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ABSTRACT
We use a suite of N-body simulations to study intrinsic alignments (IA) of halo shapes with the surrounding large-scale structure
in the �CDM model. For this purpose, we develop a novel method to measure multipole moments of the three-dimensional
power spectrum of the E-mode field of halo shapes with the matter/halo distribution, P

(�)
δE (k) (or P

(�)
hE ), and those of the auto-

power spectrum of the E-mode, P
(�)
EE(k), based on the E/B-mode decomposition. The IA power spectra have non-vanishing

amplitudes over the linear to non-linear scales, and the large-scale amplitudes at k � 0.1 h−1 Mpc are related to the matter
power spectrum via a constant coefficient (AIA), similar to the linear bias parameter of galaxy or halo density field. We find that
the cross- and auto-power spectra PδE and PEE at non-linear scales, k � 0.1 h−1 Mpc, show different k-dependences relative to
the matter power spectrum, suggesting a violation of the non-linear alignment model commonly used to model contaminations
of cosmic shear signals. The IA power spectra exhibit baryon acoustic oscillations, and vary with halo samples of different
masses, redshifts, and cosmological parameters (�m, S8). The cumulative signal-to-noise ratio for the IA power spectra is about
60 per cent of that for the halo density power spectrum, where the super-sample covariance is found to give a significant
contribution to the total covariance. Thus our results demonstrate that the IA power spectra of galaxy shapes, measured from
imaging and spectroscopic surveys for an overlapping area of the sky, can be used to probe the underlying matter power
spectrum, the primordial curvature perturbations, and cosmological parameters, in addition to the standard galaxy density power
spectrum.

Key words: cosmology: theory – large-scale structure of Universe – gravitational lensing: weak – methods: numerical.

1 IN T RO D U C T I O N

There are many ongoing and planned imaging and spectroscopic
surveys covering a wide area of the sky (e.g. Takada et al. 2014).
These surveys aim to address the fundamental questions in cosmol-
ogy: properties of the primordial perturbations that are seeds of the
present-day cosmic structures, and the physical nature of dark matter
and dark energy that are introduced to explain the dominant source
of gravity and the cosmic accelerating expansion in the late-time
Universe (e.g. see Weinberg et al. 2013, for a review).

Cosmological observables for spectroscopic galaxy surveys,
which have been extensively studied in the literature, are the
clustering statistics of galaxy distribution in angular or redshift space
(Eisenstein et al. 2005; Alam et al. 2017). Those for imaging surveys
are weak lensing distortion in galaxy images, the so-called cosmic
shear, which probes the matter distribution in foreground large-scale
structures (Hildebrandt et al. 2017; Troxel et al. 2018; Hikage et al.

� E-mail: toshiki.kurita@ipmu.jp

2019; Hamana et al. 2020). The joint probes combining the galaxy
clustering and the weak lensing are proven as a powerful means
of constraining cosmological parameters, by breaking parameter
degeneracies, especially circumventing the impact of galaxy bias
uncertainty on cosmological constraints (More et al. 2015; Abbott
et al. 2018).

The cold dark matter (CDM) dominated structure formation
model predicts that shapes of galaxies interact with the surrounding
gravitational (tidal) field in large-scale structure, and it induces
intrinsic (not lensing-induced) correlations between galaxy shapes in
the common large-scale structure, so-called intrinsic alignments (IA);
(Croft & Metzler 2000; Catelan, Kamionkowski & Blandford 2001;
Crittenden et al. 2002; Jing 2002). Usually the IA effect is considered
as one of the most important physical systematic effects in the cosmic
shear analysis (Hirata & Seljak 2004; Heymans et al. 2006); (see also
Joachimi et al. 2015; Kiessling et al. 2015; Kirk et al. 2015; Troxel
& Ishak 2015, for a review). Only very recently several theoretical
works have started considering the IA effects as cosmological signals
(Schmidt & Jeong 2012; Chisari & Dvorkin 2013; Schmidt, Chisari
& Dvorkin 2015; Kogai et al. 2018; Okumura, Taruya & Nishimichi
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2019, 2020; Okumura & Taruya 2020; Taruya & Okumura 2020).
The IA correlations have been indeed measured from observational
data, especially for early-type red galaxies (Mandelbaum et al. 2006;
Okumura, Jing & Li 2009; Singh, Mandelbaum & More 2015;
Johnston et al. 2019; Samuroff et al. 2019; Yao et al. 2020).

Based on the above background, there have been analytical and
numerical attempts to develop an accurate model or advance the
physical understanding of the IA effects. For an analytical approach,
it is usually assumed that galaxy shapes are tracers of the underlying
gravitational tidal field that is sourced by the total matter (mainly
dark matter) distribution in large-scale structure, and this model is
called the linear (tidal) alignment model (Hirata & Seljak 2004).
Then, the linear theory or perturbation theory of structure formation
can be used to express the IA correlations in terms of the power
spectrum or higher order moments of matter and tidal fields (also see
Blazek, Vlah & Seljak 2015; Schmitz et al. 2018; Blazek et al. 2019;
Vlah, Chisari & Schmidt 2020). For the cosmic shear analysis, an
empirical model, the so-called non-linear alignment model (Bridle
& King 2007), is often used to model the IA contamination to the
cosmic shear signals at non-linear scales, where the linear matter
power spectrum appearing in the IA correlation is replaced with the
non-linear matter power spectrum. There are also simulation-based
studies using cosmological N-body simulations (Jing 2002; Okumura
et al. 2017, 2019, 2020; Xia et al. 2017; Osato et al. 2018; Piras
et al. 2018; Sunayama et al. 2020) and cosmological hydrodynamical
simulations (Chisari et al. 2015, 2017; Codis, Pichon & Pogosyan
2015; Tenneti et al. 2015; Velliscig et al. 2015a,b; Tugendhat &
Schäfer 2018; Shi et al. 2020). Moreover, the halo model approach
has been recently developed to model the IA effects of galaxies at
non-linear scales, more specifically inside the host haloes (Schneider
& Bridle 2010; Fortuna et al. 2020).

However, most of the previous studies are on the real- or
configuration-space IA correlations, except for the perturbation
theory based studies (e.g. Blazek et al. 2019). Hence the purpose
of this paper is to develop a novel method to measure the three-
dimensional power spectrum of the IA effects, using the E/B-
mode decomposition method developed in the cosmic microwave
polarization and the cosmic shear. We then apply the method to
shapes of haloes measured from a suite of N-body simulations,
generated in Nishimichi et al. (2019), and estimate the auto-power
spectra of the halo shape E/B-modes and the cross-power spectrum
of the E-mode with the surrounding matter or halo distribution. Since
the halo shapes are a spin-2 field defined in the two-dimensional plane
perpendicular to the line-of-sight direction, the IA power spectra
break the statistical isotropy and display anisotropic modulations
depending on the angle between wavevector and the line-of-sight
direction, just like the redshift-space power spectrum of galaxies. We
use the measured IA power spectra to study a validity of the linear
and non-linear alignment models, the baryon acoustic oscillations,
the information content (the cumulative S/N), and the redshift-space
distortion (RSD) effect, compared to the standard power spectrum of
halo density field. We also examine how the IA power spectra vary
with halo samples of different masses, redshifts, and cosmological
parameters. In doing these, we pay special attention to the fact
that keeping the three-dimensional Fourier modes in the IA power
spectrum measurements enables one to extract the full information of
IA effects at the two-point statistics level, compared to the angular or
projected correlation functions that are often studied in analogy to the
cosmic shear correlations. The method developed in this paper can
be applied to imaging and spectroscopic galaxy surveys observing
the same area of the sky, where galaxy shapes are measured from
the imaging data and the three-dimensional positions of galaxies are

obtained from the spectroscopic data. This is the case, e.g. for the
BOSS survey combined with the Subaru HSC survey (Aihara et al.
2018), the Subaru HSC/PFS surveys (Takada et al. 2014), the ESA
Euclid1, and the NASA Roman Space Telescope.2 We would like to
again stress the standing point of this paper; we develop the method
of measuring the IA power spectrum, and then study how the IA
effect can be used as a cosmological signal. In other words, we will
not consider the IA effect as a contaminating effect on the cosmic
shear that is the main focus of most previous studies.

This paper is structured as follows. In Section 2, we review the IA
model, mainly the tidal/linear alignment model, and define notations
and quantities used in this paper. In Section 3, we give details of our
simulations and describe the methods to measure the ellipticities of
dark matter haloes and the IA power spectra from the ellipticity/shear
field. In Section 4, we present our results. We give conclusion and
discussion in Section 5.

2 IA MO D EL

2.1 Preliminaries

Here we briefly review the IA model in large-scale structure. The IA
model is based on the assumption that the shear tensor, defined by
shapes of galaxies or haloes at a redshift z, gij (x; z), originates from
the gravitational tidal tensor at a redshift zIA higher than z around
the epoch of the formation of the galaxy of interest, i.e.

gij (x; z) ∝ Kij (x; zIA), (1)

where

Kij (x; z) ≡ 1

4πGρ̄m(z)a2

(
∇i∇j − 1

3
δij∇2

)
	(x; z), (2)

and a is the scale factor (a = 1/(1 + z)), ρ̄m(z) is the mean mass
density at redshift z, 	(x, z) is the gravitational potential field, or the
metric perturbation in the General Relativity framework. As stressed
in Hirata & Seljak (2004), the relationship of equation (1) is expected
to hold only on large scales in the linear regime, in analogy with the
linear bias model that relates the spatial distributions of galaxies and
matter on large scales via a proportionality factor, i.e. a linear bias
coefficient. The gravitational potential field is related to the mass
density fluctuation field via the Poisson equation as

∇2	(x; z) = 4πGρ̄m(z)a2δ(x; z), (3)

where δ(x; z) is the mass density fluctuation field. Note that the tidal
field Kij, defined by the above equation, has the same dimension as
the mass density fluctuation, δ(x).

We can observe the ‘shape’ of individual galaxies projected on to
the sky, which is on a two-dimensional plane perpendicular to the
line-of-sight direction, under the flat-sky approximation (this would
be a good approximation as a galaxy size is very small compared to
the curvature scale of the celestial sphere). In other words, we cannot
observe a three-dimensional shape of the galaxy. Hence we define
an ‘observed’ shear of a galaxy or halo as

γij (x; z) ≡
(
Pik(n̂)Pj l(n̂) − 1

2
Pij (n̂)Pkl(n̂)

)
gkl(x; z), (4)

where n̂ is the unit vector of the line-of-sight direction, and Pij (n̂) ≡
δij − n̂i n̂j that is the projection tensor on to the plane perpendicular

1https://www.cosmos.esa.int/web/euclid
2https://roman.gsfc.nasa.gov
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Power spectrum of halo intrinsic alignments in simulations 835

to the line-of-sight direction. Throughout this paper, we refer to the
coordinate components as x = (x1, x2, x3) and do not use x3 = z to
avoid confusion with redshift ‘z’. If we set the x3-direction to the
line-of-sight direction, i.e. n̂ ‖ x3, γ ij is expressed as

γij (x; z) =
⎛
⎝γ+ γ× 0

γ× −γ+ 0
0 0 0

⎞
⎠. (5)

Since the shear tensor is traceless and symmetric, γ ij has 2 deg
of freedom for which we introduce the two components, γ +, ×, in
analogy to the weak lensing shear (Bartelmann & Schneider 2001;
Dodelson 2017). The IA model relates the shear tensor to the tidal
field as

γ+(x; z) ≡ − C1

4πG

(∇2
1 − ∇2

2

)
	(x; zIA),

γ×(x; z) ≡ − 2C1

4πG
∇1∇2	(x; zIA). (6)

Throughout this paper, we adopt the plane-parallel or distant-
observer approximation. Following the convention in the literature
(Hirata & Seljak 2004), we introduced a prefactor C1/4πG, and C1 is
a constant factor that has a dimension of ρ−1. C1 is a proportionality
factor that depends on properties of sample galaxies or haloes, e.g.
luminosity (for galaxies), mass, redshift, cosmological parameters,
and so on. The minus sign is conventionally taken so that, if shapes
of galaxies and haloes are elongated along the direction of the mass
accretion from the surrounding structures, C1 turns to be positive.

