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The Response Field and the Saddle Points of Quantum Mechanical Path Integrals

In quantum statistical mechanics, Moyal's equation governs the time evolution of Wigner functions and of more general Weyl symbols that represent the density matrix of arbitrary mixed states. A formal solution to Moyal's equation is given by Marinov's path integral. In this paper we demonstrate that this path integral can be regarded as the natural link between several conceptual, geometric, and dynamical issues in quantum mechanics. A unifying perspective is achieved by highlighting the pivotal role which the response field, one of the integration variables in Marinov's integral, plays for pure states even. The discussion focuses on how the integral's semiclassical approximation relates to its strictly classical limit; unlike for Feynman type path integrals, the latter is well defined in the Marinov case. The topics covered include a random force representation of Marinov's integral based upon the concept of "Airy averaging", a related discussion of positivity-violating Wigner functions describing tunneling processes, and the role of the response field in maintaining quantum coherence and enabling interference phenomena. The double slit experiment for electrons and the Bohm-Aharonov effect are analyzed as illustrative examples. Furthermore, a surprising relationship between the instantons of the Marinov path integral over an analytically continued ("Wick rotated") response field, and the complex instantons of Feynman-type integrals is found. The latter play a prominent role in recent work towards a Picard-Lefschetz theory applicable to oscillatory path integrals and the resurgence program.

I. INTRODUCTION

The present work is dedicated to the phase space formulation of quantum statistical mechanics, and more specifically to the so-called Marinov path integral [START_REF] Marinov | A new type of phase-space path integral[END_REF], which governs the time evolution of the phase space functions that represent density matrices. While the more familiar Feynman path integral is a formal solution to the Schrödinger equation, Marinov's integral provides the corresponding solution to the Moyal equation [START_REF]Quantum mechanics as a statistical theory[END_REF][START_REF] Weyl | Quantum mechanics and group theory[END_REF][START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF][START_REF] Groenewold | On the principles of elementary quantum mechanics[END_REF]. The latter reads ∂ t ρ = -{ρ, H} M , whereby H and ρ are the phase space representatives of the Hamiltonian and the statistical operator (density matrix), respectively, and {•, •} M denotes the Moyal bracket, a deformation of the Poisson bracket that will be discussed below.

(1) Marinov's variables. In [START_REF] Marinov | A new type of phase-space path integral[END_REF] Marinov derived the path integral by discretization techniques which can be applied to all types of functional integrals, but teach us little about certain rather unusual and intriguing features exhibited by the Marinov integral. This concerns in particular the physical and geometric interpretation of the variables of integration, φ (t) and ξ (t) in the Hamiltonian case, and X (t) with Y (t) in the Lagrangean case. In either case, the integration is related to a pair of trajectories on phase space or configuration space, respectively. Another remarkable feature of Marinov's path integral is the bi-local structure of its integrand.

In the present paper we are going to address these issues starting out from a new, physically and geometrically more illuminating derivation of the integral.

(2) Complex saddle points of Feynman integrals. Recently a lot of work went into the resurgence program which aims at applying a generalized form of Picard-Lefschetz theory to the notoriously hard to define oscillatory functional integrals that occur in quantum mechanics and quantum field theory, see e.g. [START_REF] Behtash | Toward PicardLefschetz theory of path integrals, complex saddles and resurgence[END_REF][START_REF] Behtash | Complexified path integrals, exact saddles and supersymmetry[END_REF][START_REF] Feldbrugge | Lorentzian Quantum Cosmology[END_REF]. In this context it has been re-emphasized that, even though a Wick rotation to the imaginary time τ ≡ it may have rendered the integral real, also complex saddle points (instantons) can play an essential rule in the semiclassical limit [START_REF] Dunne | What is QFT? Resurgent trans-series, Lefschetz thimbles, and new exact saddles[END_REF][START_REF] Dunne | New Nonperturbative Methods in Quantum Field Theory: From Large-N Orbifold Equivalence to Bions and Resurgence[END_REF][START_REF] Dunne | WKB and Resurgence in the Mathieu Equation[END_REF].

Considering a Feynman-type path integral for one degree of freedom, say, the rotated integral Dx (•) e -1 S E [x(•)] , with S E [x (•)] ≡ dτ 1 2 (∂ τ x) 2 + V (x) is over real-valued functions x (τ ). Nevertheless its semiclassical expansion may receive physically important contributions from saddle points of the complexified path integral. They are found by solving the holomorphic Newton equation with inverted potential:

∂ 2 τ z (τ ) = + d dz V (z (τ )) . (1) 
Its solutions z (τ ) ≡ x (τ ) + i y (τ ) correspond to a pair of real functions, x (τ ) and y (τ ), obviously. They satisfy the coupled system of equations

∂ 2 τ x (τ ) = 1 2 [V (x + i y) + V (x -i y)] ∂ 2 τ y (τ ) = 1 2i [V (x + i y) -V (x -i y)] . (2) 
To rewrite the equations in a manifestly real form we decompose the holomorphic potential in real and imaginary parts, V (z) = V (x + i y) ≡ V R (x, y) + i V I (x, y), and disentangle [START_REF] Marinov | A new type of phase-space path integral[END_REF] accordingly:

∂ 2 τ x (τ ) = ∂ x V R (x, y) ∂ 2 τ y (τ ) = -∂ y V R (x, y) . (3) 
Here the Cauchy-Riemann equations have been exploited [START_REF] Behtash | Toward PicardLefschetz theory of path integrals, complex saddles and resurgence[END_REF][START_REF] Behtash | Complexified path integrals, exact saddles and supersymmetry[END_REF][START_REF] Feldbrugge | Lorentzian Quantum Cosmology[END_REF][START_REF] Tanizaki | Real-time Feynman path integral with PicardLefschetz theory and its applications to quantum tunneling[END_REF][START_REF] Cherman | Real-Time Feynman Path Integral Realization of Instantons[END_REF][START_REF] Witten | Analytic Continuation Of Chern-Simons Theory[END_REF][START_REF] Witten | A New Look At The Path Integral Of Quantum Mechanics[END_REF].

In this framework, the (Euclideanized) path integral under consideration time-evolves wave functions and the doubling of the configuration space variables, x → (x, y), is due to the complexification. The Marinov path integral, on the other hand, time-evolves Wigner functions or density operators, and it involves a similar doubling of configuration space,

x → (X, Y ), from the outset.

One of our present goals will consist in showing that the two settings are very closely related, and that the pairs (x, y) and (X, Y ) are almost the same thing. In particular, we derive and study the (X, Y )-analogue of the coupled system of equations [START_REF] Weyl | Quantum mechanics and group theory[END_REF].

(3) The response field. Another connection we are going to highlight in this paper is between Marinov's Y -variable and the so-called response field, which is well known from statistical physics for instance.

Historically, the response field formalism was developed to cast the study of correlation functions related to Langevin equations in a path integral form [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF][START_REF] Janssen | On a lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF][START_REF] Dominicis | Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques[END_REF]. In this setting the response field can be looked at as an auxiliary field that allows one to compute the linear response of some field under an external perturbation by computing correlation functions with the associated response field.

Technically, the response field is introduced in order to express a functional Dirac delta as an integral over the response field [START_REF] Täuber | Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior[END_REF]. This is the very same mechanism which localizes the Marinov path integral on the equation of motion in the strictly classical limit, as we shall discuss in Section III C. It will also become clear that the Marinov path integral is closely related to the Schwinger-Keldysh formalism after the so called "Keldysh rotation" [START_REF] Kamenev | Field Theory of Non-Equilibrium Systems[END_REF].

(4) Role of the response field in semiclassical quantum mechanics. In this paper we also analyze elementary quantum mechanical systems, in pure quantum states, using Wigner functions that are time-evolved by the Marinov path integral over X (t) and Y (t). In the semiclassical limit we invoke the saddle point approximation and are thus led to study coupled classical equations of motion for two configuration space trajectories, X (t) and Y (t). By means of various representative examples, including the double slit experiment for electrons and the Bohm-Aharonov effect, we describe the physical role played by the response field Y (t). The latter will turn out essential for the occurrence of interference phenomena and the preservation of quantum coherence during the time evolution. In this manner it will become clear why the semiclassical limit of quantum (statistical) mechanics must be described by two configuration-or phase space-trajectories.

(5) The strictly classical point = 0. A familiar textbook argument about the emergence of classical behaviour from quantum mechanics is as follows: In the semiclassical limit, i.e., when effectively → 0, the integrand of the Feynman path integral

Dx (•) e i S[x(•)] (4) 
is rapidly oscillating. Hence contributions from different paths x (t) mutually cancel by destructive inteference, unless the path x (t) is a stationary point of the action, in which case it may interfere constructively with its neighbours. This then leads to the conclusion that the classical trajectories x SP (t) emerging from the quantum system governed by [START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF] are ruled by the saddle point condition δS δx (t)

x SP (•) = 0 [START_REF] Groenewold | On the principles of elementary quantum mechanics[END_REF] which is then interpreted as the equation of motion of classical mechanics.

While there is nothing wrong with this argument (as long as the stationary phase approximation can be justified), it tends to convey a physical picture that is quite misleading, however.

Namely, since the "classical path" x SP (t) is just one among the infinitely many x (t) that contribute to (4), the argument tacitly creates the impression that the trajectories occurring in strictly classical mechanics, henceforth denoted X cl (t), are conceptually of the same nature as the x (t)'s that are integrated over in [START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF]. As we are going to show, this impression is false, in a sense that will be made precise below.

Even though the above argument identifies the correct form of the equation of motion in classical mechanics, it suggests the wrong variables for strictly classical mechanics: The saddle point of the Feynman path integral, x SP (t), is not the semiclassical precursor of the variable X cl (t) used in strictly classical mechanics. The actual quantum ancestor of X cl (t) are the X-components of saddle points X SP (t) , Y SP (t) pertaining to Marinov's path integral.

