log q+4.83 . . .+o(1))

for even characters, while we get 16(log q + 3.87 . . . + 3(log q)/
√
q). Recently

in [4], by generalizing his method introduced in [2], Louboutin has reached
a similar result for the case of even characters, albeit with a slightly larger
constant κχ = 2 + γ − log(4π) = 0.046 . . . instead of κχ = 0. This enabled
him to replace 16(log q + 4.83 . . . + o(1)) by

1
6 (log q + 3.91 . . .).

Notice that the upper bound in the case of even characters is non-positive
when k = 1 as soon as q ≥ 6.2 · 4ω(h).
When h = 2 we can get slightly more precise results:

Corollary 2. Let χ be a primitive Dirichlet character modulo odd q.
Then

|(1− χ(2)/2)L(1, χ)| ≤ 14(log q + κ(χ))
where κ(χ) = 4 log 2 if χ is even, and κ(χ) = 5− 2 log(3/2) otherwise.
In [2], the value κ(χ) ≃ 2.818 . . . is proved to hold true for even characters

while 4 log 2 = 2.772 . . .

We introduce the character ψ induced by χ modulo qh. Furthermore
(m, t) denotes the gcd of m and t.

As for the typos in [5], first, Proposition 2 gives a wrong formula for
L(1, χ) if χ is even: the sign preceding τ(χ) should be + and not −. Then
Lemma 8 gives a fancy value for ̺4. In fact ̺4(t) = −iπ(1 − |t|)21[−1,1](t),
which is what is proved and used throughout the paper! Finally, in the 6th
line of page 264, it is written, “and this last summand is non-negative”,
while this summand is without any doubt non-positive.

We thank the referee for his careful reading and for improving Lemma 11.

2. Lemmas. We essentially combine Louboutin’s proof [2] and ours [5],
while generalizing both situations.

First here is a generalization of the new part in Louboutin’s paper [2]:

Lemma 1. For every m in Z, we have
∑

amod qh

ψ(a)e(am/(qh)) = ch(m)χ(h)χ(m)τ(χ).
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Proof. By the Chinese remainder theorem,
∑

amodhq

ψ(a)e(am/(hq)) =
∑

xmodh

∑

ymod q

ψ(xq + yh)e((xq + yh)m/(hq))

=
∑

xmod∗ h

e(xm/h)
∑

ymod q

χ(yh)e(ym/q)

= ch(m)χ(h)χ(m)τ(χ),

where ch(m) is the Ramanujan sum defined by (2).

Now, Lemma 3 of [5] can be extended to

Lemma 2. The sum
∑w
n f(δn)χ(n) exists in the restricted sense given

in [5] and

∑

n∈Z

w
f(δn)ψ(n) =

χ(−h)τ(χ)
qh

∑

m∈Z\{0}

ch(m)χ(m)

∞
\

−∞

f(δt)e(mt/(qh)) dt.

Note:
T∞
−∞ g(t)e(ut) dt = limT→∞

TT
−T g(t)e(ut) dt for u 6= 0.

Now we state and prove lemmas that give approximations of the relevant
quantities.

Lemma 3. For δ > 0 and hk ≥ 2 we have
hk

φ(hk)

∑

n≥1
(n,hk)=1

1− F3(δn)
n

= − log δ − 1 +
∑

p|hk

log p

p− 1 .

Proof. We have
∑

n≥1
(n,hk)=1

1− F3(δn)
n

=
∑

d|hk

µ(d)
∑

n≥1
d|n

1− F3(δn)
n

=
∑

d|hk

µ(d)

d

∑

n≥1

1− F3(dδn)
n

.

Lemma 16 of [5] gives the value of the above if hk = 1, which is − log δ−1+δ.
This equality is stated only for δ ≤ 1 but since only analytic functions are
involved, it naturally extends to δ > 0. We infer that

∑

n≥1
(n,hk)=1

1− F3(δn)
n

=
∑

d|hk

µ(d)

d
(− log(dδ) − 1 + dδ)

= −φ(hk)
hk
log δ − φ(hk)

hk
+
φ(hk)

hk

∑

p|hk

log p

p− 1

provided hk ≥ 2.
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Lemma 4. For δuq ≥ 1 we have

δuq − 2 log(eδuq) ≤
∑

1≤m≤δuq

j(m/(δuq)) ≤ δuq − log(2πδuq/e).