Using the Poisson equation, equation (6) can be expressed in
Fourier space as

γ(+,×)(k, z) = −C1�mρcr0(1 + zIA)f(+,×)(k̂)δ(k, zIA), (7)

where ρcr0 is the critical density today and we have defined the
function f(+, ×), following Blazek et al. (2015), as

f(+,×)(k̂) ≡ (1 − μ2)(cos 2φ, sin 2φ), (8)

where μ ≡ n̂ · k̂ = k̂3 and φ = tan−1(k̂1/k̂2). The factor (1 − μ2) in
the kernel, f(+, ×), reflects the fact that the IA shear arises from Fourier
modes in two-dimensional plane perpendicular to the line-of-sight
direction, k⊥. For example, Fourier modes along the line-of-sight
direction, which have μ = ±1, do not cause the observed IA shear.
This is opposite to the RSD due to peculiar velocities of galaxies,
which arise from Fourier modes along the line-of-sight direction. If
we take zIA to be in the matter dominated era for an epoch of the IA
generation, the amplitude of tidal field on linear scales is constant
in time, and therefore the IA reflects the primordial tidal field. This
model is called the primordial alignment model, and in this case we
have

γ(+,×)(k, z) = −AIAC1ρcr0
�m

D(z)
f(+,×)(k̂)δ(k, z), (9)

where D(z) is the linear growth factor. We set C1ρcr0 = 0.0134 and
we employ the normalization D(z = 0) = 1 in this work, following
the convention in Joachimi et al. (2011). We use the dimensionless
parameter AIA to characterize the amplitude of the IA signal.

For a practical measurement of the IA effect, we further take into
account the RSD effect caused by peculiar velocities of galaxies or
haloes. We will discuss the RSD effect in a separate section later.

2.2 E/B decomposition of the IA power spectrum

As we described, the galaxy shape induced by the IA effect is a spin-2
field by definition. This is a useful property, and we can use the E/B-
mode decomposition of the observed galaxy shape field that gives

a unique decomposition of the 2 deg of freedom in the spin-2 field.
The E-mode is a physical mode caused by the scalar gravitational
potential, and the B-mode is a non-physical mode that cannot be
generated by the scalar mode in the linear regime, so served as
an indicator of systematic errors in actual measurements. However,
note that the E and B-modes are mixed in the non-linear regime or
if the field is a non-linear field of the underlying scalar fields, which
indeed occurs in the IA power spectrum as we will show later. In
analogy with Cosmic Microwave Background (CMB) polarization
(Kamionkowski, Kosowsky & Stebbins 1997; Zaldarriaga & Seljak
1997) and weak lensing (Crittenden et al. 2002), the E/B-mode
decomposition is non-local in real space, while it is ‘local’ in the
Fourier space. From equation (7), we can define the E/B-modes of
galaxy shapes, denoted as γ E, B:

γE(k) = γ+(k) cos 2φ + γ×(k) sin 2φ, (10)

γB (k) = −γ+(k) sin 2φ + γ×(k) cos 2φ. (11)

From these equations, in this paper we consider the following 3D
power spectra to study the IA effect:〈

γE(k)δ(k′)
〉 ≡ PδE(k)(2π )3δ3

D(k + k′),〈
γE(k)γE(k′)

〉 ≡ PEE(k)(2π )δ3
D(k + k′), (12)

where δ3
D(k) is the 3D Dirac delta function, PδE(k) is the cross-

power spectrum between the mass density field and the E-mode of
galaxy shape, and PEE(k) is the auto-power spectrum of the E-mode
field. We should emphasize that, although the E/B-modes are defined
with respect to the Fourier modes k⊥ in the ‘two’-dimensional
plane perpendicular to the line-of-sight direction, the power spectra
are given as a function of the three-dimensional wavevector, k. In
addition, the power spectra are not only a function of the scalar
k(= |k|), but also depend on the direction of k. These 3D power
spectra contain the full information on the IA effect at the level of
two-point statistics. In a conventional method that has been used in
the actual measurement, the projected correlation function is used to
measure the IA effect, where the correlation function is obtained by
integrating the above 3D power spectrum information along the line-
of-sight direction, in analogy with the weak lensing measurement.
As we will show, this projection leads to a loss of the underlying
information. For the B-mode power spectra, 〈γ Bγ B〉 = 0 for the
IA caused by the scalar tidal field in the linear regime, and 〈γ Bδ〉 =
〈γ Eγ B〉= 0 due to the statistical parity invariance. These give a useful
sanity check of residual systematic errors in actual measurements.

For convenience of our discussion, we define the multipole
moments of the IA power spectrum as

P
(�)
XY (k) ≡ 2� + 1

2

∫ 1

−1
dμL�(μ)PXY (k, μ), (13)

where the subscripts X and Y are labels for δ (density), h (haloes), or
E (shape), and L�(x) is the Legendre polynomial of order �. Due to
the geometrical nature of E/B-modes of the intrinsic galaxy shapes,
the following relations between the multipole moments are expected
to hold (see Okumura & Taruya 2020, for those in the configuration
space):

P
(2)
δE

P
(0)
δE

= −1,
P

(2)
EE

P
(0)
EE

= −10

7
,

P
(4)
EE

P
(0)
EE

= 3

7
. (14)

For the cross-power spectrum, PδE or PhE, the above relation always
holds because it comes from the geometrical factor (1 − μ2) in
the definition of the projected shapes, and thus does not rely on
the specific IA model (also see Okumura & Taruya 2020). On the
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836 T. Kurita et al.

other hand, for the auto-power spectrum, PEE, the above relation
holds in the linear regime to a good approximation, but is not exact
even in the linear regime (small k) due to the non-linear shot-noise
contribution (see below). Note that the projection effects do not
cause the higher-order moments beyond the second- or forth-order
moments for PδE(PhE) and PEE in real space, respectively.

Plugging equation (7) into equation (12), we find that the linear
IA model predicts the power spectra to be given as

PδE(k, μ; z) = −AIAC1ρcr0
�m

D(z)
(1 − μ2)P lin

δ (k; z), (15)

PEE(k, μ; z) =
[
AIAC1ρcr0

�m

D(z)
(1 − μ2)

]2

P lin
δ (k; z), (16)

where P lin
δ (k; z) is the linear matter power spectrum. This is called as

the linear alignment model. If we replace P lin
δ (k) with the non-linear

matter power spectrum, denoted as P NL
δ (k), it gives the non-linear

alignment model (Bridle & King 2007), which has been often used
in the weak lensing cosmology analysis (e.g. Hikage et al. 2019).
These alignment models predict the specific relations between PδE

and PEE via the same coefficient with respect to the matter power
spectrum. The above equations are found to satisfy equation (14).

Note that the shear field estimated by using shapes of galaxies
or haloes γ̃ij is a density-weighted field because we can sample
the shape field only at the positions of haloes/galaxies and the
haloes/galaxies are biased tracers of the underlying matter density
field, i.e. γ̃ij = (1 + δg/h)γij (see Appendix A for details); (also see
Seljak & McDonald 2011, for a similar discussion on the redshift-
space distribution field of galaxies). At the leading order, its Fourier
transform is written as

γ̃ij (k) = [
(1 + bg/hδ

lin) ∗ γij

]
(k)

=
∫

d3k′

(2π )3
γij (k − k′)

[
(2π )3δD(k′) + bg/hδ

lin(k′)
]
, (17)

where bg/h is a linear galaxy/halo bias. Therefore PEE and PBB have
O((P lin

δ )2) correction terms in addition to equation (16). These non-
linear terms of the fluctuation fields lead to a leakage of E-mode into
B-mode, as we will discuss below.

In order to predict the IA effect beyond linear theory, one
might want to use the perturbation theory of structure formation
(Bernardeau et al. 2002) or the effective field theory of large-scale
structure (McDonald & Roy 2009; Baumann et al. 2012). For this
kind of approach, one can write down a general expansion of the IA
field in terms of series of the underlying matter fields and possibly
additional counter terms, with coefficients for each term (see Blazek
et al. 2015; Schmidt et al. 2015; Schmitz et al. 2018; Blazek et al.
2019; Vlah et al. 2020, for recent works).

3 ME A S U R E M E N T M E T H O D O F I A P OW E R
SPECTRA FRO M N- B O DY SI M U L AT I O N S

In this section, we describe details of N-body simulations and the
halo catalogues, the way to quantify shapes of haloes, and the way
to measure the IA power spectra from the simulations.

3.1 N-body simulations and halo catalogues

In this paper, we use a subset of the N-body simulation data in
Dark Quest (Nishimichi et al. 2019), more exactly the high-
resolution (HR) suite constructed in the paper, and the associated halo
catalogues. We generate the initial conditions using CAMB (Lewis,
Challinor & Lasenby 2000) to compute the linear matter power

spectrum at the initial redshift and 2LPTIC (Scoccimarro 1998;
Crocce, Pueblas & Scoccimarro 2006; Crocce & Scoccimarro 2006;
Nishimichi et al. 2009; Valageas & Nishimichi 2011a,b) to set up the
initial displacement and velocity of each N-body particle and then
simulate the particle distribution using Gadget2 (Springel 2005)
with 20483 particles in a periodic cubic box size of 1 h−1 Gpc.
We employ the flat-�CDM model with the following values of
cosmological parameters for the fiducial cosmology: (ωb, ωc, ��,
ln (1010As), ns) = (0.02225, 0.1198, 0.6844, 3.094, 0.9645), which
are consistent with the Planck results (Planck Collaboration 2016).
The mass of N-body particle corresponds to 1.02 × 1010 h−1M� for
the fiducial cosmology.

For each simulation realization, we identify haloes in the post-
processing computation, using a phase space finder, Rockstar
(Behroozi, Wechsler & Wu 2013). The centre of each halo is
estimated from the centre-of-mass location of a subset of member
particles in the inner part of halo, which is considered as a proxy of
the mass density maximum. Throughout this paper, we use the virial
mass in the Rockstar outputs as the mass of each halo; Mh ≡ Mvir.
We use haloes with masses greater than 1012 h−1M�, and use the
outputs of N-body realizations at 21 redshifts in the range of 0 ≤
z ≤ 1.48, evenly stepped by the linear growth factor for the fiducial
Planck cosmology (see Nishimichi et al. 2019, for details).