A crucial difference between Marinov's and Feynman's path integral is that the former continues to be meaningful when we specialize for strictly classical mechanics by setting = 0 exactly, while the latter is undefined at = 0 due to infinitely rapid oscillations. In fact, the Marinov path integral evaluated at = 0 is closely related to the so-called Classical Path Integral (CPI) that has been studied extensively [START_REF] Gozzi | Hidden BRS Invariance in Classical Mechanics[END_REF][START_REF] Gozzi | Hidden BRS Invariance in Classical Mechanics 2[END_REF][START_REF] Gozzi | Classical mechanics as a topological field theory[END_REF][START_REF] Gozzi | Algebraic Characterization of Ergodicity[END_REF][START_REF] Gozzi | A New look at the Schouten-Nijenhuis, Frolicher-Nijenhuis and Nijenhuis-Richardson brackets for symplectic spaces[END_REF][START_REF] Gozzi | Universal local symmetries and non-superposition in classical mechanics[END_REF][START_REF] Gozzi | Three Approaches to Classical Thermal Field Theory[END_REF].

This is yet another connection of Marinov's integral we are going to detail. In this manner it will become manifest that the configuration space variable X cl employed by classical mechanics must be seen as a symmetric average

X cl (t) = 1 2 x SP + (t) + x SP -(t) (6) 
where x SP + (t) and x SP -(t) are saddle points of, respectively, the original Feynman path integral (4) and the time-reversal thereof. An analogous statement holds for classical phase space variables.

(6) Plan of the paper. The rest of this paper is organized as follows. In Section II we briefly review the main aspects of the Wigner-Weyl-Moyal framework for the phase space formulation of quantum (statistical) mechanics.

Then, in Section III, we construct both the Lagrangean and the Hamiltonian versions of the Marinov path integral by sewing together two Feynman path integrals, paying special attention to the interrelations of the various sets of integration variables that are involved. In Section III we also discuss two specific applications, namely, first, we give a detailed account of how precisely the kinematical variables that appear in the standard classical mechanics relate to those that are provided naturally by the various path integrals. And second, we derive a new random force representation of the Moyal-Marinov kernel and use it to pin point the condition under which Wigner functions can assume negative values so that their classical density interpretation breaks down. Tunneling phenomena will be discussed as a typical example.

Thereafter, in Section IV, we demonstrate the relevance of the response field for interference phenomena and the preservation of quantum coherence, and in Section V we illustrate this discussion by means of two concrete examples: the double slit experiment, and the Bohm-Aharonov effect. Section VI finally is devoted to the relationship between complex saddle points of Feynman integrals and Marinov's path integral, and section VII contains the conclusions.

Let us mention that saddle points of the propagation kernel of Wigner functions have been studied also in [START_REF] Dittrich | Semiclassical propagator of the wigner function[END_REF]. In the present work we perform a wider analysis and discuss a number of points that have not been studied in detail in the literature so far.

II. PRELIMINARIES

We are going to consider an arbitrary quantum system in the following. We assume that it has N degrees of freedom, and that its time evolution is governed by the Hamiltonian operator H.

(1) The Feynman kernel. Being interested in both pure and mixed states, we describe the dynamics of the system in terms of a time dependent density operator ρ (t). We adopt the Schrödinger picture so that the density operator obeys von Neumann's equation

i ∂ t ρ = -ρ, H . (7) 
Its formal solution reads

ρ (t) = U (t; t 0 ) ρ (t 0 ) U (t; t 0 ) † (8) 
where the time evolution operator U (t; t 0 ) evolves pure states according to |ψ (t) = U (t; t 0 ) |ψ (t 0 ) and satisfies

i U (t; t 0 ) = H U (t; t 0 ) , U (t 0 ; t 0 ) = 1 . (9) 
The evolution kernel, i.e., its position matrix elements x , x ∈ R N ,

K (x , t; x , t 0 ) = x | U (t; t 0 ) |x (10) 
will often be addressed as the Feynman kernel in the sequel since the familiar Feynman-type functional integrals provide a path integral representation of exactly this object.

(2) The symbol calculus. Furthermore, we employ the (Weyl-Wigner-Moyal) phase space formulation of quantum mechanics and make extensive use of the corresponding symbol calculus [START_REF]Quantum mechanics as a statistical theory[END_REF][START_REF] Weyl | Quantum mechanics and group theory[END_REF][START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF][START_REF] Groenewold | On the principles of elementary quantum mechanics[END_REF][START_REF] Van Hove | Sur certaines representations unitaires d'un groupe infini de transformations[END_REF]. The idea is to set up a linear one-to-one relation, a "symbol map", between operators A, B, • • • acting on the quantum mechanical Hilbert space, and complex valued functions A, B, • • • defined on the system's classical phase space manifold, M. We denote the symbol which represents the operator A by A ≡ symb A , and since the symbol map possesses a well defined inverse we may write A = symb -1 (A) for the operator given by the classical phase space function A.

There exists a large variety of different symbol maps. Each one comes with a specific star product which implements the operator multiplication in the function space of symbols. It is defined by the requirement that the symbol map be an algebra homomorphism, i.e., that

symb A B = symb A * symb B (11) 
for any pair of operators. Hence the star product is non-commutative, but associative. It can be seen as a "quantum deformation" of the ordinary pointwise product of functions [START_REF]Quantum mechanics as a statistical theory[END_REF].

In this paper we employ the Weyl symbol whose symbol map can be described as follows.

If we are given an operator A, represented by means of its position space matrix elements

x | A|x , the associated symbol map is given by

A (p, q) = d N s q + s 2 | A|q - s 2 e -i sp . (12) 
Here p ≡ p 1 , • • • , p N and q ≡ q 1 , • • • , q N are global Darboux coordinates on phase space which here and in the following is assumed to be M = R N × R N . Throughout the paper, the R N -indices are usually left implicit, and the corresponding scalar products are understood, i.e., sp ≡ N i=1 s i p i . Conversely, given a Weyl symbol A (p, q) the operator related to it can be recovered in terms of its position space matrix elements by means of the integral

x | A|x = d N p (2π ) N A p, x + x 2 e i p(x -x ) . (13) 
Picking a specific symbol map means fixing an operator ordering prescription since it associates a unique operator A (p, q) = symb -1 (A (p, q)) to the classical phase space function A (p, q). The name "Weyl symbol" derives from the fact that in our case the operator thus obtained is always Weyl ordered, e.g., symb -1 (pq) = 1 2 (pq + q p) when N = 1. The pertinent star product is most compactly displayed by combining the position and momentum coordinates in φ a ≡ p 1 , • • • , p N , q 1 , • • • , q N and ∂ a ≡ ∂/∂φ a , and adopting the summation convention for the indices a, b,

• • • = 1, • • • , 2N : (A * B) (φ) = A (φ) exp i 2 ← - ∂ a ω ab - → ∂ b B (φ) . ( 14 
)
Here ω ab is the constant Poisson tensor, a 2N × 2N block matrix with ω qp = -ω pq = I and ω pp = ω qq = 0. While this is by no means obvious, it can be verified that the product ( 14) is indeed associative. As the RHS of ( 14) is analytic in the "deformation parameter"

, the star product is a smooth deformation of the pointwise multiplication:

(A * B) (φ) = A (φ) B (φ) + O ( ).
Furthermore one defines the Moyal bracket of two symbols by

{A, B} M = 1 i (A * B -B * A) = symb 1 i A, B (15) 
or, more explicitly,

{A, B} M = A (φ) 2 sin 2 ← - ∂ a ω ab - → ∂ b B (φ) . (16) 
The associativity of the star product implies that the Moyal bracket satisfies the Jacobi identity. In fact, the Moyal bracket has the same algebraic properties as the commutator of operators. In the classical limit → 0 it approaches the Poisson bracket: {A, B} M = {A, B} P + O ( 2 ). In our notation the latter reads {A,

B} P = ∂ a Aω ab ∂ b B.
Applying the symbol map to the density matrix operator ρ we obtain the symbol ρ (p, q)

which has the interpretation of a pseudodensity function on the phase space. For pure states ρ = |ψ ψ| this pseudodensity is known as the Wigner function related to the wave function

ψ (x) = x|ψ : W ψ (p, q) = d N s ψ q + s 2 ψ * q - s 2 e -i sp . ( 17 
)
While arbitrary symbols ρ (p, q) and Wigner functions W ψ (p, q) are not in general positive functions, the p-and q-integrals of the latter equal the ordinary densities on configuration and momentum space, respectively,

d N p (2π ) N W ψ (p, q) = |ψ (q)| 2 , ( 18 
)
d N q (2π ) N W ψ (p, q) = ψ (p) 2 , (19) 
with the Fourier transform ψ (p) ≡ d N x ψ (x) exp (-ipx/ ).

(3) The Moyal-Marinov kernel. While the dynamics of ρ (t) is governed by von Neumann's equation, the analogous dynamical equation for its time dependent symbol ρ (p, q, t) ≡ ρ (φ, t) is Moyal's equation:

∂ t ρ (φ, t) = -{ρ, H} M = 2 H (φ) sin 2 ← - ∂ a ω ab - → ∂ b ρ (φ, t) . (20) 
Here H ≡ symb H . In the limit → 0, Moyal's equation goes over to the standard Liouville equation of classical statistical physics, ∂ t ρ = -{ρ, H} P .

We write the formal solution to equation [START_REF] Kamenev | Field Theory of Non-Equilibrium Systems[END_REF] in the form

ρ (φ , T ) = d 2N φ K M (φ , T ; φ , T 0 ) ρ (φ , T 0 ) (21) 
and refer to K M as the Moyal-, or Marinov-kernel. In fact, Marinov [START_REF] Marinov | A new type of phase-space path integral[END_REF] has constructed a path integral representation of K M . In a slightly symbolic notation1 it reads

K M (φ , T ; φ , T 0 ) = Dφ a (•) Dξ a (•) exp -2i T T 0 dt φa (t) ω ab ξ b (t) -H (φ (t) , ξ (t)) (22) 
Here

H (φ, ξ) ≡ 1 2 H (φ -ξ) -H (φ + ξ) , (23) 
and ω ab is the matrix inverse of ω ab , i.e., ω ab ω bc = δ c a . The functional integration is over two 2N -component functions, φ a (t) and ξ a (t), respectively, whereby the former are constrained by the boundary conditions φ (T ) = φ and φ (T 0 ) = φ . There are no such conditions on ξ (t).

In his work, Marinov derived the path integral for K M by closely following Feynman's strategy in his derivation of the path integral for K, applying it however to the Moyal's equation [START_REF] Kamenev | Field Theory of Non-Equilibrium Systems[END_REF] rather than the Schrödinger equation. Thereby the main problem consists in the iteration of the evolution kernel for the infinitesimal time differences.