The upper bound is proved between (6.3) and (6.4) in [5]. There also
the restriction δ ≤ 1 can be dispensed with. The lower bound comes simply
from a comparison to an integral since j is non-increasing and since j(t) ≤
−2 log |t| for t ≤ 1 (shown to be true in Lemma 7 of [5]),

r
\

0

j(t) dt ≤ −2(r log r − r) (r ∈ [0, 1]).(7)

Lemma 5. For δ > 0 and h′ = h/(2, h) we have

∑

1≤m≤δq

φ((m,h))

φ(h)
j(m/(δhq)) ≤ 2ω(h)δq + 1− log(2πδq) + H(h′)

φ(h)

∑

p|h′

log p

p− 2 .

Proof. Let us introduce the non-negative multiplicative function H =
µ ⋆ φ. We have H(p) = p− 2. We get
∑

1≤m≤δq

φ((m,h))j(m/(δq)) =
∑

d|h

H(d)
∑

1≤m≤δq/d

j(dm/(δq))

≤
∑

d|h

hH(d)

d
δq + φ(h)(1 − log(2πδhq)) +

∑

d|h

H(d) log d.

Now and since h is square-free we see that
∑

d|h hH(d)/d = 2
ω(h)φ(h).

Lemma 6. For δ ≥ k/q we have
∑

1≤m≤δq
(m,k)=1

φ((m,h))

φ(h)
j(m/(δhq)) ≤ 2ω(h) φ(k)

k
δq + 2ω(k) log(eδq/2).

Proof. Following the proof of Lemma 5, our sum equals
∑

d|h

H(d)
∑

l|k

µ(l)
∑

1≤m≤δq/(dl)

j(dlm/(δhq))

≤ δq2ω(h)φ(h) φ(k)
k
+
∑

d|h

H(d)
∑

l|k
µ(l)=−1

2 log(eδq/(dl))

≤ δq2ω(h)φ(h) φ(k)
k
+ φ(h)2ω(k) log(eδq/2)

provided that δq/k ≥ 1.
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Lemma 7. For δ > 0 and hk ≥ 2 we have
hk

φ(hk)

∑

n≥1
(n,hk)=1

1− F4(δn)
n

= log δ +
3

2
− log(2π) +

∑

p|hk

log p

p− 1

+
2φ(hk)

hk

∑

d|hk

µ(d)

1
\

0

(1− t) log
∣

∣

∣

∣

πdδt

sin(πdδt)

∣

∣

∣

∣

dt

d
.

When hk = 2 the last summand is non-positive, and in general if δ ≤
1/(2hk), it is not more than π

3

6 δ
2
∏

p|hk(p
2 − 1)/p2.

Proof. Lemma 17 of [5] gives us

∑

n≥1

1− F4(δn)
n

= − log δ + 3
2
− log(2π) + 2

1
\

0

(1− t) log
∣

∣

∣

∣

πδt

sin(πδt)

∣

∣

∣

∣

dt

and we use the same technique as in the previous lemma. The error term is
non-positive if hk = 2 as shown in [5] between (7.2) and (7.3). Furthermore
the integral is shown there (in Lemma 18) to be not more than π3δ2/12 as
soon as δ ≤ 1/2.

A simple comparison to an integral yields:

Lemma 8. For δuq ≥ 1 we have

δuq

3
− 1 ≤

∑

1≤m≤δuq

(

1− m

δuq

)2

≤ δuq

3
.

Lemma 9. For δ ≥ k/q we have
∑

1≤m≤δhq
(m,k)=1

φ((m,h))

φ(h)

(

1− m

δhq

)2

≤ φ(k)

k

δq

3
2ω(h) + 2ω(k)−1

where the last summand can be omitted if k = 1.

Proof. We proceed as in Lemma 6 to deduce that our sum is

∑

d|h

H(d)
∑

l|k

µ(l)
∑

1≤m≤δq/(dl)

(

1− dlm

δq

)2

and the conclusion follows readily.

From [6, (3.22), (2.11) and (3.26)], we get
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Lemma 10. We have

∑

1<p≤X

log p

p
≤ logX − 1.332 + 1

2 logX
(X ≥ 319),

∏

2<p≤X

p− 1
p
≤ 2e

−γ

logX

(

1 +
1

2 log2X

)

(X > 1),

where γ is Euler’s constant.

Lemma 11. For h > 1, we have

∏

2<p|h

p− 2
p− 1

∑

2<p|h

log p

p− 2 ≤ 0.7414.