3.2 Measurements of halo shapes

We now need to quantify the ‘shape’ of individual haloes. Since dark
matter haloes are not relaxed nor in dynamical equilibrium and do not
have any clear boundary, there is no unique definition of halo shape.
What we can observe from data is only the ‘shape’ of a galaxy, or
that of stellar distribution, and those stars would form in the centre
around the mass density maximum in each host halo due to baryonic
dissipative processes forming stars. Hence, in order to estimate a
‘central-galaxy-like’ shape of each halo, we use the following inertia
tensor of N-body particle distribution in each halo (Osato et al. 2018);
(also see Bett 2012; Tenneti et al. 2015, for the similar definition):

Iij∝
∑

p

wpxi
pxj

p, (18)

where xp ≡ xp − xh, xh is the position of the halo centre for
each halo, xp is the position of the p-th member particle in the
halo, wp(rp) is the radial weight function, and rp is the radius in
the triaxial coordinate system defined by using the iterative scheme
(see Appendix C for the details). From the above consideration,
we employ wp = 1/r2

p; we upweight contributions from inner
particles around the mass density maximum, assuming that those
particles are more gravitationally bound and are proxies of stars if
a galaxy forms in the halo (see Masaki et al. 2013, for the similar
discussion).

Taking x3-direction as the line-of-sight direction, we define two
components to characterize the ellipticity of each halo, from the
inertia tensor, as

ε+ ≡ I11 − I22

I11 + I22
, ε× ≡ 2I12

I11 + I22
. (19)

In an actual observation, we can see only the ‘projected’ distribution
of stars in each galaxy, and therefore the above definition would
be appropriate for the definition of the halo ellipticity or closer to
what we can estimate from the light distribution of each galaxy. In
Appendix C, we study how the IA power spectra vary if different
definitions of inertia tensors are used. A brief summary of the results
is as follows. The ellipticities of individual haloes are sensitive to
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Power spectrum of halo intrinsic alignments in simulations 837

Figure 1. Distributions of ellipticity amplitudes of halo shapes, defined as

ε =
√

ε2+ + ε2×, for halo samples in the mass ranges denoted by the legend.
Here we show the results at z = 0.484. For the two-component ellipticities, the
probability distribution is given as P(ε+, ε×)dε+dε× = P(ε)εdεdϕ. Hence
the top panel shows the probability distribution of ellipticity amplitude, εP(ε),
which satisfies the normalization

∫ 1
0 dε εP (ε) = 1. The lower panel shows

the non-normalized distribution, i.e. the number of haloes, at each bin of ε.
For illustrative purpose, we adopt the logarithmic scale of y-axis.

how to define the inertia tensors, and the large-scale IA amplitudes
(AIA), measured from the simulations, also vary with the definitions.
However the shape (k-dependence) of IA power spectrum and also
the signal-to-noise ratio (S/N) of it remain almost unchanged up to
the scale sufficiently larger than the size of a halo (k � 0.1 h−1 Mpc).
Hence as long as we marginalize AIA as a free parameter like the linear
halo/galaxy bias, we expect that the choice of shape measurement
methods does not affect the results of a cosmological analysis with
the IA power spectrum.

Fig. 1 shows the distribution of halo ellipticities measured from
one simulation realization, for different haloes samples, defined
according to the halo mass ranges. Note that the distribution satisfies
the normalization condition:

∫ 1
0 dε εP (ε) = 1. The figure shows ε ∼

0.5 as typical halo ellipticities, with a wide distribution. However, as
we will show later, the IA effect arises from a correlated part between
shapes of different haloes, which corresponds to a few percent in
the ellipticity amplitude, much smaller than the random intrinsic
shapes. Thus the random intrinsic shapes give a dominant source
of statistical errors in a measurement of the IA effect. Note that
the relatively larger ellipticity of low mass haloes (∼1012 h−1M�)
is partly due to a finite number of member particles in individual
haloes, because they contain only ∼100 N -body particles, which is
not enough to precisely measure the underlying shape of a halo and
then adds statistical errors in the measured ellipticity per component;
εrms ≡

√
〈ε2+〉 =

√
〈ε2×〉 where 〈ε2

+〉 ≡ 1
Nh

∑
h ε2

+,h. Nevertheless we
find that the IA power spectra are not sensitive to the resolution issue
due to a finite number of member particles in haloes, as we will
explicitly show in Appendix D.

As in the weak lensing convention (Bernstein & Jarvis 2002),
we convert the halo ellipticities into the shear, via the following
relation, in order to compare with the IA theory given in terms of the
gravitational tidal field:

γ(+,×) = 1

2R ε(+,×), (20)

where R ≡ 1 − ε2
rms is the responsivity (Bernstein & Jarvis 2002).

Typically R � 0.9 for our halo samples as indicated in Fig. 1.

3.3 Measurements of the IA power spectra

The halo shape, given by equation (18), is considered as a represen-
tative tracer of the underlying ellipticity/shear field or theoretically
the tidal field in the IA model, which has an analogy to the peculiar
velocity field of galaxies (Kaiser 1987) or the weak lensing field
(van Waerbeke 2000)3 for the definition. In this work, we consider a
number-density weighted ellipticity field:

γ̂(+,×)(x) = 1

n̄h

∑
h

γ h
(+,×)δD(x − xh), (21)

where n̄h is the mean number density of haloes and xh denotes the
position of haloes. It is useful to get access to this field on regular
grids to make use of the Fast Fourier Transform. To do so, we use
the cloud-in-cell (CIC) assignment (Hockney & Eastwood 1981)
to interpolate the ellipticities sampled at the positions of haloes, to
the entire simulation box (see Appendix A for details). Throughout
this paper, we employ 10243 grids to define the halo shear fields.
Finally, we perform a Fourier-transformation of the fields to compute
the E/B-mode fields from equations (10) and (11), E(k) and B(k).
After the decomposition, we measure the power spectrum from each
realization; in the next section we consider the following power
spectra:{

Pδ(k), Ph(k), P (�)
δE (k), P (�)

hE (k), P (�)
EE(k)

}
, (22)

where ‘δ’ and ‘h’ denote the density fields of matter and haloes,
respectively. We also give a discussion on the B-mode power
spectrum in Appendix B.

4 R ESULTS

4.1 Power spectra of matter, haloes, and shapes

In Fig. 2, we show the cross-power spectrum between the E-mode
field of halo shapes and the matter density field, PδE(k), measured for
haloes with masses in the range [1012, 1012.5] h−1M� in simulation
outputs at z = 0.48. The symbols are the average among the 20
realizations, and the error bars indicate the statistical error for a
volume of 1 (h−1 Gpc)3, computed from the realization-to-realization
scatters. First, the cross-power spectrum displays significant corre-
lations over all the scales shown here, from the linear to non-linear
regimes, meaning that halo shapes have a physical correlation with
the surrounding matter density field on all scales beyond a size of
haloes (∼ h−1 Mpc at most) as predicted by the tidal alignment model.
Reflecting the spin-2 field nature of halo shapes, the cross-power
spectrum has both the monopole and quadrupole moments. However,
the relation between the two moments is purely geometrical, and the
simulation result confirms that P

(0)
δE (k) = −P

(2)
δE holds even at non-

linear scales (high k bins beyond k � 0.1 h −1 Mpc). The minus sign
of the monopole moment indicates that halo shapes are stretched in
the direction of the minor axis of the tidal field, which means that
the principal major axis of a halo’s inertia tensor tends to be aligned
with the filament structure or on the sheet structure for instance.

3We should keep in mind that the underlying tidal field is sampled at particular
positions, i.e. halo positions, like the peculiar velocity field of galaxies (Seljak
& McDonald 2011).
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838 T. Kurita et al.

Figure 2. The blue (orange) points in the top panel show the monopole
(quadrupole) moment of the cross-power spectrum between the E-mode of
halo shapes and the matter density field, PδE, for the halo sample with Mvir =
1012–12.5 h−1M� at z = 0.484. For comparison, the grey shows the ordinary
matter power spectrum. The lower panel shows the ratios of the monopole or
quadrupole moment to the matter power spectrum.

The lower panel of Fig. 2 shows the ratio of PδE(k) to Pδ(k). The
ratio approaches a constant value at the limit k → 0. This asymptotic
behaviour is analogous to a linear bias coefficient, e.g. as seen from
the ratio of the halo-matter cross power spectrum to the matter power
spectrum, Pδh/Pδ = bh at k → 0 with a constant coefficient bh. The
scale-independent (constant) ratio is a confirmation of the linear
alignment model. This large-scale correlation is as expected in the
standard �CDM model with an adiabatic Gaussian initial condition
that is employed in our simulations, as follows. The formation and
evolution of individual haloes are governed by local physics or
physical quantities within a few Mpc scales around each halo. Hence,
as long as the physical correlation of halo shapes with the large-
scale matter distribution arises on scales beyond the halo scales, it
should originate from the gravitational interaction and the primordial
perturbations. Since there is only a single degree of freedom in the
perturbations at large scales in the adiabatic initial conditions, the
power spectra of the IA (halo shape) fields at linear scales should
be related to the matter power spectrum via a constant factor (also
see Desjacques, Jeong & Schmidt 2018, for the similar discussion
on halo bias). The small-k constant ratio of Fig. 2 indicates that halo
shapes retain the information on the primordial density perturbation
on large scales, very similarly to what the density perturbation of
haloes does.

In Fig. 3, we show the dimensionless power spectra, defined by
2

XY ≡ k3PXY /2π2, to study the typical amplitude of the halo shape
E-mode field. Recalling that the dimensionless power spectrum
at a particular k corresponds to the real-space variance per unit
logarithmic wavenumber interval at the corresponding length scale,
e.g. 2

δ (k) ∼ 〈δ2
R〉∣∣

R∼1/k
, one can find δ ∼ O(1) at k ∼a few

O(0.1) h −1 Mpc from the grey points showing 2
δ . Then comparing

the amplitudes of 2
δ and 2

δE tells E ∼a few O(0.01), i.e. a few
percent for the IA shear amplitude at k � 0.1 h −1 Mpc. This means
that, if the halo E-mode field is smoothed within a volume of scales
Rsm ∼ 1/k ∼ a few 10 Mpc, the E-mode amplitude is of the order
of 0.01. This E-mode amplitude can be compared to the intrinsic

Figure 3. Similarly to the previous figure, but shown is the dimen-
sionless power spectra, defined as 2

δ (k) ≡ k3Pδ(k)/(2π2) and 2
δE(k) ≡

k3PδE(k)/(2π2), respectively. The dimensionless power spectrum at a partic-
ular wavenumber k gives an amplitude of the real-space variance at the cor-
responding wavelength; e.g. δE(k)2 � 〈δγ E〉|λ ∼ 1/k in the linear or weakly
nonlinear regime (see text for details). The lower panel shows an amplitude
of the real-space IA shear at the wavelength, 2

δE(k)/[2
δ (k)]1/2 ∼ γE |λ∼1/k

in the linear regime.

random shape, γ N ∼ 0.2 (Fig. 1 and equation (20) taking into account
the relation ofγ = ε/(2R) with responsivity R ∼ 0.9). Thus the
large-scale IA shear is measurable only in a statistical sense, e.g.
via the correlation function or power spectrum for the two-point
statistics. At the non-linear scales k � 0.1 h −1 MPC, the shear
IA amplitude appears greater as shown by the lower panel, but the
boosted amplitudes are likely due to the higher-order contribution of
density perturbation as explained around equation (17).