In the next section we shall give a different proof of [START_REF] Gozzi | Hidden BRS Invariance in Classical Mechanics 2[END_REF] which is simpler and more illuminating. In particular it will allow us to understand the origin of the somewhat mysterious finite-difference character of the Hamiltonian H (φ, ξ) in eq. [START_REF] Gozzi | Classical mechanics as a topological field theory[END_REF].

III. PATH INTEGRAL REPRESENTATION OF THE MOYAL KERNEL

In this section we derive several variants of a path integral representation for the Moyal kernel, including Marinov's. We express K M as the convolution of two Feynman kernels, then represent each one of them by the well known functional integral which time-evolves pure states, and finally perform a crucial change of integration variables.

As it will turn out, this change of variables is of a certain conceptual significance. In particular it constitutes a well defined point of contact between the different dynamical variables that we traditionally employ in quantum and in classical mechanics, respectively. This will shed light on aspects of their interrelation that get obscured if one restrics the investigation of the → 0 limit to pure states at a too early stage.

We start out from equation [START_REF] Feldbrugge | Lorentzian Quantum Cosmology[END_REF] expressed in terms of position space matrix elements:

x | ρ (T ) |x = d N y d N y K (x , T ; y , T 0 ) K (x , T ; y , T 0 ) * y | ρ (T 0 ) |y . ( 24 
)
We switch to symbols by applying ( 12) and ( 13) on the LHS and RHS of [START_REF] Gozzi | Algebraic Characterization of Ergodicity[END_REF], respectively, and obtain

ρ (p, q, T ) = d N p (2π ) N d N s e -i sp d N y d N y K q + s 2 , T ; y , T 0 ×K q - s 2 , T ; y , T 0 * ρ p , y + y 2 , T 0 e i p (y -y ) . (25) 
Now we trade y and y for two new variables of integration, viz., q ≡ (y + y ) /2 and s ≡ y -y . This leads to an equation of the form (21), i.e., ρ (p, q, T ) = d N p d N q K M (p, q, T ; p , q , T 0 ) ρ (p , q , T 0 ) [START_REF] Gozzi | Universal local symmetries and non-superposition in classical mechanics[END_REF] wherein the sought-for integral kernel emerges as

K M (p, q, T ; p , q , T 0 ) = 1 (2π ) N d N s d N s e i (s p -sp) K q + s 2 , T ; q + s 2 , T 0 ×K q - s 2 , T ; q - s 2 , T 0 * . ( 27 
)
The convolution-type integral formula [START_REF] Gozzi | Three Approaches to Classical Thermal Field Theory[END_REF] allows us to compute the Moyal kernel K M from two copies of the time evolution kernel for pure states, K.

For later use we define the function

K (s, q, T ; s , q , T 0 ) ≡ K q + s 2 , T ; q + s 2 , T 0 K q - s 2 , T ; q - s 2 , T 0
and mention that the integral transformation [START_REF] Gozzi | Three Approaches to Classical Thermal Field Theory[END_REF] can be inverted to yield K (s, q, T ; s , q , T 0 ) = 1 (2π ) N d N p d N p e -i (s p -sp) K M (p, q, T ; p , q , T 0 ) . (29)

The equal-time limit lim T →T 0 K (q, T ; q , T 0 ) = δ (q -q ) entails correspondingly lim

T →T 0 K M (p, q, T ; p , q , T 0 ) = δ (p -p ) δ (q -q ) , (30) 
lim

T →T 0 K (s, q, T ; s , q , T 0 ) = δ (s -s ) δ (q -q ) . (31) 
We also remark that the new kernel function K, at vanishing s-arguments, is manifestly positive definite, being the pointwise modulus square of two Feynman kernels:

K (0, q, T ; 0, q , T 0 ) = 1 (2π ) N d N p d N p K M (p, q, T ; p , q , T 0 ) = |K (q, T ; q , T 0 )| 2 . ( 32 
)
A. Lagrangian Path Integrals

(1) The functional change of variables. Next we exploit the convolution representation [START_REF] Gozzi | Three Approaches to Classical Thermal Field Theory[END_REF] of K M in order to derive a path integral for the Moyal kernel. We begin with systems that are governed by a Hamiltonian quadratic in the momenta of the form

H (p, q) = 1 2 p 2 + V (q) . ( 33 
)
Their Feynman kernel is given by the well known path integral over configuration space trajectories x (t), see [START_REF] Schulman | Techniques and applications of path integration[END_REF][START_REF] Dittrich | Classical and Quantum Dynamics[END_REF][START_REF] Gozzi | Path Integrals for Pedestrians[END_REF]:

K (q , T ; q , T 0 ) = x(T )=q x(T 0 )=q Dx (•) exp i T T 0 dt 1 2 ẋ2 (t) -V (x (t)) . (34) 
In the main text of this paper all the functional integrals will be dealt with using the formalism in the continuum notation. A more rigorous treatment based upon the discretization on a time lattice can be found in Appendix A.

According to eq. ( 28), the function K may be written as the product of two Feynmantype integrals [START_REF] Berry | Uniform Asymptotic Smoothing of Stokes's Discontinuities[END_REF]. Denoting the N -component integration variables by x + (t) and x -(t), respectively, we have K (s, q, T ; s , q , T 0 ) =

x + (T )=q+ s 2 x + (T 0 )=q + s 2 Dx + (•) x -(T )=q-s 2 x -(T 0 )=q -s 2 Dx -(•) (35) 
× exp i T T 0 dt 1 2 ẋ2 + (t) - 1 2 ẋ2 -(t) -V (x + (t)) + V (x -(t))
Now we replace the integration variables x + (t) and x -(t) by their symmetric and antisymmetric linear combinations

X (t) = 1 2 [x + (t) + x -(t)] Y (t) = 1 2 [x + (t) -x -(t)] . (36) 
This results in 2 K (s, q, T ; s , q , T 0 ) = X(T )=q

X(T 0 )=q DX (•) Y (T )= s 2 Y (T 0 )= s 2 DY (•) (37) 
× exp 2 i T T 0 dt L X (t) , Y (t) , Ẋ (t) , Ẏ (t) with the Lagrangean L X, Y, Ẋ, Ẏ ≡ Ẋ Ẏ -V (X, Y ) (38) 
and the "bilocal" potential

V (X, Y ) ≡ 1 2 [V (X + Y ) -V (X -Y )] . (39) 
By ( 27) with [START_REF] Dittrich | Semiclassical propagator of the wigner function[END_REF], the actual Moyal kernel equals the Fourier transform of K with respect to its s-arguments, K M (p, q, T ; p , q , T 0 ) = 1 (2π ) N d N s d N s e i (s p -sp) K (s, q, T ; s , q , T 0 ) .

Therefore inserting (37) into [START_REF] Gozzi | FUNCTIONAL INTEGRAL APPROACH TO PARISI-WU STOCHASTIC QUANTIZATION: SCALAR THEORY[END_REF] provides us with a specific path integral representation of K M . As we shall see below, this version of the K M -integral is the natural one in order to understand the connection to Marinov's result. Its other main virtue is that it makes the relationship between the Moyal integral and a pair of standard Feynman integrals fully manifest.

(2) Euler-Lagrange equations. For later use let us also note the Euler-Lagrange equation of the Lagrangean L X, Y, Ẋ, Ẏ that makes its appearence in the path integral [START_REF] Englert | Statistical atom: Some quantum improvements[END_REF]:

Ẍ (t) = - 1 2 [∇V (X + Y ) + ∇V (X -Y )] Ÿ (t) = - 1 2 [∇V (X + Y ) -∇V (X -Y )] . (41) 
2 See Appendix A for an explicit definition of the functional integral (37) as the continuum limit of a discrete multiple integral on a time lattice.

These equations can be thought of as the result of "intertwining" two copies of the classical Newtonian equation of motion,

ẍ± (t) = -∇V (x ± ) (42)
by means of the transformation [START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers[END_REF].

(3) The variant with second time derivatives. In order to calculate K M in the semiclassical approximation ( → 0), or to obtain it at the exactly classical point ( = 0) even, a different representation of the K M -integral suggests itself. Moreover, this second variant will turn out to be the natural link between the Moyal kernel and K CPI , i.e., the time evolution kernel given by the Classical Path Integral [START_REF] Gozzi | Hidden BRS Invariance in Classical Mechanics 2[END_REF].

The integrand of (37) involves the action functional

T T 0 dt L with the kinetic term T T 0 dt Ẋ Ẏ .
Performing an integration by parts on this term, carefully keeping track of the surface terms, we obtain

K (s, q, T ; s , q , T 0 ) = X(T )=q X(T 0 )=q DX (•) exp i s Ẋ (T ) -s Ẋ (T 0 ) (43) 
×

Y (T )= s 2 Y (T 0 )= s 2 DY (•) exp -2 i T T 0 dt Y Ẍ + V (X, Y ) .
In evaluating the boundary terms we made use of the prescribed Y -values at t = T 0 and T , respectively, and this led to the s-and s -dependence displayed explicitly in the first exponential of eq. ( 43).

Naively comparing [START_REF] Parisi | Supersymmetric Field Theories and Stochastic Differential Equations[END_REF] to [START_REF] Englert | Statistical atom: Some quantum improvements[END_REF] one might suspect that the new Y -integration in ( 43) is still subject to the boundary conditions Y (T 0 ) = s /2 and Y (T ) = s/2 which could generate further s, s -dependencies of K. Actually, this is not the case, however: the Y -integration in ( 43) is unconstrained, and the entire s, s -dependencies stems from the boundary terms.

For a proof we refer to Appendix A, where the integration by parts is performed at the discretized level.

Lastly we insert ( 43) into [START_REF] Gozzi | FUNCTIONAL INTEGRAL APPROACH TO PARISI-WU STOCHASTIC QUANTIZATION: SCALAR THEORY[END_REF], interchange the Fourier transformation with the Xintegration, and perform the s-integrals. This results in the following rather suggestive functional integral representation of the Moyal kernel:

K M (p, q, T ; p , q , T 0 ) = 1 (2π ) N X(T )=q X(T 0 )=q DX (•) δ Ẋ (T ) -p δ Ẋ (T 0 ) -p DY (•) exp -2 i T T 0 dt Y Ẍ + V (X, Y ) . ( 44 
)
While the Y -integral is unconstrained, the δ-functions enforce prescribed velocities at the (likewise enforced) terminal positions of the X-trajectories. This imposes a total of 4N conditions on X (t). Thus, generically, there will exist no classical trajectory that satisfies all conditions.