Proof. First writing h = h1p1 where p1 is a prime factor, the reader
readily checks that our quantity is a non-increasing function of p1. We thus
find that its maximum is obtained when h =

∏

2<p≤X p. As a function of X,

it numerically seems increasing and GP/PARI needs at most 10 seconds to
prove it is ≤ 0.72 if the product is taken over primes ≤ 106. Using Lemma 10,
we get

S(X) =
∑

2<p≤X

log p

p− 2 =
∑

2<p≤X

2 log p

p(p− 2) +
∑

1<p≤X

log p

p
− log 2
2

≤ 1.27 + logX − 1.332 + 1

2 logX
− 0.346

≤ logX − 0.4

for X ≥ 106. Furthermore, still invoking Lemma 10, we have

Π(X) =
∏

2<p≤X

p− 2
p− 1

≤
∏

2<p≤X

(

1− 1

(p− 1)2
)

∏

2<p≤X

p− 1
p

≤
∏

2<p≤106

(

1− 1

(p− 1)2
)

2e−γ

logX

(

1 +
1

2 log2X

)

also for X ≥ 106. Since (1−0.4y)(1+0.5y2) ≤ 1 if 0 ≤ y ≤ 0.4, our function
is not more than

2e−γ
∏

2<p≤106

(

1− 1

(p− 1)2
)

≤ 0.7414.(8)
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3. Proof of the Theorem. Let us start with

L(1, ψ) =
∑

n≥1

ψ(n)
1− F (δn)

n
+
∑

n≥1

ψ(n)
F (δn)

n
.(9)

Thanks to the hypothesis concerning the respective parities of F and χ, we
get

∑

n≥1

ψ(n)
F (δn)

n
=
1

2

∑

n∈Z

ψ(n)δf(δn),(10)

to which we apply Lemma 2, and the Theorem follows readily.

4. Proofs of the corollaries. For even characters we take F = F3.
Combining the Theorem with Lemmas 3 and 6, and noticing that |ch(m)| ≤
φ((h,m)), we get

(11)

∣

∣

∣

∣

∏

p|h

(

1− χ(p)

p

)

L(1, χ)

∣

∣

∣

∣

hk

φ(hk)

≤ − log δ − 1 +
∑

p|hk

log p

p− 1 +
1√
q

(

2ω(h)δq +
k2ω(k)

φ(k)
log(eδq/2)

)

provided δ ≥ k/q. We simply have to choose δ = 1/(2ω(h)
√
q) and the

claimed formula follows readily.
For odd characters we use F = F4 and Lemmas 7 and 9 to get

(12)

∣

∣

∣

∣

∏

p|h

(

1− χ(p)

p

)

L(1, χ)

∣

∣

∣

∣

hk

φ(hk)
≤ − log δ + 3

2
− log(2π)

+
∑

p|hk

log p

p− 1 +
π3

6
δ2
∏

p|hk

p2 − 1
p

2

+
π√
q

(

δ2ω(h)q

3
+ 2ω(k)−1

k

φ(k)

)

provided δ ∈ [k/q, 1/(2hk)]. We take δ = 3/(2ω(h)π√q) and the claimed
formula follows readily.
To prove the second corollary (i.e. with k = 1), we simply adapt the

above proof, but we can simplify the bound in the even case. We first obtain

1√
q

(

1− log((2π/e)√q 2−ω(h)) +
∏

2<p|h

p− 2
p− 1

∑

2<p|h

log p

p− 2

)

.(13)

The last factor is bounded in Lemma 11 by 0.7414, so the above term is not
more than (1.81 + ω(h) log 4− log q)/(2√q) as announced.
When h = 2, the claimed upper bounds are proved if q ≥ 39, in part

because the term in δ2 appearing in (12) disappears by Lemma 7. We com-
plete the verification by appealing to GP/PARI as indicated in [5]. The
maximum of κ(χ) for even characters of module ≤ 1000 is ≤ 1.705, attained
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for q = 109, while the maximum of κ(χ) for odd characters of module ≤ 1000
is ≤ 3.360, attained for q = 131.

References

[1] S. Louboutin, Majorations au point 1 des fonctions L associées aux caractères de
Dirichlet primitifs, ou au caractère d’une extension quadratique d’un corps quadra-

tique imaginaire principal , J. Reine Angew. Math. 419 (1991), 213–219.
[2] —,Majorations explicites de |L(1, χ)| (quatrième partie), C. R. Acad. Sci. Paris Sér. I
Math. 334 (2002), 625–628.

[3] —, Explicit upper bounds for |L(1, χ)| for primitive even Dirichlet characters, Acta
Arith. 101 (2002), 1–18.

[4] —, Explicit upper bounds for values at s = 1 of Dirichlet L-series associated with
primitive even characters, J. Number Theory, to appear.
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