In Fig. 4, we show the auto-power spectra of the E-mode shape
field. Here we first subtracted the shot noise term from the measured
power spectrum, and then computed the multipole moments of power
spectrum. In Appendix B, we in detail describe how to estimate the
shot noise term due to the discrete nature of the intrinsic shapes of
haloes in each simulation. Note that the shape noise contributes only
to the monopole moment. The monopole and quadrupole moments
display different k-dependences at k � 0.1 h−1 Mpc. This means that
a simple geometrical relation between the monopole and quadrupole
moments, given by equation (14), does not hold for the auto spectrum
especially at k � 0.1 h −1 Mpc, unlike that of the cross-power spectra
(the relation for the hexadecapole moment is not clear due to the
larger errors). This implies that the higher-order contributions to the
auto-power spectra cause non-trivial angular modulations, which
are also found from a perturbation theory calculation in Blazek
et al. (2015). In Appendix B, we show that the B-mode auto-
power spectrum displays a deviation from the simple shot noise,
with a weak-scale dependence (see Fig. B1). We believe that this is
ascribed to the ‘renormalized’ shot noise arising from the small-scale
non-linear terms as discussed in Blazek et al. (2019), which has an
analogy to the renormalization of bias parameters (McDonald 2006;
McDonald & Roy 2009). This term should equally contribute to the
E-mode auto-power spectrum.

The IA effect is one of the most important systematic effects in
cosmic shear cosmology (Hildebrandt et al. 2017; Troxel et al. 2018;
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Power spectrum of halo intrinsic alignments in simulations 839

Figure 4. The blue, orange, and green data points show the monopole,
quadrupole, and hexadecapole moments of the auto-power spectrum of the
E-mode, respectively, for the same halo sample as in Fig. 2. We subtracted
the shot noise term from the measured power spectrum (see Appendix B for
details).

Hikage et al. 2019; Hamana et al. 2020). In this context, there are
two contributions, called ‘II’ and ‘GI’, to the cosmic shear power
spectrum, which correspond to PEE and PδE, respectively. In cosmic
shear analyses, the following relation is often assumed based on the
linear alignment model (equation 9):

PδE(k) = −AIAc(z)(1 − μ2)Pδ(k),

PEE(k) = A2
IAc(z)2(1 − μ2)2Pδ(k), (23)

where c(z) is a scale-independent factor at a particular redshift,
defined from equation (9) as c(z) ≡ C1ρcr0�m/D(z). The cosmic
shear is a projected field of the underlying matter density field along
the line-of-sight direction, so the power spectrum corresponds to the
one evaluated at μ = 0 in the above equation because k⊥ = k(1
− μ2)1/2 (see Section 4.5 for a similar discussion). If we use the
non-linear power spectrum for Pδ(k), it corresponds to the non-linear
alignment model (Bridle & King 2007).

Here we address the validity of the linear and non-linear alignment
models by comparing the expressions (equation 23) with the IA
power spectra measured in simulations. Fig. 5 shows the correlation
coefficient of the matter density field and E-mode field defined as

r2(k) ≡ N
[
P

(0)
δE (k)

]2

Pδ(k)P (0)
EE(k)

, (24)

where the prefactor N = 6/5 normalizes r(k) as unity if the linear
or non-linear alignment model holds.4 In the k → 0 limit, r goes to
unity, i.e. the linear alignment model is valid at each redshift for the
low mass samples. Note that it apparently does not hold for the high
mass samples at high redshifts due to the non-Poisson shape noise;
since we here only subtract the pure Poisson shape noise from the

4Since the IA power spectrum is intrinsically anisotropic, the cor-
relation coefficient should be a function of k and μ; r2(k, μ) ≡
P 2

δE(k, μ)/(Pδ(k)PEE (k, μ)). The definition of equation (24) then only
focuses on the monopole component of the cross-correlation. Indeed, we
obtained similar results with Fig. 5 from the measured r2(k, μ) with fixed μ.

measured P
(0)
EE , it still has the non-Poissonian contribution in small

k-bins. That positive residual offset causes r < 1 at small k. We
checked P

(0)
EE is actually well fitted by the linear alignment model

after subtracting the non-Poisson shape noise which is estimated
by P

(0)
BB (see Apprendix B). On the other hand, at non-linear scales

k � 0.1 h −1 Mpc the cofficient r goes below unity, and the IA
power spectra display different shapes from the alignment models
in the non-linear regime. If we recall that most of the cosmological
information in the cosmic shear power spectrum is from the scales
in k � [0.1, 1] h −1 Mpc (Huterer & Takada 2005; Hildebrandt
et al. 2017; Troxel et al. 2018; Hikage et al. 2019; Hamana et al.
2020), the violation of the relation (equation 23) might cause a bias
in the cosmological parameters, derived by marginalizing over the
IA parameters. Therefore, the potential impact of this breakdown of
the commonly-used model should be carefully studied.

4.2 Mass and redshift dependences of AIA

In Fig. 6 we study how the linear IA coefficient, AIA (see equation 9)
varies with redshift and halo mass. We estimate AIA by minimizing
the following χ2 with varying a parameter ÂIA,

χ2 ≡
∑

ki ;ki<0.05 h Mpc−1

[R(ki) − (2/3)c(z)ÂIA]2

σ 2
Ri

, (25)

where c(z) is the same factor defined below equation (23), R(ki)
is the ratio of the monopole of matter-IA cross-power spectrum to
the matter power spectrum in the i th k bin, defined as R(ki) ≡
P

(0)
δE (ki)/Pδ(ki), a factor of 2/3 in front of c(z) is from the μ-integral

of (1 −μ2) in the monopole calculation of P
(0)
δE , and σ 2

Ri
is the variance

of the ratio in the k-bin, estimated from the 20 simulation realizations.
Here we consider two sets of halo samples with different selection
rules; one set is a halo sample selected in a given mass range (mass-
bin sample), while the other is specified by a fixed number density of
haloes. For the latter, we select haloes from the ranked list of masses
starting from the most massive one at each redshift output until
the number density of selected haloes matches the target value. Note
that the mass-bin samples have different number densities at different
redshifts. The figure shows the best-fitting coefficients AIA for each
halo sample at a given output redshift. We should again remind
that AIA is, by construction, defined with respect to the primordial
gravitational potential (or curvature) perturbations at large scales
(small k’s), which are constant in time. We begin with the results for
the mass-bin samples, which show several interesting trends. First,
the figure shows that AIA is greater for more massive haloes at a
fixed redshift. Second, AIA is greater at higher redshifts for a fixed
mass-bin halo sample. These results reflect that more massive haloes
and haloes at higher redshift have a greater response to the linear
tidal field. Third, the AIA values for the two samples at the high-mass
end (red and green points in the left-hand panel) show a plateau,
approaching to an asymptotic constant value in high redshift bins,
as predicted by the linear IA model arising from the primordial tidal
field that is constant in time (therefore leading to a time-independent
AIA).5 We checked that the halo mass dependence of AIA, especially

5If the linear alignment model (equation 6) holds, the linear IA coefficient
(AIA) for haloes of the same mass would be the same and constant in time,
whenever the IA correlation is measured (even if the abundance of the haloes
significantly changes across different redshifts). This is because the haloes of
same mass form from the primordial density peaks of the same Lagrangian
volume and the large-scale relation/correlation between the halo shapes and
the primordial tidal field has no time dependence in the Lagrangian picture.
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Figure 5. The cross-correlation coefficients r(k) of the IA cross-power spectrum, P
(0)
δE for various halo masses and redshifts (see equation 24 for the definition

of r). If the linear alignment model (equation 23) holds, this coefficeint r = 1.

Figure 6. The halo mass dependence and the redshift evolution of the large-scale IA coefficient, AIA, which is estimated according to equation (25) and
theoretically corresponds to the coefficient of linear alignment model in equation (9). Left-hand panel: The results for the samples of haloes in a given mass
range, as denoted by the legend. Right-hand panel: Similar to the left-hand panel, but the results for samples of haloes with a fixed number density, where we
define each sample by selecting haloes from the ranked list of masses starting from the most massive halo until the number density of selected haloes matches
the target number density.

before the plateau, is qualitatively consistent with the result in Piras
et al. (2018), which found that the linear IA coefficient scales with
halo mass as AIA ∝ M

β

h with β � 0.3 for Mh � [1013, 1014] h−1M�
from the Millenium simulation.

Now we consider the samples for a fixed number density. A
spectroscopic survey of galaxies is sometimes designed to keep a
constant number density over a range of redshifts for the cosmolog-
ical analysis purpose (e.g. Dawson et al. 2013; Takada et al. 2014).
The ongoing and upcoming spectroscopic surveys are in the range of
n̄ = [10−4, 10−3] (h Mpc−1)3. The redshift evolution of AIA depends
on the number density of a sample; AIA decreases with the increase of
redshift for a low density sample such as n̄ = 10−5 (h Mpc−1)3, AIA

appears to be almost constant with respect to redshifts for 10−4 (h−1

Mpc)−3 and AIA increases with redshift for 10−3 (h Mpc)−3. Thus
the AIA amplitude depends on the selection of haloes or the nature
of the halo sample. Finally, we comment on a connection of the
results in Fig. 6 to the IA effects of galaxies. We can consider the AIA

amplitude shown in Fig. 6 is the maximum case, since we consider
the halo shapes. Since the physics and evolution of galaxies are
more complicated, and galaxy shapes would have a misalignment

with the halo shapes to some degrees (Okumura et al. 2009), the
AIA coefficients for galaxies would be smaller even if the galaxies of
interest are central galaxies and reside in haloes in the mass range
we have considered so far. We also note that the AIA amplitude varies
with the definition of halo shapes even for the same sample of haloes,
as shown in Appendix C.

Fig. 6 indicates AIA ∼ 20 for haloes with 1013 h−1M� at z ∼ 0.5,
which roughly corresponds to the host haloes of the SDSS luminous
red galaxies, and this is larger than AIA ∼ 8 implied from the actual
SDSS data (Okumura et al. 2009; Singh et al. 2015). As discussed
in Appendix C, if we employ a crude definition of the halo shapes
in simulations, it leads to about halved value of AIA even for the
same sample of haloes.6 In addition, actual galaxies might have a
misalignment with the orientations of the host haloes, and this also
leads to a smaller AIA value inferred from galaxy shapes, compared
to the halo shapes (Okumura et al. 2009). A random misalignment of

6Nevertheless, note that, even for this case, the S/N of IA power spectrum is
not largely changed as in the main results we show below.
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Power spectrum of halo intrinsic alignments in simulations 841

Figure 7. The ratio of the cross-power spectra of matter and halo E-field to the linear matter power spectrum without BAO wiggles (no wiggle), for haloes
samples in different mass bins at z = 0.484. Here we use the fitting formula in Eisenstein & Hu (1998) to compute the no-wiggle matter spectrum for the
Planck cosmology, the samE-model used in the simulations. For easier comparison, we arbitrarily normalize the ratio in such a way that all the curves have the
similar amplitudes up to k = 0.05 h −1 Mpc (we employed the normalization on individual realization basis). We here consider the two samples of halo masses,
where the sample of Mh = [1013, 1013.5] h−1M� roughly corresponds to a typical mass of haloes hosting the BOSS CMASS galaxies. We also show the ratios
for the matter-halo cross spectrum, Pδh, and for the linear matter power spectrum with BAO wiggles, which are similarly normalized (arbitrarily scaled in the
y-direction).

about 30 deg between the major axes of halo and galaxy orientations
leads to about factor of 2 smaller value of AIA. Thus an actual value
of AIA is sensitive to the definition of halo shapes and the properties
of galaxies relative to host haloes, so the results of Fig. 6 can be
considered as an example of AIA values that dark matter haloes could
have. Or the parameter AIA should be considered as a ‘nuisance’
parameter, because the genuine value of AIA is difficult to predict
from the first principles.