(4) The classical point. A main virtue of the path integral [START_REF] Gozzi | Ground-state wave-function "representation[END_REF] comes to light when we look at its classical limit. While the integrand of Feynman-type integrals such as [START_REF] Berry | Uniform Asymptotic Smoothing of Stokes's Discontinuities[END_REF] oscillates wildly when → 0, and they become meaningless at the classical point = 0, the Marinov integral behaves in a much more controlled way. To see this, let us rewrite the

Y -integral from (44) in terms of the new integration variable Y (t) ≡ Y (t) / : D Y (•) exp -2i T T 0 dt Y Ẍ + 1 V X, Y . (45) 
The kinetic term is perfectly independent of now, and the potential term is so to lowest order. In fact, by [START_REF] Parisi | Perturbation Theory Without Gauge Fixing[END_REF], V is an odd function of Y . Analyticity assumed, its power series has no constant term:

1 V X, Y = 1 sinh Y k ∂ k V (X) = Y k ∂ k V (X) + 1 6 2 Y k Y l Y m ∂ k ∂ l ∂ m V (X) + O 4 Y 5 . ( 46 
)
Hence the integrand of (45) continues to be meaningful exactly at the classical point = 0, and the corresponding integral is nothing but the representation of a delta functional:

D Y (•) exp -2i T T 0 dt Y k Ẍk + ∂ k V (X) = δ Ẍk + ∂ k V (X) . (47) 
Thus, all that remains of ( 44) is the X-integral sharply localized on the solutions of the classical equation of motion, Ẍ = -∇V :

K M (p, q, T ; p , q , T 0 ) = DX (•) δ Ẍ + ∇V (X) . (48) 
The trajectories X (t) contributing to [START_REF] Marinov | On the concept of the tunneling time[END_REF] are subject to the conditions

X (T 0 ) = q , Ẋ (T 0 ) = p X (T ) = q, Ẋ (T ) = p . (49) 
Obviously the functional integral ( 48) is closely related to the Classical Path Integral (CPI) in the Lagrange formalism [START_REF] Gozzi | Hidden BRS Invariance in Classical Mechanics[END_REF].

(5) The semiclassical expansion. From this discussion we learn that the "perturbative" expansion of the Lagrangean L X, Y, Ẋ, Ẏ in powers of Y is equivalent to the semiclassical expansion of the functional integral. The lowest, i.e., linear term in L is of order O ( 0 ) and gives rise to the singular delta functional characteristic of strictly classical mechanics. The (more regular) higher order contributions are systematically generated by writing [START_REF] Montvay | Quantum Fields on a Lattice[END_REF] as

J [X (•)] ≡ D Y (•) exp -2i T T 0 dt Y Ẍ + -1 sinh Y k ∂ k V (X) (50) 
and then expanding out the hyperbolic sine as a power series in .

(6) The response field in Lagrangean guise. The path integral formula ( 47) suggests identifying Y with the so called response field introduced in the literature to give a path integral representation of classical (possibly stochastic) systems [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF][START_REF] Janssen | On a lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF][START_REF] Dominicis | Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques[END_REF]. Indeed, in classical systems one often introduces the response field by starting out from the classical kernel of propagation on the RHS of equation ( 47). The associated path integral formalism is then obtained by introducing the field Y , which has the purpose of expressing the kernel of propagation in a path integral formalism. In this manner a large arsenal of tools from quantum field theory becomes applicable.

The identification of the response field will be slightly more straightforward in the Hamiltonian framework in subsection III C below.

B. Airy Averaging and Random Force Representation

In the Marinov path integral the leading order quantum correction is due to the

O ( 2 )
term in the L of eq. ( 46); it is cubic in Y . For N = 1, say, (50) reads at that order:

J [X (•)] = D Y (•) exp -2i T T 0 dt Y Ẍ + Y V (X) + 2 6 V (X) Y 3 . (51) 
A welcome feature of ( 51) is that the integrand involves no time derivatives of Y (t). As a result, the path integral factorizes. Symbolically,3 

J [X (•)] = t∈[T 0 ,T ] I (a (t) , b (t)) . (52) 
Here the function I (a, b), which is defined by an ordinary integral,

I (a, b) ≡ 1 2π ∞ -∞ dy e -i(ay+ 1 3 by 3 ) = 1 π ∞ 0 dy cos ay + 1 3 by 3 , (53) 
is evaluated at the following time dependent parameter values:

a (t) = 2 Ẍ (t) + 2V (X (t)) (54a) b (t) = 2 V (X (t)) . (54b) 
(1) The Airy function. Obviously, equation ( 53) is essentially the integral representation of Airy's function [START_REF] Vallée | Airy Functions and Applications to Physics[END_REF], so that we are led to the closed-form result

I (a, b) = 1 |b| 1/3 Ai ab |b| 4/3 = 1 |b| 1/3 Ai sign (b) a |b| 1/3 , (55) 
where sign (b) = ±1 denotes the sign of b.

This Airy function describes the universal approach to the classical limit for arbitrary quantum systems. If V (2n+1≥5) = 0, eq. ( 55) is exact even, and this includes the important case of the quartic oscillator.

In the strict classical limit b ∝2 → 0, the standard property [START_REF] Vallée | Airy Functions and Applications to Physics[END_REF] lim

α→0 1 |α| Ai ξ α = δ (ξ) (56) 
implies

I (a, b) → δ (a) = 1
this point we only mention that if one uses the stationary phase approximation to find the asymptotics of the integral (ξ ∈ R)

Ai (ξ) = 1 2π ∞ -∞ dy e i(yξ+ 1 3 y 3 ) , (57) 
the relevant contour deformations and saddle points depend crucially on whether we let ξ → +∞ or ξ → -∞. In the former case, the respective contour, Γ > , passes only through one saddle, leading to

Ai (ξ) ∼ exp -2 3 ξ 3/2 2 √ πξ 1/4 (ξ → +∞) (58) 
while in the latter case the contour (denoted Γ < ) passes through two saddles, yielding

Ai (ξ) ∼ sin 2 3 (-ξ) 3/2 + π 4 √ π (-ξ) 1/4 (ξ → -∞) , (59) 
see [START_REF] Bleistein | Asymptotic Expansions of Integrals[END_REF][START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers[END_REF] for the details.

(2) Airy averaging. As for its general interpretation, it turns out most natural to regard I (a, b) as a certain Airy average. The notion of Airy averaging was first discussed in [START_REF] Englert | Statistical atom: Some quantum improvements[END_REF] in a different context, see also [START_REF] Vallée | Airy Functions and Applications to Physics[END_REF].

For h (ξ) a function on the real axis, the Airy average is defined as

h (ξ) Ai ≡ ∞ -∞ dξ h (ξ) Ai (ξ) . (60) 
For example, 1 Ai = 1, ξ Ai = 0, ξ 2 Ai = 0, ξ 3 Ai = 2, • • • , which follows by repeatedly differentiating the generating function

e iηξ Ai = exp - i 3 η 3 . ( 61 
)
The differential equation obeyed by the Airy function, ∂ 2 ξ Ai (ξ) = ξAi (ξ), implies the general rule h (ξ) Ai = ξh (ξ) Ai .

(3) Random force representation. Coming back to I (a, b), let us introduce an auxiliary ("force") variable f to rewrite [START_REF] Gozzi | Lyapunov exponents, path integrals and forms[END_REF] in the style of an Airy-averaged delta function:

I (a, b) = ∞ -∞ df Ai (f ) δ a -sign (b) |b| 1/3 f . ( 62 
)
While looking artificially complicated at first sight, this representation entails a remarkable relationship between the classical and the quantum time evolution kernels, respectively.

(3a) The product over all times that appears in equation ( 52) converts the ordinary integral [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF] to an integral over functions f (t) , t ∈ [T 0 , T ], and correspondingly the delta function to a delta functional:

J [X (•)] = Df (•) A [f (•)] δ a (•) -sign (b (•)) |b (•)| 1/3 . ( 63 
)
The crucial "weight" functional

A [f (•)] ≡ t∈[T 0 ,T ] Ai (f (t)) (64) 
implements uncorrelated, independent Airy averages at different times.

(3b) The intriguing property of the representation [START_REF] Crossley | Effective field theory of dissipative fluids[END_REF] is that it allows us to express the quantum mechanical Moyal kernel as a superposition of classical mechanics-type kernels of the form [START_REF] Marinov | On the concept of the tunneling time[END_REF]. To see this, recall that equation ( 44) is tantamount to

K M (p, q, T ; p , q , T 0 ) = X(T )=q, Ẋ(T )=p X(T 0 )=q , Ẋ(T 0 )=p DX (•) J [X (•)] (65) 
whereby the integration over X (t) is constrained by the four boundary conditions. If we insert ( 63) into (65) and interchange the X-with the f -integration, we obtain the following random force representation of the Moyal-Marinov kernel:

K M (p, q, T ; p , q , T 0 ) = Df (•) A [f (•)] K cl [f (•)] (p, q, T ; p , q , T 0 ) . ( 66 
)
Here K cl denotes a modified classical mechanics-kernel depending on f (t):

K cl [f (•)] (p, q, T ; p , q , T 0 ) = X(T )=q, Ẋ(T )=p X(T 0 )=q , Ẋ(T 0 )=p DX (•) δ Ẍ + V (X) - 1 2 2/3 sign (V (X)) |V (X)| 1/3 f . ( 67 
)
(3c) Very much like the truly classical Liouville kernel [START_REF] Marinov | On the concept of the tunneling time[END_REF], its cousin (67) is strictly localized on the solutions of a certain differential equation. In the case at hand it is not Newton's equation, but rather a f -dependent modification thereof:

Ẍ = -V (X) + 1 2 2/3 sign (V (X)) |V (X)| 1/3 f . ( 68 
)
We observe that f (t) has the character of an externally prescribed, time-dependent, but X-independent, random force that is governed by the Airy weight functional A [f (•)]. The non-classical force term in (68) is manifestly non-analytic in . 4(3d) Several remarks are in order at this point. At first sight eq. ( 68) seems reminiscent of the stochastic differential equations that appear in the stochastic quantization program [START_REF] Parisi | Perturbation Theory Without Gauge Fixing[END_REF]. They, too, involve an external random force. However, we must emphasize that this similarity is only superficial and that there are essential, conceptual, and structural differences. For example, the above eq. ( 68) is a second order differential equation, and the pertinent evolution parameter is the physical time variable. Instead, in the Parisi-Wu stochastic quantization [START_REF] Parisi | Perturbation Theory Without Gauge Fixing[END_REF][START_REF] Gozzi | FUNCTIONAL INTEGRAL APPROACH TO PARISI-WU STOCHASTIC QUANTIZATION: SCALAR THEORY[END_REF][START_REF] Gozzi | DIMENSIONAL REDUCTION IN PARABOLIC STOCHASTIC EQUATIONS[END_REF] an extra evolution parameter over and above physical time, the so-called "fifth time" is introduced, and the Langevin equation governing the corresponding stochastic process is of first order in the fifth time. This equation does not in general coincide with eq. ( 68) even when the latter is recast in phase space form.