In Appendix E, we show the mass and redshift dependence of
another definition of the linear coefficient, gij ≡ bKKij, which is
commonly used in the context of the perturbation theory of the IA
physics for convenience.

4.3 Baryon acoustic oscillation features

In Fig. 7 we show the ratio of the cross-power spectrum of matter
and halo shapes to the linear ‘no-wiggle’ matter power spectrum for
several halo samples in different mass bins, where we use Eisenstein
& Hu (1998) to compute the linear matter spectrum with no BAO
features for the Planck cosmology. We arbitrarily normalize all the
cross-power spectra so that the ratio, PδE(k)/Pδ(k), is close to unity
at k bins up to k = 0.05 h−1 Mpc in each realization.

The IA power spectrum displays clear BAO features as in the
power spectrum of the halo density field. Thus the IA power spectrum
can be used to measure the BAO scales (Okumura et al. 2019).
Perhaps more interestingly, while the power spectrum of the halo
density field has a boost in the amplitude at k � 0.1 h −1 Mpc in the
non-linear regime, the IA power spectrum displays a weaker boost in
the amplitude at such non-linear scales; for less massive haloes with
Mh = [1012, 1012.5] h−1M� the amplitude stays almost unchanged
as that of the linear power spectrum. This could be interpreted as
follows. Consider an overdensity region in the initial linear density
field, at a sufficiently high redshift, i.e. in the linear regime. The
Lagrangian volume of such a region shrinks due to the gravitational
instability, and the density contrast accordingly grows due to the mass
conservation. A larger number of haloes form in such an overdensity

region. Thus the mass density or number density of haloes have a
boost in the amplitude, reaching δ � 1, in the overdensity region. On
the other hand, there is no conservation law for the halo shapes or
tidal fields. Even in the highly non-linear regime, ellipticities of halo
shapes still stay in the range of |γ | ≤ 1 or never go beyond unity,
unlike the density contrast. Hence the IA power spectrum should
have a weaker response to the non-linear clustering, at least in the
power spectrum amplitudes. Nevertheless, the observed IA field is
a galaxy density-weighted field (see below), and the observed halo
shapes are expressed as (1 + δ)γ . The prefactor (1 + δ) can lead
to a boost in the IA power spectrum, which partly explains a boost
in the IA power spectrum for the halo sample with Mh = [1013,
1013.5] h−1M�. These are interesting results.

4.4 Signal-to-noise ratio

How much information does the IA power spectrum carry, compared
to the standard halo power spectrum? To address this question, we
study the cumulative S/N over a range of kmin ≤ k ≤ kmax, defined
by(

S

N

)2

≡
kmax∑

ki=kmin

P̄ (�)(ki)
[
C(��′)

]−1

ij
P̄ (�′)(kj ), (26)

where C(��′) is the covariance matrix between the �- and �
′
-th

multipole moments of power spectra and [C(��′)]−1 is the inverse
of the covariance matrix. Given an estimator of the power spectrum,
the covariance matrix is defined as

C(��′)ij ≡
〈
P̂ (�)(ki)P̂

(�′)(kj )
〉

− 〈
P̂ (�)(ki)

〉〈
P̂ (�′)(kj )

〉
= CG

(��′)ij + CcNG
(��′)ij + CSSC

(��′)ij , (27)

and P̄ (�)(ki) ≡ 〈P̂ (�)(ki)〉. Throughout this paper, we adopt kmin =
0.04 h−1 Mpc for the minimum wavenumber and lnk = 0.215 for
the width of the k-bin in the S/N calculation. The covariance can be
generally broken down into three contributions (Takada & Hu 2013);
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the Gaussian (G) covariance, the connected non-Gaussian (cNG)
covariance, and the super-sample covariance (SSC), respectively.
These covariance contributions to the IA power spectrum have not
been studied. For the Gaussian field, the covariance has only the
Gaussian contribution. The non-Gaussian covariances (cNG plus
SSC) arise from the non-linear mode coupling, more specifically
the four-point correlation function (trispectrum) of the fields.

To accurately estimate the covariance matrices of the halo and
IA power spectra, we use a set of the simulation realizations
following the method in Li, Hu & Takada (2014). We use a suite
of 20 simulations in Nishimichi et al. (2019) each of which has a
1 h−1 Gpc box size. We subdivide each box into 64 subvolumes
of size 250 h−1 Mpc each. Thus we have Nsub = 20 × 64 = 1280
subboxes in total. We measure the power spectrum, P̂XY , from each
of the subboxes, and then take the the standard estimator to obtain
the covariance of the sub-volume power spectra:

C(��′)ij ≡ 1

Nr − 1

Nr∑
α=1

(
P̂

(�)
XY,α(ki) − P̄

(�)
XY (ki)

)
× (

P̂
(�′)
XY,α(kj ) − P̄

(�′)
XY (kj )

)
, (28)

where Nr is the number of subvolume realizations, i.e. Nr = 1280
in our case. Note that we do not include the correction factor in
Hartlap, Simon & Schneider (2007), as it is only 2 per cent effect
in the covariance given a sufficient number of the realizations.
The covariance estimated in this way includes the contribution of
the SSC covariance, and therefore serves as an estimator of the
total covariance given in equation (27). In the following, we scale
the covariance by a factor of (250 h−1 Mpc/1000 h−1 Mpc)3 to
approximately obtain the covariance for the volume of 1 (h−1 Gpc)3,
a typical volume of ongoing galaxy surveys such as the SDSS
BOSS survey.7 Due to violation of the periodic boundary conditions
in the subvolume, the estimated power spectrum is biased by the
window function in low k bins. We corrected for this bias by
multiplying the estimated power spectrum by a factor of P(ki)/Psub(ki)
in each k bin, where P(ki) is the power spectrum estimated from the
original simulations with periodic boundary conditions (see around
equation 53 in Li et al. 2014, for the details).

Fig. 8 shows the cumulative S/N for the halo power spectrum (Phh),
the monopole and quadrupole moments of cross-power spectrum of
halo and E-mode (PhE), and the monopole of E-mode auto spectrum
(PEE) as a function of the maximum wavenumber kmax. We show
the results at z = 0.484 and 0 in the left- and right-hand panels,
respectively, and here we consider the halo sample with Mh = [1012,
1012.5] h−1M�. First, the S/N values for all the spectra are saturated at
k � 0.4 h−1 Mpc because the shot noise or shape noise is dominated
in the covariance. Second, the S/N value for the monopole moment
of PhE can be greater than 200 at kmax � 0.3 h−1 Mpc for a survey
volume of 1 (h−1 Gpc)3, and is about 60 per cent of that for the
density power spectrum for the same halo sample, Phh. This is not
so bad, and these results imply that we can measure PhE from the
same galaxy survey in addition to Phh. If the galaxy shapes have a
misalignment with the halo shape, the S/N for the galaxy IA spectrum
would be smaller than shown in this plot. Comparing the left- and

7Exactly speaking, the SSC covariance does not scale with a survey volume
as 1/V, and more rapidly decreases than the scaling. However, the relative
decrease compared to 1/V is not a strong function of V (a very slowly-varying
function of V) as shown in Fig. 1 of Takada & Hu (2013). The S/N value for
the case including the SSC contribution might be changed by 5–10 per cent,
but the discussion here is qualitatively valid.

right-hand panels manifest that the S/N values are higher for higher
redshifts, for a halo sample with a fixed mass threshold.

How important are the connected non-Gaussian covariance and the
super-sample covariance important for the results in Fig. 8? In the
following we address this question. First, we can analytically estimate
the Gaussian covariance (CG) and then estimate the cumulative S/N
for the Gaussian case, which gives a maximum information content
of the S/N value we could extract from the observed cosmological
field. Once the power spectra of ‘X’ and ‘Y’ fields (X, Y = δ, h or
E) are given, the Gaussian covariance matrix is given, as shown in
Guzik, Jain & Takada (2010) (also see Kobayashi et al. 2020), by

CG
(��′)ij ≡ δij

N mode(ki)
(2� + 1)(2�′ + 1)

∫ 1

−1

dμ

2
L�(μ)L�′ (μ)

× [
P̄ 2

XY (ki, μ) + P̄XX(ki, μ)P̄YY (ki, μ)
]
, (29)

where Nmode(ki) is the number of Fourier modes that are used for the
power spectrum estimation at the i th k bin with width k. For a mode
satisfying ki � 2π /L, Nmode(ki) � 4πk2

i k/(2π/L)3, where L is the
size of survey volume (the side length of simulation box in our case).
The Gaussian covariance matrix is diagonal, meaning no correlation
between different k bins. Also note that the auto-power spectra of
PXX and PYY include the shot noise or the shape noise contribution.

Furthermore, to study the impact of the connected non-Gaussian
covariance (CcNG), we use a different set of simulations; we run
a set of 1000 small-box simulations of 250 h−1 Mpc size, where
we employ 5123 particles to keep the same particle/force resolution
as in the fiducial simulations, but employ the periodic boundary
conditions. Then, we measure the power spectrum from each
small-box realization, and then estimate the covariance matrix
similarly to equation (28). The covariance matrix estimated from
the small-box simulations does not include the SSC contribution, but
does include the contributions of CG and CcNG in equation (27).

Fig. 9 shows the S/N values of PhE obtained by using the full
covariance matrix, the Gaussian covariance matrix (CG) alone,
and the covariance matrix without the super-sample covariance
contribution (CG + CcNG), in the calculation of equation (26). First,
all the results fairly well agree with each other up to kmax � 0.2 h−1

Mpc, meaning that the Gaussian covariance is a good approximation
up to this wavenumber. Secondly, comparing the grey and red points
tells us that the connected non-Gaussian covariance is significant and
reduces the S/N value by about 10, 20, and 30 per cent at kmax � 0.3,
0.5, and 0.8 h−1 Mpc, respectively. Third, comparing the red and blue
points, we can find that the SSC further reduces the cumulative S/N
value by up to 20 per cent at kmax � 0.2 h−1 Mpc, meaning that the
SSC gives a significant contribution to the total covariance at the non-
linear scales. The 20 per cent loss corresponds to about 40 per cent
smaller survey volume as S/N scales roughly with the volume as
S/N∝V1/2. The relative importance of SSC to other covariance terms
looks similar to the case of weak lensing covariance (Sato et al.
2009; Takada & Jain 2009; Takada & Hu 2013). In other words, the
SSC term needs to be taken into account if one properly uses the
IA power spectrum for cosmology. To further study the SSC effect,
the separation simulation technique using anisotropic expansion in
the local background would be useful (Stücker et al. 2020; Masaki,
Nishimichi & Takada 2020).

4.5 2D versus 3D IA power spectrum

We have so far assumed that both three-dimensional positions and
shapes of haloes are available. This is the case that the IA power
spectrum measurement is done from imaging and spectroscopic
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Figure 8. The cumulative S/N for the halo power spectrum and the IA power spectra as a function of kmax, where the S/N is defined by integrating the
differential S/N over 0.04 ≤ k ≤ kmax (see the text for details). Here we consider the halo sample with Mvir = 1012-12.5 h−1M� at two redshift outputs, z =
0.484 (left-hand panel) and z = 0.0 (right-hand panel), respectively. The black, blue, orange, and green data correspond to Phh, P

(0)
hE , P

(2)
hE , P

(0)
EE , respectively.

The results correspond to the S/N values for a survey volume of V = 1 (h−1 Gpc)3.