Furthermore, eq. ( 68) differs also from the stochastic equation related to the Parisi-Sourlas supersymmetry [START_REF] Parisi | Random Magnetic Fields, Supersymmetry and Negative Dimensions[END_REF][START_REF] Parisi | Supersymmetric Field Theories and Stochastic Differential Equations[END_REF] and to the real-time stochastic quantization based upon the so-called ground state wavefunction representation [START_REF] Gozzi | Ground-state wave-function "representation[END_REF]. Another crucial difference is that the random function f (•) is not a white noise, but rather is governed by the non-positive functional [START_REF] Haehl | Schwinger-Keldysh formalism[END_REF].

Let us recall here that the form (64) of the weight functional for f (•) applies only at the leading non-trivial order in . In principle the higher corrections could be worked out order by order in by expanding the sinh in eq. ( 50) and performing the resulting Yintegral. At higher orders, the functional integral (50) still factorizes with respect to t, i.e., like in eqs. ( 52) and ( 64) it is again a product of ordinary integrals (if N = 1), but the factors Ai (f (t)) get replaced by more complicated functions that would not have a simple representation in terms of known functions. Being relevant to higher quantum corrections only, they are not of the same general importance as the Airy functions, since the latter govern the very interface between classical and quantum mechanics.

A related remark is the following. One may rewrite the weight functional (64) in the

form 5 A [f (•)] = exp T T 0 dt ln Ai (f (t))
and interpret the functional in the exponent as a kind of "action" which governs the distribution of the random functions f (•). Averaging the equation of motion (68) over this external noise by means of the measure-like functional A [f (•)] would then indeed correctly describe the quantum mechanics of the system considered, at least to the first order in .

Concerning the possibility of performing numerical simulations on this basis, note however that the "action" -dt ln Ai (f (t)) fails to be real. The reason is that Ai (f (t)) can assume negative values under certain conditions, see below. As a consequence, the technical problems of such an approach are similar to those of lattice gauge theory with complex actions [START_REF] Montvay | Quantum Fields on a Lattice[END_REF]. The standard Monte Carlo algorithms for real, positive actions cannot be applied here.

(4) Violation of positivity. Generally speaking the pseudo-density ρ (p, q; T ) is nothing but the Weyl symbol of a certain operator and as such it has no reason a priori to be positive. For → 0, however, ρ (p, q; T ) is known to satisfy Liouville's equation, i.e., the evolution equation for the phase space densities of classical statistical mechanics. From a mathematical point of view, Liouville's equation can also time-evolve non-positive ρ's, but only the solutions with ρ (p, q; T ) ≥ 0, for all p, q, and T are retained in the classical theory since only those can be interpreted as probability densities. The structure of Liouville's equation is such that if ρ (p, q; T 0 ) ≥ 0 for all p, q at some initial time T 0 , then ρ (p, q; T ) ≥ 0 is guaranteed to hold true also at any later time T ≥ T 0 . Importantly, this property is not shared by Moyal's equation: It may well evolve an initial function with ρ (p, q; T 0 ) ≥ 0 , ∀ (p, q) into some ρ (p, q; T ) that assumes negative values on some, or even all phase space points (p, q). Since this can never happen in classical mechanics, such a sign flip of ρ is the hallmark of a purely quantum mechanical effect. Therefore, it is intriguing to uncover possible physical mechanisms that can trigger such sign flips as they dominate the strongly non-classical situations where the peculiarities of quantum mechanics show up in a particularly pronounced way.

If we assume a positive initial distribution ρ (p, q; T 0 ) > 0, then a negative value at some later time T > T 0 implies that K M (p, q, T ; p , q , T 0 ) must be negative for certain configurations of its arguments. It is an interesting question under what conditions this can happen, and what precisely is a "strongly non-classical" regime in this context.

(4a) The random force representation of the Moyal kernel, eq. ( 67), allows for a fresh look at this problem:

We know that K cl [f (•)] is simply a special classical mechanics-kernel; as such it amounts to an everywhere non-negative generalized function of (p, q, T ; p , q , T 0 ) and functional of f . Therefore, by (66), a necessary condition for negative values K M (p, q, T ; p , q , T 0 ) < 0 is that the "weight" functional A [f (•)] returns negative values for certain f 's which contribute to the integral. Furthermore, because of the factorization (64

), A [f (•)] < 0 in turn requires f Ai (f )
FIG. 1: The Airy function Ai (f ) for real arguments f . While Ai (f ) is strictly positive for positive f > 0, there exists an infinity of intervals on the negative f -axis where Ai (f ) < 0.

that Ai (f (t)) < 0 for certain t ∈ [T 0 , T ].

A glance at Figure 1 reveals that Ai (f ) is never negative for positive arguments, f > 0.

On the negative f -axis, however, it possesses infinitely many "islands" between adjacent zeros on which Ai (f ) < 0.

In summary, we find the following necessary condition for K M (p, q, T ; p , q , T 0 ) < 0: To obtain a negative value of the Moyal kernel it is necessary that at least one function f , that makes a contribution to the integral (66) for the boundary condition chosen, assumes at some time t a value f (t) that lies on the "islands" where the Airy function is negative.

Conversely, if the boundary data are such that the differential equation (68) possesses a solution only for functions f with f (t) > 0 ∀ t ∈ [T 0 , T ], then it follows that K M cannot be negative for those boundary data.

(4b) Thus we see that strong quantum effects which ruin the classical density interpretation of ρ are intimately connected to values of the random force f (t) lying on the "negativity islands" of Airy's function. Furthermore, we mentioned that the asymptotics of Ai (ξ) for ξ → +∞ and ξ → -∞, respectively, are in a one-to-one correspondence with the contours, Γ > and Γ < , visiting different (sets of) saddle points.

Hence we can say that within the asymptotic expansion, positivity violating quantum dynamics is possible only if the kinematical data select the Γ < contour with its two saddle points as the relevant one. If Γ > , having only a single saddle point, is selected instead, positive Wigner functions always evolve into positive ones. In a way, the system behaves more classically then.

V V + V quant FIG. 2:
The classical double well potential (lower curve) and the total potential V + V quant (upper curve) for a particular realization of the random force. In this example, f (t) is taken to be a large negative constant.

(4c) These remarks are elementary in the sense that they stem from the classical theory of integration developed for functions. However, in the case at hand they readily generalize to functionals since the functional integral over the response field factorizes for different times, see eq. ( 52). Moreover, the individual factors can be represented by a function as well understood as Airy's, and so "ultralocal" path integrals like the one over the response field might be of some help in future attempts at an infinite dimensional Picard-Lefshetz and resurgence theory applicable to path integrals. While highly desirable of course, it remains to be seen if a functional version of Picard-Lefschetz theory can be established in the general case [START_REF] Behtash | Toward PicardLefschetz theory of path integrals, complex saddles and resurgence[END_REF][START_REF] Behtash | Complexified path integrals, exact saddles and supersymmetry[END_REF][START_REF] Feldbrugge | Lorentzian Quantum Cosmology[END_REF][START_REF] Tanizaki | Real-time Feynman path integral with PicardLefschetz theory and its applications to quantum tunneling[END_REF][START_REF] Cherman | Real-Time Feynman Path Integral Realization of Instantons[END_REF][START_REF] Witten | Analytic Continuation Of Chern-Simons Theory[END_REF][START_REF] Witten | A New Look At The Path Integral Of Quantum Mechanics[END_REF].

(5) Double well potential and tunneling. Next we discuss tunneling as an example of a typical quantum process. It nicely illustrates the relation between strongly non-classical effects and the properties of the Airy's function which governs the random force dynamics.

In fact, it is known that during tunneling events Wigner functions can become negative locally [START_REF] Razavy | Quantum Theory of Tunneling[END_REF].

(5a) We consider a particle in the quartic potential

V (X) = - 1 2 µ 2 X 2 + λ 24 X 4 (69) 
with λ, µ > 0. It has two degenerate minima at ±X 0 , with X 0 = 6µ 2 /λ, see Figure 2.

The modified Newton equation (68) reads for this example:

Ẍ = µ 2 X - λ 6 X 3 + F quant (X; t) (70) 
with the random ("quantum") force

F quant (X; t) = 1 2 2/3 λ 1/3 sign (X) |X| 1/3 f (t) ≡ - d dX V quant (X; t) . (71) 
It derives from the potential

V quant (X; t) = - 3 8 2/3 λ 1/3 |X| 4/3 f (t) (72) 
which we normalized such that V quant (0; t) = 0 for any f .

(5b) The modified Newton equation differs from the classical one in two respects. First, the corresponding potential V tot = V + V quant includes an explicitly time-dependent correction, Ẍ = -V tot (X; t), and second, the differential equation is to be solved with four boundary conditions, namely the initial and final positions and momenta specified by the path integral (65). Hence for a fixed generic f (t) there will exist no solution at all typically. (This is what frequently causes δ-function dependencies of K M on the terminal positions and momenta in the familiar case f = 0; see eq. (A15) for the example of the free particle.) (5c) Let us consider a classically forbidden transition now. We aim at computing the Moyal-Marinov kernel K M (q, p, T ; q , p , T 0 ) for the initial values q = -X 0 , p = 0 and final values q = X 0 , p = 0. Clearly, the double well potential in Figure 2 admits no classical solution that describes a particle which moves from the left to the right minimum and has zero velocity at both the terminal points, and this is why we say that the transition is possible by tunneling only. 6However, the modified Newton equation with the potential V + V quant does admit such a solution, for a wide range of random functions f (t) even. As a proof of principle, consider the case where

f (t) = -k = const is a negative constant, k > 0.
It is easy to see then that by choosing k > k min with k min sufficiently large, the potential barrier between -X 0 and X 0 disappears completely from V + V quant . The desired transition can be realized by a classical trajectory then, albeit in a non-classical potential V + V quant , see Figure 2.

As a result, the f -integral in (66) receives contributions from all those trajectories with k > k min , as well as from an infinity of similar ones with time dependent f . Many of them will give rise to Ai (f ) < 0. All trajectories together conspire to make up the quantum mechanical tunneling phenomenon.

(5d)

The following points should be noted here:

(i) There exists a strict connection between the sign of f (t) and those random forces that have an effect towards making classically forbidden transitions possible. The latter forces must be such that the potential near its classical minima gets lifted above its (unchangeable) value at the origin. But since always, by (72), sign (V quant (X; t)) = -sign (f (t)), we conclude that no positive f is able to achieve this raising, but a sufficiently large negative f can.

(ii) Above we saw that non-positive Wigner functions are possible only thanks to necessarily negative random forces f (t) < 0 with Ai (f (t)) < 0. This leads us to the conclusion that, at least in the example, negative random forces are the indispensable hallmark of both tunneling and phase space densities going negative.

(iii) Since f < 0 is strictly connected to the Γ < contour in the stationary phase analysis it follows furthermore that both tunneling and negative phase space densities can occur only if the terminal conditions pick the saddle points on the Γ < contour as the relevant one.

So it emerges the qualitative picture that typical quantum behaviour (approximatively classical behaviour) is connected to the steepest descent contours Γ < (Γ > ) and their concomitant saddle points.

(iv) Contrary to the familiar instanton methods based upon classical trajectories in the inverted potential, the present random force description of quantum tunneling requires no Wick rotation to Euclidean time.

It remains to be seen whether this description can be developed into an efficient quantitative tool. For different applications of the Marinov integral to tunneling see also [START_REF] Marinov | Quantum tunneling in the Wigner representation[END_REF][START_REF] Marinov | On the concept of the tunneling time[END_REF].

C. Hamiltonian Path Integral

In this subsection we generalize the discussion towards Hamiltonians H that are not necessarily quadratic in the momenta. Admitting arbitrary Weyl symbols H (p, q) now, we express the Feynman kernel in terms of the standard phase space path integral which has form K (q , T ; q , T 0 ) =

x(T )=q

x(T 0 )=q Dx (•) Dp (•) exp i T T 0 dt {p (t) ẋ (t) -H (p (t) , x (t))} . ( 73 
)
Here the integration over the N -component momentum variable p (t) is unconstrained.

The continuum formula (73) should be read as a compact abbreviation of a discretized integral on a time lattice. In order to represent the evolution kernel for the specific operator H that results from H (p, q) by Weyl ordering positions and momenta, the discretization must employ the mid-point rule [START_REF] Berezin | Feynman Path Integrals in a Phase Space[END_REF][START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF].

Building up the Moyal kernel from two integrals of the type (73), involving the variables p + (t) , x + (t) and p -(t) , x -(t), respectively, we have

K (s, q, T ; s , q , T 0 ) = x + (T )=q+ s 2 x + (T 0 )=q + s 2 Dx + (•) Dp + (•) x -(T )=q-s 2 x -(T 0 )=q -s 2 Dx -(•) Dp -(•) exp i T T 0 dt {p + ẋ+ -p -ẋ--H (p + , x + ) + H (p -, x -)} . ( 74 
)
The integration is over a total of 4N functions now, p ± (t) and x ± (t).

(1) New phase space variables. Again we try to find new integration variables that would allow for the identification of a certain "dynamical" field alongside with its associated response field. In addition we require that the new variables should bring out the symplectic covariance of (74) and of K M as far as possible.

In order to meet these requirements, we introduce the symmetric linear combinations of the N plus-and minus-type position and momentum variables, denoted X and π X , respectively, and combine them in a 2N component phase space coordinate φ a , a = 1, 2, • • • , 2N .

Likewise we form their antisymmetric linear combination, Y and π Y , and unite them in the 2N component field ξ a , times a factor of . Hence, in our notation that suppresses configuration space indices,

φ a ≡ (φ p , φ q ) = (π X , X) ξ a ≡ (ξ p , ξ q ) = (π Y , Y ) / , (75) 
with the following N -component entries:

X = 1 2 (x + + x -) = φ q Y = 1 2 (x + -x -) = ξ q π X = 1 2 (p + + p -) = φ p π Y = 1 2 (p + -p -) = ξ p . (76) 
(2) Marinov phase space integral. After this transformation of variables, the integral for K becomes

K (s, q, T ; s , q , T 0 ) = Dφ a (•) Dξ a (•) exp 2 i T T 0 dt L . (77) 
It is subject to the boundary conditions

φ q (T 0 ) = q , φ q (T ) = q ξ q (T 0 ) = s 2 , ξ q (T ) = s 2 (78)
and features the Lagrangean

L = π X Ẏ + π Y Ẋ - 1 2 H (π X + π Y , X + Y ) -H (π X -π Y , X -Y ) . ( 79 
)
In terms of the new variables, and after an integration by parts which generates a nontrivial boundary term, it yields the action

T T 0 dt L = [φ p ξ q ] T T 0 - T T 0 dt φa ω ab ξ b -H (φ, ξ) . (80) 
The Hamiltonian H was defined in eq. ( 23) already.

Recall also that ω ab is the inverse of the Poisson matrix ω ab , a 2N × 2N block matrix with entries ω qp = -ω pq = -I and ω pp = ω qq = 0. It should be interpreted as the constant coefficient matrix of the symplectic 2-form ω ≡ 1 2 ω ab dφ a ∧ dφ b in Darboux coordinates. It gives the phase space M the status of a symplectic manifold. This makes it clear that the "bulk" kinetic term that emerged from the integration by parts, φa ω ab ξ b , behaves covariantly, namely as a scalar under symplectic diffeomorphisms when φa and ξ a , respectively, are transformed as vector components.

The boundary term in (80) instead does not seem to be covariant. However, it is precisely what we need in order to achieve full symplectic covariance at the level of K M when we insert (77) into [START_REF] Gozzi | FUNCTIONAL INTEGRAL APPROACH TO PARISI-WU STOCHASTIC QUANTIZATION: SCALAR THEORY[END_REF]. In fact, after the Fourier transformation with respect to the s-variables we obtain exactly Marinov's result for K M which we anticipated in eq. ( 22), with [START_REF] Gozzi | Classical mechanics as a topological field theory[END_REF].

(3) Properties. Several features of the Moyal-Marinov kernel ( 22), ( 23) are important here:

(3a) The doubled phase space M × M. To elucidate the Hamiltonian structure behind the Marinov path integral, and the operator formalism it is equivalent to, it is natural to work with the covector λ,

λ a ≡ ω ab ξ b ⇔ ξ a = ω ab λ b , (81) 
rather than ξ. Its components are λ a ≡ (λ p , λ q ) = (ξ q , -ξ p ) .

Then, up to boundary terms,

- 1 L = φa ω ab ξ b -H (φ, ξ) + b.t. = λ a φa -H (φ, ωλ) + b.t. . (83) 
The form of this Lagrangean indicates that Marinov's integral, too, has the structure of a standard phase space path integral. It "lives", however, on the 4N -dimensional doubled phase space M×M. The λ a φa -term in (83) implies that the doubled phase space is furnished with the symplectic structure that treats the φ a 's as 2N "position" variables, and the λ a 's as the 2N "momentum" variables canonically conjugate to them. 7(3b) The response field identified. The p q-type terms in (83) also make it fully manifest that ξ a , or λ a , respectively, coincides with the response field introduced in [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF][START_REF] Janssen | On a lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF][START_REF] Dominicis | Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques[END_REF]. Indeed, λ a is canonically conjugate to φ a in much the same way as the auxiliary response field is introduced in the operatorial Martin-Siggia-Rose formalism [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF]. Moreover, in the classical limit → 0 the Lagrangean (83) becomes linear in λ a . As we shall see in a moment, this implies that the kernel of propagation is localized on the solution of the equation of motion via a functional Dirac delta. Therefore, λ a plays the same role as the response field, which is introduced to "exponentiate" the equation of motion in the Janssen-de Dominicis functional formalism, see e.g. [START_REF] Täuber | Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior[END_REF].

(3c) The coordinate change on M × M. The dynamics of φ a and λ a on the doubled phase space is governed by the Hamiltonian H. In connection with eq. ( 23) we observed already the appearence of the peculiar quantities φ a ± ξ a in the argument of the standard Hamiltonian H. They give H a distinctively non-local appearence in the phase space sense.

While before their raison d'être was somewhat mysterious, our derivation explains them transparently as due to the crucial transformation of variables in (76).

Let us combine the integration variables x ± and p ± appearing in the two copies of the phase space path integral (73) into the 2N -component coordinates

φ a + ≡ (p + , x + ) and φ a -≡ (p -, x -) . ( 84 
)
Then the change of the integration variables, eq. ( 76), writes more compactly as

φ a = 1 2 φ a + + φ a - ξ a = 1 2 φ a + -φ a -. (85) 
The inverse transformation becomes

φ a ± = φ a ± ξ a , (86) 
which makes it clear that the "peculiar" quantities appearing in Marinov's path integral for K M are really nothing else than the two copies of variables pertaining to the pure state evolution operators.

There are two main motivations for this coordinate change on M × M,

(φ + , φ -) → (φ, ξ) . ( 87 
)
First, as we said already it recasts the combined path integral to a manifestly canonical form again, displaying the symplectic structure of the doubled phase space.