Figure 9. Similar to the previous figure, but shown is the relative importance of the Gaussian, the connected non-Gaussian and the SSC covariance contributions
in the S/N calculation for the monopole moment P

(0)
hE . The blue data are the same one in Fig. 8 for the full covariance including the SSC terms, and the grey or

red data points are the results when including the Gaussian covariance alone or ignoring the SSC contribution, respectively.

galaxy surveys that cover the same patch of the sky. With the advent of
deep wide-area multi-band imaging surveys such as the Subaru HSC
survey (Aihara et al. 2018), the Kilo-Degree survey (KiDS; Kuijken
et al. 2015), the Dark Energy Survey (DES; Abbott et al. 2018; Becker
et al. 2016), the Rubin Observatory’s Legacy Survey of Space and
Time (LSST; LSST Science Collaboration 2009), Euclid (Laureijs
et al. 2011), and WFIRST (Spergel et al. 2015), it is natural to ask
whether photometric surveys can be used for the IA power spectrum
measurements, where the precise radial position (or distance) of
individual haloes (galaxies) is not available. To address this question,
in this section we investigate how uncertainties in the galaxy redshifts
affect our results. Here we define the projected shear field as

γ 2D
ij (x⊥) ≡

∫
dx3 p(x3)γij (x⊥, x3), (30)

where p(x3) is the radial selection function satisfying the normal-
ization condition,

∫ ∞
0 dx3 p(x3) = 1. We employ a simple radial

function given by p(x3) = 1/χ for χ̄ − χ/2 ≤ x3 ≤ χ̄ + χ/2,
and otherwise p(x3) = 0, where χ̄ is the mean comoving distance
to the survey slice (survey volume) and χ is the width of the
redshift slice. We define E/B-modes similarly to equations (10) and
(11) because the shear field is defined in the two-dimensional plane

perpendicular to the line-of-sight direction. The power spectrum of
the projected field, e.g. the cross-power spectrum of the projected
halo and E-mode fields is given by〈
E2D(k⊥)δ2D

h (k′
⊥)
〉 ≡ P 2D

hE (k⊥)(2π )2δ2
D(k⊥ + k′

⊥), (31)

where δ2
D(k) is the two-dimensional Dirac function. As can be found

in Takahashi et al. (2019) (see equation 29 in their paper), the 2D
power spectrum is related to the monopole moment of the 3D power
spectrum as

P 2D
hE (k⊥) � 1

χ
PhE(k = k⊥; z = z̄). (32)

Here we used the notation ‘�’ because the above equation is exact
if we can ignore time evolutions of the fields within the redshift
slice we consider (under the distant observer approximation). The
prefactor, 1/χ , in the above equation accounts for the fact that
the fluctuation fields are diluted after the radial projection. Here
we consider the projected wavenumber k⊥ for comparison purpose
with the 3D power spectrum, and the 2D power spectrum is related
to the angular power spectrum if the projected field is defined on
the celestial sphere, via ChE(�) = (1/χ̄2)P 2D

hE (k⊥ = �/χ̄ ). Hence the

MNRAS 501, 833–852 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/1/833/6006280 by C
N

R
S - ISTO

 user on 05 M
ay 2023



844 T. Kurita et al.

Figure 10. The cumulative S/N for the cross-power spectrum for the
projected fields of haloes and E-mode, P 2D

hE , compared to that for the

monopole moment of the 3D power spectrum P
(0)
hE in Fig. 8. To define the

projected fields, we consider the redshift slice centred at z = 0.484 and with
radial width of 250 h−1 Mpc. To have a fair comparison between the 2D and
3D case, we assume a survey volume of 1 (h−1 Gpc)3 for both cases, where
the geometry of 2D case corresponds to (2000)2 × (250) (h−1 Mpc)3. We use
the 1280 subboxes to compute the covariance matrix for the 2D spectrum, and
the covariance includes the full contributions including the SSC covariance
(see text for details).

following results for the 2D power spectrum are equivalent to what
we have for the angular power spectrum.

To have a quantitative comparison of the information contents
in the 3D and 2D IA power spectra, we consider the following
specifications for a hypothetical imaging survey. We consider the
mean redshift for z̄ = 0.484, corresponding to χ̄ = 1278 h−1 Mpc
for the Planck cosmology, and a redshift slice with radial width
χ = 250 h−1 Mpc around z̄. Recalling the relation χ � z/H (z̄),
the radial width corresponds to the redshift width z/(1 + z) �
0.074. Although we here consider a top-hat selection around χ̄ for
simplicity, the radial selection roughly corresponds to a photo-z
accuracy of σ z ∼ 0.04 on individual galaxies, if we assume that
the radial selection corresponds to the 2σ width of photo-z errors.
This is comparable to or slightly better than the typical photo-z
accuracy for red galaxies as found in the ongoing imaging surveys
such as the Subaru HSC survey (Tanaka et al. 2018). As we did for
Fig. 8, we divide each simulation of 1 (h−1 Gpc)3 into 64 subboxes
each of which has a size of 250 h−1 Mpc on a side. Then we first
project the halo and shear fields along the x3-axis to define the
projected fields, and compute the 2D power spectrum from each
subbox. We then compute the covariance from the 1280 suboxes. To
have a fair comparison, we scale the covariance to that for a volume
of 1 (h−1 Gpc)3, corresponding to a geometry of 1 (h−1 Gpc)3 =
(2000)2 × (250) (h−1 Mpc)3, where 250 h−1 Mpc is the radial
width. The covariance matrix estimated in this way includes all
the contributions including the SSC covariance (see also Takahashi
et al. 2019).

In Fig. 10, we compare the cumulative S/N values for the 2D and
3D cross power spectra of the halo density field and E-mode. The
2D power spectrum has only about a halved information of the 3D
spectrum due to the number of available Fourier modes at a certain
k-bin in the 2D Fourier space compared to the 3D case. Thus a
spectroscopic survey is advantageous to explore the IA signals. In
order to explore the full IA information at the level of two-point
statistics, we need both imaging and spectroscopic surveys for the
same region of the sky. As we describe above, the S/N value for the

angular IA power spectrum is the same as that of 2D spectrum in
Fig. 10.

4.6 Dependences of the IA power spectra on cosmological
parameters

How does the IA power spectrum varies with cosmological parame-
ters? To address this question, we study how the IA power spectrum
depends on the two cosmological parameters, S8 and �m. Here S8

≡ σ 8(�m/0.3)0.5 is a parameter to characterize the clumpiness of
the Universe today, and is the primary parameter to which weak
lensing or cosmic shear cosmology is the most sensitive (Hikage
et al. 2019). Since the IA effect is one of the most important, physical
systematic effects in cosmic shear cosmology, we study how the IA
power spectra depend on these parameters. To do this, we run a
set of N-body simulations where either of S8 or �m is shifted from
their fiducial value of Planck cosmology by ±5 per cent, but other
parameters are kept to their fiducial values. Note that, when we vary
S8 with �m being fixed to its Planck value, we vary σ 8 alone by
an amount corresponding to ±5 per cent change in S8. We also use
the same initial seeds for one particular realization of the Planck
cosmology simulations in order to reduce scatters due to the sample
variance. Then we compute the fractional variations in the IA power
spectra, computed as

∂lnPXY

∂lnpcosmo
� PXY [(1 + ε)pcosmo] − PXY [(1 − ε)pcosmo]

2εPXY [pcosmo]
, (33)

where pcosmo = S8 or �m, ε = 0.05, and X, Y are either of
halo (h) and/or the IA E-mode (E), respectively. The fractional
differences quantify scaling relations of the IA power spectrum with
the cosmological parameters in the vicinity of the Planck cosmology
in two-dimensional parameter space of (S8, �m), given by

PδE ∝ S
p

8 �q
m. (34)

Fig. 11 shows the results. Although the fractional changes look
noisy at small k bins, the IA power spectra display characteristic
scale-dependent responses to these parameters. The changes get
flattened at larger k bins, meaning that changes in these parameters
cause an almost scale-independent change in the IA power spectra,
just like an overall factor. The value of each curve in y-axis roughly
gives the scaling indices p or q in equation (34) at each scale of
k bins. For the impact of IA effect on the cosmic shear power
spectrum for cosmological models around the Planck cosmology,
one needs to further take into account the dependence of the prefactor
in equation (9), �m/D(z), on �m.

4.7 IA power spectra in redshift space

We have so far considered the real- or configuration-space fields.
However, actual observables for a spectroscopic survey are not real-
space fields, but rather defined in redshift space. RSDs due to peculiar
velocities of galaxies (haloes in our case) (Kaiser 1987) cause the
observed positions of haloes to be modulated compared to those in
real space.

Compared to the standard RSD effect on haloes’ positions, halo
shapes are not affected by the RSD effect (Singh et al. 2015; Okumura
& Taruya 2020). That is, the shear field in redshift space is invariant
under a mapping between real and redshift space:

γ S(s) = γ R(x), (35)

where quantities with superscripts ‘S’ and ‘R’ denote the quantities
in redshift and real space, respectively, the real- and redshift-space

MNRAS 501, 833–852 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/1/833/6006280 by C
N

R
S - ISTO

 user on 05 M
ay 2023



Power spectrum of halo intrinsic alignments in simulations 845

Figure 11. The dependence of the IA power spectra, PδE, on the cosmological parameters �m and S8 where S8 ≡ σ 8(�m/0.3)0.5. Here we consider the number
density-threshold sample with n̄h = 10−3 (hMpc−1)3 at z = 0.484. For comparison, we also show the dependences for Pδ and Pδh.

mapping is given by s1 = x1, s2 = x2, s3 = x3 + v3/aH, and v3 is the
line-of-sight component of peculiar velocity. As we discussed around
equation (17), however, the shear field estimated from a survey is
sampled only at halo’s positions, and is affected by the RSD effect
on the density field of haloes as

γ̂ S(s) = [
1 + δS

h (s)
]
γ S(s). (36)

On large scales in the linear regime, the redshift-space density
fluctuation field of haloes is expressed as

δS
h (k) = (1 + βμ2)δR

h (k), (37)

where β is the RSD distortion parameter, defined as β ≡
(1/b)dln D/dln a. The multiplicative factor 1 + βμ2 > 0 leads to
a boost in the amplitude of redshift-space density fluctuation field
compared to the real-space density field on large scales (small k).
Equation (35) tells that the RSD effect on the shear field arises from
the non-linear term of fluctuation fields, δSγ S. Hence the observed
shear field on large scales in the linear regime, where |δh| � 1, is
equivalent to the real-space shear field, i.e. free of the RSD effect.
However, on smaller scales the observed shear field is affected
by the RSD effect, and receives additional μ-modulations, giving
characteristic anisotropic patterns in the observed IA shear field (see
Singh et al. 2015; Okumura & Taruya 2020, for the study on the IA
correlation functions in configuration space).

In Fig. 12, we study the multipole moments of IA power spectra
in redshift space, compared to the real-space IA spectra. To compute
the RSD effect on the halo distribution in simulations, we adopt
the bulk motion of each halo that is estimated from the average of
velocities of N-body particles in a core region of each halo (see
Kobayashi et al. 2020, for details). As we described, the monopole
moment of the redshift-space auto-power spectrum of E-mode, P (0)

EE ,
is the same as that of the real-space power spectrum on large scales
(small k) as expected. On the other hand, the monopole moment of
the redshift-space cross spectrum of halo and E-mode fields, P

(0)
hE ,

receives a boost in the amplitude due to the RSD effect, similarly
to the effect on the halo power spectrum. The RSD effect leads to a
non-vanishing hexadecapole moment (� = 4) for P S

hE , and similarly
non-vanishing higher-order moments beyond �= 4 for P S

EE . On small
scales in the quasi- and deeply-non-linear regime, the non-linear RSD

effects cause additional scale dependence in the redshift-space power
spectra.