Second, it connects two different sets of dynamical variables, each of which is the most natural one, and the one which we routinely use, in its respective field of applications. This is quantum statistical mechanics with mixed states on one side, and quantum mechanics of pure states, i.e., wave functions on the other. In the sequel of this paper it will therefore be interesting to see what this transformation of variables amounts to in concrete terms.

(3d) Hamilton's equations. The Euler-Lagrange equations implied by the Lagrangean L φ, λ, φ from eq. ( 83), or equivalently Hamilton's equations of the H (φ, ξ) in ( 23), assume the form

φa = 1 2 ω ab ∂ ∂φ b H (φ -ξ) + H (φ + ξ) (88) ξa = - 1 2 ω ab ∂ ∂φ b H (φ -ξ) -H (φ + ξ) . ( 89 
)
They should be compared to the familiar canonical equations of motion from the classical Hamilton function H (φ). In the present notation they read

φa = h a (φ) = ω ab ∂ b H (φ) ( 90 
)
where h a denotes the usual Hamiltonian vector field on phase space. It is easy to check that, by virtue of the transformations (76), the equations ( 88) and ( 89) are equivalent to two identical, decoupled and "local" sets of canonical equations, namely

φ+ = ω ab ∂ b H (φ + ) and φ-= ω ab ∂ b H (φ -) , (91) 
involving the variables φ + = (p + , x + ) and φ -= (p -, x -), respectively.

Again we observe that the "phase-space nonlocal" character of equations such as (88) and ( 89) is easy to camouflage: in principle it could be cancelled by using the (φ + , φ -)-variables rather than φ a , λ a = ω ab ξ b . However, as we are going to discuss in subsection III D, this is not done usually, the reason being that the classical limit of quantum mechanics prefers one set of variables over the other.

(3e) The classical point. Note that the K M -path integral [START_REF] Gozzi | Hidden BRS Invariance in Classical Mechanics 2[END_REF] involves only via H.

Eq. ( 23) in the limit → 0 yields the following O ( 0 ) term:

H = -ξ a ∂ a H + O 2 ξ 3 = λ a h a + O 2 ξ 3 . ( 92 
)
It involves the standard Hamiltonian vector field h a ≡ ω ab ∂ b H. Using ( 92) and ( 22) we therefore obtain a meaningful, and actually correct result for Marinov's integral at the strictly classical point, = 0:

K M (φ , T ; φ , T 0 ) =0 = Dφ a (•) Dλ a (•) exp -2i T T 0 dt λ a φa -h (φ) . ( 93 
)
We see that, like its relative Y , the field λ a plays the role of a Lagrange multiplier for the classical equations of motion, i.e., Newton's equation in the case of Y , and the Hamiltonian equations φa = h a (φ) in the case at hand:

K M (φ , T ; φ , T 0 ) =0 = φ(T )=φ φ(T 0 )=φ Dφ (•) δ φ -h (φ) . ( 94 
)
This path integral governs the time evolution of phase space densities ρ (φ) in strictly classical statistical mechanics. It is closely related to the CPI discussed in the literature [START_REF] Gozzi | Hidden BRS Invariance in Classical Mechanics 2[END_REF][START_REF] Gozzi | Classical mechanics as a topological field theory[END_REF][START_REF] Gozzi | Algebraic Characterization of Ergodicity[END_REF][START_REF] Gozzi | A New look at the Schouten-Nijenhuis, Frolicher-Nijenhuis and Nijenhuis-Richardson brackets for symplectic spaces[END_REF][START_REF] Gozzi | Universal local symmetries and non-superposition in classical mechanics[END_REF][START_REF] Gozzi | Three Approaches to Classical Thermal Field Theory[END_REF][START_REF] Gozzi | Lyapunov exponents, path integrals and forms[END_REF][START_REF] Deotto | On the 'universal' N=2 supersymmetry of classical mechanics[END_REF][START_REF] Abrikosov | Geometric dequantization[END_REF][START_REF] Cattaruzza | Diagrammar In Classical Scalar Field Theory[END_REF]. However, it does not share the possibility with the CPI of evolving p-form densities also.

The functional integral (94) is perfectly localized on solutions to the classical canonical equations (90). Thus it evaluates to

K M (φ , T ; φ , T 0 ) =0 = δ φ -Φ cl (T ; φ , T 0 ) , (95) 
where Φ cl denotes the solution subject to the initial condition Φ cl (T 0 ; φ , T 0 ) = φ . This is markedly different from the behaviour of Feynman integrals for the evolution of wave functions, Dx exp (iS [x] / ), which display increasingly rapid oscillations when → 0. While such path integrals, too, "know" about classical mechanics in the sense that near classical trajectories the condition δS/δx = 0 "tames" the oscillations to a certain degree, the Feynman kernel per se has no meaningful limit for → 0, let alone a limit that would match with a natural object in the formalism of classical statistical mechanics.

The smooth classical ↔ quantum transition characteristic of the Moyal kernel and of Marinov's path integral reflects the origin of the phase space formulation of quantum mechanics in the deformation quantization of the corresponding classical structures. For example, the pointwise product of phase functions, the Poisson bracket, and Liouville's equation are continuously "deformed" into, respectively, the star product, the Moyal bracket, and Moyal's equation, whereby plays the role of the deformation parameter [START_REF] Bayen | Deformation Theory and Quantization. 1. Deformations of Symplectic Structures[END_REF][START_REF] Bayen | Deformation Theory and Quantization. 2. Physical Applications[END_REF].

Thanks to this continuity at the classical ↔ quantum interface it can be said that classical mechanics on the one hand, and quantum statistical mechanics in the phase space formulation on the other, employ the same kinematical variables. And more specifically, as Marinov's path integral is a continuous function of that interpolates between classical ( = 0) and quantum mechanics ( > 0), the kinematical (integration) variables (φ, λ) or (φ, ξ) which it employs belong to a common language of classical and quantum mechanics.

Notably, there exists no analogous common language if one restricts to the quantum mechanical side to a theory of pure states only -as we do more often than not.

(2) Identifying the variables of strictly classical mechanics. Keeping the above remarks in mind we observe that the evolution kernel K M at = 0 given in eqs. ( 94) or ( 95) is expressed in terms of the common classical and quantum phase space variables

φ a = 1 2 φ a + + φ a -≡ φ a class.mech. . (97) 
They are coordinates on a single copy of M, and relate to the first half of the coordinate transformation in (85).

It is obvious from the localization on classical trajectories featured by (94) that the variables (97) are precisely those in terms of which (Hamiltonian) classical mechanics is formulated. Hence the quantities (p, q) ≡ φ a employed in classical mechanics are descendants of neither φ + ≡ (p + , q + ), nor φ -≡ (p -, q -), i.e., of the variables connected to the time evolution of pure states |ψ and their duals ψ|, respectively.

Rather, the standard classical phase space variables are to be identified with the symmetric average (97) of those variables that are associated with, respectively, the forward-and backward-time evolution of pure quantum states.

In this sense, classical dynamics arises from a symmetric superposition of an evolution forward and backward in time.

From the configuration space path integral [START_REF] Marinov | On the concept of the tunneling time[END_REF] we can reach an equivalent conclusion:

the configuration space variable of classical mechanics must be identified with the linear combination

X = 1 2 (x + + x -) ≡ X class.mech. . (98) 
(3) Status of the response field. Our point of contact between quantum and classical mechanics are the path integrals [START_REF] Marinov | On the concept of the tunneling time[END_REF] and (94) which are strictly localized on classical solutions. They involve only one of the two independent linear combinations formed in (85) from the "pure state variables" φ ± , namely the symmetric combination 1 2 φ a + + φ a -= φ a ≡ φ a class.mech. . The other, antisymmetric one is nothing but the response field

1 2 φ a + -φ a -= ξ a . (99) 
It is already fully integrated out at the interface of the classical and quantum formalisms, i.e., in eqs. ( 48) and (94). And in the equivalent representations [START_REF] Marinov | Quantum tunneling in the Wigner representation[END_REF] and (93) it merely serves as an auxiliary field needed to express the delta functional.

As a result, Marinov's integral at = 0 does not straightforwardly suggest a strictly classical counterpart of the quantum response field with which it would match at = 0.

One might worry about the explicit -dependence in (99), or in the definition of ξ a in the second equation of (85) which breaks down when → 0. However, the classical limit of K M is well defined nevertheless. This is possible thanks to cancellations with further, explicit factors of in the path integral (77) with the action (80). And this, in fact, was the very motivation for including the factors into the definition (76). 8As eq. ( 99) becomes meaningless at = 0, i.e., in strictly classical physics, we conclude that unlike the symmetric combination φ a , which goes over into the classical variables, the antisymmetric linear combination of φ ± , the response field, has no comparable classical descendant.

Nevertheless, as we are going to show, in the regime of quantum mechanics the response field does play an important role. There, quantum mechanics can be understood in terms of two copies of classical mechanics, governing the pair (φ + , φ -), or equivalently (φ, ξ).

IV. COHERENCE, INTERFERENCE, AND THE RESPONSE FIELD

The main purpose of this section is to convince the reader that typical quantum effects such as non-local correlations and interference phenomena are typically related to large response fields. In this and the following section we shall therefore observe the response field "at work" by applying the Moyal kernel and its path integral to elementary quantum mechanics. After a number of introductory discussions, we focus on interference phenomena, the very hallmark of quantum mechanics, and in section V on the double slit experiment and the Bohm-Aharonov effect.

In order to gain some intuitive understanding of the physics related to the response field, we first determine under what circumstances large values of Y (t) can arise and play an essential role. More precisely, we ask which kind of information, deduced from quantum mechanical theory, has a natural description in terms of a response field whose value is "nonclassically large". This is to mean that K M should not be well approximated by its strictly classical limit [START_REF] Marinov | On the concept of the tunneling time[END_REF].

On the other hand, since it simplifies the discussion and leads to a particularly clear picture, we usually do assume in this and the next section that the K M -integral is dominated by a certain saddle point, and that it is sufficient to retain the leading non-trivial order of the saddle point expansion.

Thus our discussion focusses on the differences between the classical, or "tree" approximation of quantum mechanics on one side, and strictly classical mechanics on the other.

Most of the conceptually deep or puzzling issues of quantum mechanics show up at this level of approximation already.