5 D I SCUSSI ON AND C ONCLUSI ONS

In this work, we have developed a novel method to measure the three-
dimensional IA power spectra from shapes of haloes (as a proxy of
galaxy shapes) using a suite of high-resolution N-body simulations
for the Planck cosmology. Our findings are summarized as follows:

(i) The Fourier-space analysis of halo shapes allows for a straight-
forward decomposition of the halo shapes into the E- and B- modes,
as in the CMB polarization field and the cosmic shear field.

(ii) The IA power spectra (the cross spectra of the halo density field
and the IA E-mode and the auto spectrum of the E-mode) display
non-vanishing amplitudes on all scales from the linear to non-linear
regimes. This means that the primordial fluctuations and gravity in
large-scale structure induce a correlation between halo shapes and
the matter distribution and between the shapes of different haloes on
scales much greater than a size of haloes (scales of physics inherent
in halo formation, a few Mpc at most). The IA power spectra on
large scales are related to the matter power spectrum, with a scale-
independent coefficient, as in the linear bias relation of the halo
distribution relative to the matter distribution (Figs 2 and 4). This
IA constant coefficient (AIA) is as expected for the tidal (linear)
alignment model for the adiabatic initial condition in �CDM model
which we employ for the N-body simulations. The IA shear amplitude
is about a few percent at k ∼ 0.1 h−1 Mpc, compared to the intrinsic
halo shape of γ int ∼ 0.2 (Fig. 1). Hence the IA power spectrum can
be used to probe the underlying matter power spectrum, very much
like what is done using the power spectrum of galaxy or halo number
density field.

(iii) The negative sign of the cross power spectrum of halo density
and E-mode means that the major axis of halo shapes tend to be
statistically aligned with the minor axis of the tidal field, i.e. the
direction of mass accretion on to the haloes, which is consistent with
the previous simulation results.

(iv) The IA power spectrum for more massive haloes have the
greater amplitudes (Fig. 6). If we consider the halo sample in a
fixed mass bin, the large-scale IA coefficient (AIA) asymptotically
approaches to a constant value at higher redshift. This is as expected
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Figure 12. Comparison between the monopole (left-column panels), quadrupole (middle-column), and hexadecapole (right-column) moments in real and
redshift space, for Phh, PhE, and PEE. We show the power spectra for the halo sample with Mvir = 1012−12.5 h−1 M� at z = 0.484.

for the primordial tidal alignment model (Hirata & Seljak 2004),
implying that the haloes shapes of a fixed mass scale at higher redshift
retain the information on the primordial tidal field. At lower redshifts,
the AIA amplitude decreases, probably reflecting the fact that the halo
shapes lose the initial memory to some extent due to the mergers or
mass accretion in the non-linear regime.

(v) The IA power spectra display BAO features as in the density
power spectrum, confirming the similar finding for the real-space IA
correlation function (Okumura et al. 2019). In addition, the cross
power spectrum of halo density and the IA E-mode shows a weaker
boost in the amplitude at non-linear scales compared to the halo
density power spectrum, due to the spin-2 nature of the IA field.

(vi) The cumulative S/N for a measurement of the cross power
spectrum of halo density and the IA E-mode is about 60 per cent
of that of the halo density power spectrum (Fig. 8). The super-
sample covariance arising from the long-wavelength fluctuations
comparable to or greater than a size of survey volume gives a

significant contribution to the total covariance as in the covariance of
cosmic shear power spectrum (Fig. 9). The two-dimensional power
spectra of the projected IA field, measured from an imaging survey,
suffers from about factor of 2 loss in the information content of the
3D IA power spectrum (Fig. 10).

(vii) The IA power spectra in redshift space, the direct observables
from galaxy surveys, show additional characteristic anisotropic
modulations due to the RSD effects on the halo density field (also
see Okumura & Taruya 2020, for the similar discussion).

As we have shown, the IA power spectra can be powerful tools
to extract the information on the matter power spectrum, properties
of the primordial matter (tidal) perturbations and the cosmological
parameters (e.g. see Akitsu et al. 2020, for such an example). Thus it
would be interesting to explore how the IA power spectrum improves
the power to constrain cosmological parameters, when combined
with the standard density power spectrum. This offers additional
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opportunities that can be attained for imaging and spectroscopic
surveys if the two surveys observe the same patch of the sky, where
the imaging survey is needed to measure shapes of galaxies and
the spectroscopic survey is needed to know the three-dimensional
spatial position of the galaxies. As we showed, having spectroscopic
redshifts leads to a significant boost in the S/N compared to an
imaging survey alone.

In particular, the cross-power spectrum of the galaxy density field
and galaxy shapes looks very promising. As we showed, the IA
shear has the similar amplitudes (a few percent in ellipticities) to the
cosmic shear, i.e. weak lensing shear due to large-scale structure in
the foreground. This would not be surprising because both the effects
arise from the gravitational field. Even if both imaging and spectro-
scopic surveys are available, the auto-power spectra of galaxy shapes
would suffer from the cosmic shear contamination due to foreground
large-scale structures; we cannot distinguish the IA effect and the
cosmic shear from the measured power spectra. On the other hand,
this is not the case for the cross spectrum as long as spectroscopic
surveys are available, because the IA cross spectra we are interested
in are on scales up to a few 100 h−1 Mpc at most, arising from pairs
of galaxies separated by such scales (one is for shapes and the other
is for the positions) in the common large-scale structure, and the
cosmic shear on galaxy shapes by other galaxy would be negligible
(recall that cosmic shear builds up by large-scale structures over
Gpc scales along the line-of-sight direction). Since galaxy shapes at
higher redshifts might retain more information on the primordial tidal
fields (higher AIA coefficients), imaging and spectroscopic surveys
for higher redshifts might be more powerful tools of cosmology from
joint measurements of the galaxy density and IA power spectra in
redshift space. Such high-redshift galaxy surveys are, for example,
the Subaru HSC and PFS surveys (Takada et al. 2014). These are all
interesting directions, and are our future work.
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APPENDI X A : D ENSI TY-WEI GHTED FI ELD

In this section, we describe how to make grid assignments of the halo
density and shape fields measured in N-body simulation realizations.
Throughout this section, we omit the subscripts { +, ×, h} and write
ε(+,×)(x), nh(x), δh(x) as ε(x), n(x), δ(x) for notational simplicity
unless specifically mentioned.

First, the halo number density field n̂(x) can be formally written
as

n̂(x) =
N∑

i=1

δ3
D(x − xi), (A1)

where N is the total number of haloes and xi is the position of the i
th halo. Here the mean halo number density is

n̄ =

∫
V

d3x n̂(x)∫
V

d3x
= N

V
. (A2)

By using an arbitrary weighting function W (x), we can discretize
this field, i.e. evaluate it at the grid point,

xgrid ≡ mLgrid (m ∈ Z3), (A3)

as

n̂(xgrid) =
∫

V

d3x W (xgrid − x)n̂(x), (A4)

where W (x) satisfies the normalization condition
∫

V

d3xW (x) = 1.

For example, the Nearest-Grid-Point (NGP) assignment is given as

WNGP(x) =
{

1/L3
grid ≡ 1/Vgrid where |x1|, |x2|, |x3| < Lgrid/2

0 otherwise
,

(A5)

and then equation (A4) becomes

n̂(xgrid) = 1

Vgrid

∑
i∈grid

1 = Nh∈grid

Vgrid
, (A6)

where Nh∈grid is the number of haloes in a grid. Therefore the halo
number density contrast is calculated by

δ̂(xgrid) ≡ n̂(xgrid) − n̄

n̄
. (A7)

Next we consider the ellipticity field. We have a set of ellipticities
of dark matter haloes {εi|i = 1, ···, N} from a simulation realization
and we assume that the ellipticity field is sampled at their position, i.e.
εi = ε(xi). Here we define the discretized ellipticity field in analogy
with the density field (equation A6) as

ε̂(xgrid) ≡ 1

Vgrid

∑
i∈grid

εi = 1

Vgrid

∑
i∈grid

ε(xi) (A8)

=
∫

V

d3x WNGP(xgrid − x)ε(x)
N∑

i=1

δ3
D(x − xi) (A9)

=
∫

V

d3x WNGP(xgrid − x)ε(x)n̂(x). (A10)

Therefore ε̂(x) = ε(x)n̂(x). Finally, by redefining ε̂(x) → ε̂(x)/n̄,
we obtain ε̂(x) = (1 + δ̂(x))ε(x). Note that we use the CIC as-
signment kernel, a higher order scheme than NGP, in the analyses
presented in the main text. This can be achieved simply by replacing
WNGP with WCIC in the above expressions.
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APPENDIX B: SHAPE NOISE

Here we discuss the shape noise. The measured auto-power spectra
of halo shape E, B fields, PXX (X = {E, B}), have the shape noise
contribution that arises due to a finite number sampling of the shape
fields at the halo positions. Unlike the cosmic shear field, there are
two contributions. One is the standard Poisson shot noise term that
arises when shapes of different haloes are completely uncorrelated,
and corresponds to the shape noise term in the cosmic shear power
spectrum (Hikage et al. 2019). The other is from the non-linear
evolution of IA (Blazek et al. 2019). The IA power spectrum itself
arises from physical correlation of halo shapes and halo distribution
in the same large-scale structure, and this non-Poisson shot noise term
contributes the total shot noise term. Taking advantage of the spin-2
field of halo shape field, we can disentangle the two contributions.
This is also the case for actual observations, and is not the case
for the density power spectrum. One way to estimate the Poisson
shot noise is as follows; first, rotate orientation of individual halo
ellipticity with random angle, measure the power spectrum in the
same way to actual measurements, repeat the random-orientation
measurements many times, and then estimate the variance from the
many realizations. This erases correlated IA effects between different
haloes keeping the distribution of haloes (keeping the clustering of
haloes). In an actual observation, this method can automatically
take into account the effects of masks and boundary of survey
footprints (Shirasaki et al. 2019). We perform the random-orientation
measurements 10 000 times for each of the 20 simulation realizations
and calculate the mean and variance of the measured power spectra.
We show the result as P rnd

EE by grey points in Fig. B1. We do not show
P rnd

BB because this is almost the same as P rnd
EE . We find that P rnd

EE is in
good agreement with a theoretical Poisson shot noise σ 2

γ /n̄h shown
in the black line, where the intrinsic shape rms, σγ , is estimated from
the distribution of halo ellipticities in Fig. 1 taking into account the
responsivity R. For comparison, we also show P

(0)
EE and P

(0)
BB without

subtracting the Poisson shot noise term. Both the power spectra agree
with the Poisson shot noise term at sufficiently large k as expected.

Interestingly the B-mode power spectrum shows a clear deviation
from the Poisson shot noise. The extra contribution is considered
as the ‘renormalized’ term arising from the k → 0 limit of higher-
order terms in the B-mode power spectrum (McDonald & Roy 2009)
(also see Blazek et al. 2019). In particular, it converges to a certain
k-independent constant in k → 0 limit. The difference between the
constant values at the limits of k → ∞ and k → 0 could be recognized

Figure B2. The relative difference of the shape noise n̄/n̄h ≡ n̄eff/n̄h − 1.
The error bars represent 1σ error.

as the difference between the (bare) number density n̄h and the
effective number density n̄eff which is defined by

n̄−1
eff ≡ 1

σ 2
γ

lim
k→0

P
(0)
EE/BB (k). (B1)

In this work, we estimate n̄eff for our halo samples from simulation
by minimizing the χ2 statistics:

χ2 ≡
∑

ki ;ki<0.05 h Mpc−1

[P (0)
BB (ki) − σ 2

γ / ˆ̄neff ]2

σ 2
BBi

, (B2)

where σ 2
BBi

is the variance of P
(0)
BB (ki) of 20 simulation realizations.

We can safely estimate the constant offset by using k modes in
the sufficiently linear regime. Once again, we should note that the
discrepancy from the Poisson shot noise can be estimated from actual
data, by comparing the Poisson shot noise, estimated by the above
method, and the measured B-mode power spectrum.

In Fig. B2, we show the relative difference of the number density,
n̄/n̄h ≡ n̄eff/n̄h − 1. The non-Poisson shot noise compared to the
Poisson shot noise is roughly 5–10 per cent for all the halo samples
we consider.

Figure B1. Left-hand panel: Comparison between the measured monopole E/B auto-power spectra versus the zero lag shape noise. The black line shows a
theoretical value of the Poisson shot noise for this halo sample. The grey represents the measured power spectrum after randomly rotating the orientations of the
principal axis for all halo samples. Right-hand panel: We show the same auto-power spectra in the left-hand panel but after the zero lag subtraction.
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APPENDIX C : A DEPENDENCE OF IA POW ER
SPE CTRUM ON DEFINITION O F INERTIA
TENSOR

In this section, we study how our results vary with different
definitions of the inertia tensor of individual halo shapes. To do
this, we consider eight different definitions of the inertia tensor
in total which have been used to define the shape of a simulated
halo or galaxy in the literature. Those are basically identical to
the inertia tensors summarized in Bett (2012), but here we briefly
review the definition and motivation of each inertia tensor. First, those
definitions are categorized into two types; the simple (unweighted)
inertia tensor, I Sim

ij ∝ ∑
p xi

pxj
p , and the reduced (weighted)

inertia tensor, IRed
ij ∝ ∑

p xi
pxj

p/r2
p where xp is the position

vector of each member particle p from the halo (or galaxy) centre
and rp = |xp|. Note that since xi

pxj
p/r2

p = n̂i
pn̂j

p where n̂ is a
unit vector, all particles are projected on to a unit sphere. This 1/r2

p

weight reduces the contribution of outer particles, e.g. the effect of
massive subclumps in the outskirts, and then we consider that IRed

ij

approximates the shape of a virialized object around the gravitational
potential minimum better than I Sim

ij , which can be considered as a
proxy of shape of a central galaxy if it forms at the centre of the
halo. For each inertia tensor, we can define the shape as a function
of the boundary radius R by using only particles satisfying rp <

R in the summation
∑

p or using all member particles defined in
the Rockstar halo finder. In this work, we set R as the virial
radius, R = rvir. Hereafter we refer to the former definition as ‘Sim’
or ‘Red’ simply, and the latter as ‘Sim-AllParts’ or ‘Red-AllParts’,
respectively.

However, we find that the measured shape is quite sensitive to the
boundary radius, and the shape varies with changing the boundary
radius, which is ascribed to the spherical boundary. Hence we use the
iterative method introduced in Katz (1991) for both ‘Sim’ and ‘Red’
cases to mitigate this artificial effect. As an example, we describe
below the algorithm for the reduced inertia tensor. First, we estimate
the inertia tensor I

(0)
ij and use it as the initial guess of IRed

ij . Second, we

diagonalize I
(0)
ij and obtain the eigenvectors ea, eb, ec corresponding

to the three principal axes a, b, c (a > b > c). Then we define the

Figure C1. Upper-hand panel: The IA power spectra with various definitions
of the inertia tensors. Lower-hand panel: The ratios of the spectra to the
spectrum of ‘Red-Iter-AC’ (our default) case.

Figure C2. Upper-hand panel: The cumulative S/N of the IA spectra with
V = 1 (h−1 Gpc)3. Lower-hand panel: The ratios of the S/N to the S/N of
‘Red-Iter-AC’ (our default) case.

new radius for each particle as

r (1)
p ≡

√
(xp · ea)2 +

( xp · eb

s

)2
+

(
xp · ec

q

)2

, (C1)

where q ≡ c/a, s ≡ b/a are the axis ratios. Third, by using member
particles which satisfy r (1)

p < rvir, we redefine the inertia tensor
replacing r (0)

p with r (1)
p :

I
(1)
ij ≡

∑
p

xi
pxj

p(
r

(1)
p

)2 . (C2)

We perform the second and third step calculations iteratively until
q and s converge to within 1 per cent precision and we finally use
the converged inertia tensor Iij, as an estimate of IRed

ij for the halo, to
define the ellipticities. This iterative algorithm is based on the fixed
boundary for the major axis of the ellipsoid at all steps, i.e. a =
rvir. We call this definition as ‘Red-Iter-AC’, which is our default
definition of halo ellipticities used in the main text. There is an
alternative choice to get the new radius instead of equation (C1)
(Schneider et al. 2012):

r (1)
p

(abc)1/3
≡

√( xp · ea

a

)2
+

( xp · eb

b

)2
+

( xp · ec

c

)2
. (C3)

This replacement keeps the volume of the boundary ellipsoid fixed
to constant at all steps, i.e. V = 4πr3

vir/3. Thus we call this definition
as ‘Red-Iter-VC’. Note that we can also compute the iterated inertia
tensor without 1/r2

p weighting, and call the ellipticities as ‘Sim-Iter-
AC’ and ‘Sim-Iter-VC’, respectively.

Fig. C1 shows the dependences of the shapes (k-dependence) of the
IA power spectrum on various inertia tensors. We find that the spectra
from different inertia tensors display different constant factors at least
k � 0.1 h−1 Mpc and also display different k-dependence in the non-
linear regime (k � 0.1 h−1 Mpc) as a whole. Comparing the reduced
tensors (filled symbols) with the simple tensors (open) for the fixed
colour (shape of marker), the boost of the simple tensors’ case in
the non-linear regime is owing to the particles in the outer region. In
particular, the fact that two ‘AllParts’ signals (red triangle) exhibit
relatively higher boosts than the others do is also explained by the
mass distribution in the extended region beyond the virial radius.
The spectra from three reduced tensors (‘Red-Iter-AC’, ‘Red-Iter-
VC’, and ‘Red’) which includes only inner particles satisfying rp

< rvir are almost the same k-dependence even at highly non-linear
scale. The amplitudes of ‘Red’ and ‘Sim’ (green, left triangle) signals
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are halved from the iterative signals due to the artificial spherical
boundary.

The S/N of the spectrum in Fig. C2, on the other hand, is changed
only by 10 per cent at large scales for different methods , i.e. AIA/σγ

is nearly constant. In particular, the difference is less than 10 per cent
at all scales for the methods using the particles around the virial
radius (blue, orange, and green). Thus, if we measure (define) all
halo shapes by using the same scheme self-consistently and if we
consider the IA power spectrum at larger scales than a typical scale
of haloes, we obtain almost the same information content from it
regardless of the detail of shape measurements.

APPENDIX D : D EPENDENCES O N MEMBE R
PA RTICLE RESOLUTIONS

As mentioned in Section 3, we use haloes with masses down to Mh =
1012 h−1M�, where the minimum halo mass roughly corresponds to
100 member particles in our simulations because the mass of each N-
body particle is mp ∼ 1 × 1010h−1M�. One might be concerned about
an inaccuracy of the inertia tensor definition for such small haloes due
to a smaller number of member particles. In this section, we study
how this small number of member particles affects measurements
of the IA power spectrum. In fact, 100 particles are not sufficient

Figure D1. The two-dimensional histogram between low-resolved halo
shapes (x-axis) and high-resolved shapes (y-axis). The left panel is for the
Np = 100 case and the right is for the Np = 1000 case, respectively. The
colour bars indicate the number of haloes with a logarithmic scale where
ε+ = 0.04 for the bin width. We also show the reference line, y = x, in the
black dashed line.

Figure D2. The IA power spectra varying the number of member particles
to estimate halo shapes for one simulation realization. The black-dotted line
shows the original signal, i.e. we used all member particles for Iij. The blue-
solid line shows the Np = 100-signal averaged over 200-times for different
100-particle choices (background orange lines). The error bars correspond to
the statistical error of the volume V = 1 (h−1 Gpc)3. The error bars of the
Np = 100 signal are slightly larger than those of the original signal for each
k-bin due to the increase of εrms.

to precisely characterize the shapes of individual haloes. To study
this, we consider very massive haloes with Mh ≥ 1014 h−1M� that
contain more than 104 member particles. In Fig. D1, we study how the
measurement accuracy of individual halo shapes is degraded if we use
a partial fraction of the member particles. The figure shows the scatter
plot for the same sample of haloes; the y-axis shows the ellipticities
when using all the member particles for each halo, while the x-axis
shows the ellipticities for the same halo when using only 100 or
1000 particles randomly selected from the member particles. Each
plot displays a huge scatter between the two ellipticity estimates. As
a result, the root mean square of ellipticities per component among
all the haloes, σ ε , increases when using a smaller number of the
member particles; σ ε = (0.3076, 0.3122, 0.3467) for Np = (all, 1000,
100), respectively. Thus the ellipticity measurements become noisy
on individual halo basis. The increased random noise of individual
halo shapes leads to an increase of the statistical shape noise in the
IA power spectrum measurements, σ 2

ε /n̄h (about ∼20 per cent in the
case of Np = 100 for instance).

On the other hand, as shown in Fig. D2, the measured IA power
spectrum is almost unchanged because it carries only the physically-
correlated shapes between different haloes (also see Fig. 3 for
the similar discussion). Therefore we conclude that we can safely
measure the IA power spectrum even if the shape measurements of
individual haloes are affected by the random noise, e.g. due to the use
of a finite number of particles, and then an estimate of the large-scale
amplitude AIA is unbiased or not affected by the shape measurement
noise, as long as the shapes of haloes are defined by the same method
self-consistently for different haloes. However, its fitting error would
be slightly overestimated, and the S/N of the power spectrum would
be slightly underestimated in the shape noise dominated regime.

APPENDI X E: LARGE-SCALE A MPLI TUDE AS
A NUI SANCE PARAMETER

In the main text, we adopt AIA which is defined by equation (9) as the
large-scale amplitude of the IA signal to make it easier to compare
our results with many previous studies and to discuss its physical
origin along with the primordial alignment scenario. However, this
is not a unique way to characterize the IA amplitude. As claimed in
Schmidt et al. (2015), one could define the IA shear field in terms of
the tidal field with a linear coefficient at large scales:

gij (x; z) = bKKij (x; z). (E1)

Figure E1. The halo mass and redshift dependence of bK. This figure is
equivalent to the left-hand panel of Fig. 6.
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Here Kij is defined by equation (2) that has the same dimension as
that of the mass density fluctuation, and gij is the three-dimensional
halo shape tensor. The linear coefficient, bK, in the above equation
is dimension-less and defined in analogy with the linear density bias
parameters, δg = b1δ. The coefficient bK is related to AIA, which we
mainly consider in this paper, as bK = −AIAC1ρcr0�m/D(z).

For comprehensiveness of our discussion, we show the mass and
redshift dependences of bK in Fig. E1. Each value is estimated by the
same procedure as that for AIA described in Section 4.2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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