Furthermore, we specialize for pure states ρ (t) = |ψ (t) ψ (t) |, and study their time evolution in terms of the Wigner function:

W ψ (p, q, T ) = d N p d N q K M (p, q, T ; p , q , T 0 ) W ψ (p , q , T 0 ) . (100) 
We assume that the time evolution is governed by a Hamiltonian H = 1 2 p 2 + V , which is general enough for our present purposes.

A. Nonlocal Correlations and Unbalanced Forward/Backward Sectors

As a preparation, let us choose the initial state ρ (T 0 ) to be ρ (T 0 ) = |x 0 x 0 |. It is sharply localized in configuration space and amounts to the wave function ψ (x) ≡ x|ψ = δ (x -x 0 ) for some x 0 ∈ R N . Its Wigner function is likewise localized with respect to q, but independent of p:

W (p, q) = δ (q -x 0 ) . (101) 
For T > T 0 it evolves under the influence of the potential V (x) into the final state

W (p, q, T ) = d N p K M (p, q, T ; p , x 0 , T 0 ) = d N s exp - i sp K (s, q, T ; 0, x 0 , T 0 ) . (102) 
Hence we obtain, in terms of the functional integral,

W (p, q, T ) = d N s exp - i sp × Y (T )=s/2 Y (T 0 )=0 DY (•) X(T )=q X(T 0 )=x 0 DX (•) exp 2 i T T 0 dt L . (103) 
Several points should be noted here.

(1) Enforcing large response fields. We observe that the path integration over Y (t)

involves the boundary value Y (T ) = s/2; the latter is large provided the s-integral in ( 103) is dominated by large values of s, and this in turn requires the momentum argument of W , i.e., p, to be small. Thus the trajectories Y (t) that contribute to W (p, q, T ) in the small-p regime are forced to become large at their terminal point t = T , at least. Now, in view of the irregularity of typical path integral trajectories (especially in the Hamiltonian case) one might perhaps be hesitant to conclude rightaway that the same can also be said meaningfully about Y (t) at t < T . However, if we now invoke our assumption that the path integral for the Moyal kernel is dominated by one or several smooth saddle points, X cl (t) , Y cl (t) , t ∈ [T 0 , T ], continuity implies that in the small-p regime the classical function Y cl (t) is forced to be large also away from the terminal point. 9

(2) Nonlocal correlations. Equation ( 17) expresses the Wigner function in terms of the wave function for the same moment of time. Being the Fourier transform of the bilinear ψ q + s 2 ψ * q -s 2 , the Wigner function W ψ (p, q), at small p arguments, is seen to be determined by this bilinear for a large separation s ∈ R N of the two configuration space points q ± s 2 . Hence, loosely speaking, large q-separation vectors s, and related to that, large response fields Y (t), encode information about the wave function at distant points in configuration space. This information is of a special nature, comprising a bi-local correlation of ψ and ψ * , respectively, across large, potentially macroscopic distances in position space. It is therefore plausible to suspect that the response field is of special relevance to such correlations.

(3) Forward/backward asymmetry. If we undo the transformation of the integration variables [START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers[END_REF] for a moment, we see that a large value of Y cl (t) amounts to a large difference

x cl + (t) -x cl -(t) ≡ 2Y cl (t)
, where x cl + (t) and x cl -(t) are the pertinent saddle points of the two Feynman integrals.

Since the "plus" and the "minus" sectors are related to, respectively, forward time evolution (or the evolution of "kets" | • • • ) and backward time evolution (the evolution of the "bras" • • • |), we can also say that if for a given set of boundary conditions the response field is large, this is indicative of a particularly unbalanced evolution in the forward and backward 9 The restriction of this continuity argument to the classical functions governing the saddle point approximation is indeed essential, as we can see from eq. ( 43) and the discussion following it. In the representation [START_REF] Parisi | Supersymmetric Field Theories and Stochastic Differential Equations[END_REF] the s-dependence of the Y -integral is entirely captured by the boundary terms; hence s could not possibly drive the response field to large values at inner points of the time interval (T 0 , T ). The situation is different though when we ask for the continuous (or smooth actually) saddle points implied by L X, Y, Ẋ, Ẏ which satisfy the boundary conditions appropriate for K or K M , respectively. sectors, respectively. 10 

B. Interference Terms

To further illustrate the role of the response field in correlating different points of configuration space and in interference phenomena let us consider wave functions that are superpositions of the form

ψ (x) = ψ 1 (x) + ψ 2 (x) . ( 104 
)
Their density operator reads

ρ = |ψ 1 ψ 1 | + |ψ 2 ψ 2 | + |ψ 1 ψ 2 | + |ψ 2 ψ 1 | . ( 105 
)
Applying the symbol map, this equation turns into

W ψ (q, p) = W 1 (p, q) + W 2 (p, q) + C 12 (p, q) , (106) 
where W 1 and W 2 are the individual Wigner functions of ψ 1 and ψ 2 , respectively, and the cross term C 12 (p, q) is given by

C 12 (p, q) = d N s ψ 1 q + s 2 ψ * 2 q - s 2 exp - i sp + c.c. . (107) 
The phase space function C 12 (p, q) is the symbol of the non-diagonal terms in the density operator, |ψ 1 ψ 2 | + |ψ 2 ψ 1 |, and so it embodies all interference effects the states |ψ 1 and |ψ 2 can give rise to. If C 12 (p, q) happens to vanish identically no interference occurs, the total Wigner function equals the sum of W 1 and W 2 , and the density operator is a classical mixture,

|ψ 1 ψ 1 | + |ψ 2 ψ 2 |.
By way of illustration, let us consider two wave functions ψ 1 and ψ 2 that are well localized at two distant points in configuration space 11 , at a and b, say. As a sharp localization will cause no mathematical difficulties here, we let

ψ 1 (x) = δ (x -a) , ψ 2 (x) = δ (x -b) . ( 108 
)
10 Of course there is no net physical violation of time reversal invariance if the potential is real. But this may not be obvious from the contribution of an individual saddle point, in particular when the boundary conditions break time reversal invariance. 11 As always, we assume the configuration space to be R N .

The interference of the situations "particle sits at point a" and "particle sits at point b" is described by the following phase space function then:

C 12 (p, q) = 2 cos p a -b δ q - a + b 2 . ( 109 
)
Let us now time evolve the Wigner function W ψ (p, q) ≡ W ψ (p, q, T 0 ) of ( 106) with (108) from T 0 to a later time T . By linearity we have

W ψ (p, q, T ) = W 1 (p, q, T ) + W 2 (p, q, T ) + C 12 (p, q, T ) , (110) 
wherein the last term is particularly interesting:

C 12 (p, q, T ) = d N s exp (-isp/ ) K s, q, T ; a -b, a + b 2 , T 0 + K s, q, T ; -(a -b) , a + b 2 , T 0 . ( 111 
)
In terms of the (X, Y )-functional integral,

C 12 (p, q, T ) = d N s exp (-isp/ ) Y (T )=s/2 Y (T 0 )=(a-b)/2 DY (•) + Y (T )=s/2 Y (T 0 )=-(a-b)/2 DY (•) × X(T )=q X(T 0 )=(a+b)/2 DX (•) exp 2 i T T 0 dt L . ( 112 
)
Applying the same reasoning as above, equation (112) shows that (besides the pargument) there is another general factor that affects the size of typical response field values, namely the geometry of the state that is evolved. In the example at hand, this geometry enters via the center of mass and the relative distance of the two initial localization points, i.e., (a + b) /2 and a -b, respectively.

If a -b is large, so is Y (t), at least close to the initial point (t = T 0 ). In view of the transformation [START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers[END_REF], the boundary conditions on the X-and Y -integrals in (112) are such that, in the forward/backward-language, both x + (t) and x -(t) can "reach" the localization points a and b. More generally, any state with relevant structure at distant points enforces that large, possibly even macroscopically large response fields Y (t) contribute to its time evolution.

It is obvious from our example that such large response field values are needed for the interference term C 12 to survive under time evolution or, stated differently, for maintaining quantum coherence. As such, they are closely linked to the unitary character of the quantum mechanical time evolution. If one goes beyond our present setting and includes interactions of the system with environmental degrees of freedom, or other modifications that can lead to decoherence, a natural decoherence scenario consists in suppressing or damping the response field in such a way that C 12 → 0 ultimately.

V. DOUBLE SLIT EXPERIMENT AND BOHM-AHARONOV EFFECT

This section is devoted to two instructive examples illustrating the role played by the response field in the semiclassical limit: the double slit experiment, and the Bohm-Aharonov effect.

Figure 3 shows a symbolic sketch of a double slit experiment with electrons. They are emitted from an electron source at the point Q, then travel along the trajectories Γ I or Γ II , respectively, passing through slit I or slit II, before hitting the screen at q. We would like to compute the intensity detected on the screen in dependence on the point q, keeping Q fixed. 12 We model the obstacle that forces the electrons to go through the slits, assumed infinitesimally narrow, by a potential V (x) which is infinite on the obstacle and vanishes everywhere else. Apart from the effect of this potential the electrons are considered free particles.

In terms of the Marinov path integral, the intensity distribution on the screen is propor-tional to

|K (q, T ; Q, T 0 )| 2 = K (0, q, T ; 0, Q, T 0 ) = X(T )=q X(T 0 )=Q DX (•) Y(T )=0 Y(T 0 )=0 DY (•) exp 2 i T T 0 dt L . (113) 
We are now going to evaluate this path integral using the lowest non-trivial order of the saddle point expansion, i.e., the "classical approximation" of quantum mechanics.

To shed further light on the significance of the response field we present the calculation in two different, but equivalent, ways. The first one employs the variables x ± , while the second highlights the classical-and response fields X and Y, respectively.

A. The (x + , x -)-Perspective

According to the conventional approach that does not employ the Marinov integral [START_REF] Felsager | Geometry, Particles and Fields[END_REF],

the kernel K in ( 113) is regarded as (literally) the product of two Feynman integrals of the usual form

K (q, T ; Q, T 0 ) = x(T )=q x(T 0 )=Q Dx (•) e i S[x(•)] ≈ e i S I + e i S II . (114) 
In the second step of (114) the saddle point approximation has been invoked, with When we write down the product of the two K's, those saddle points appear both in the x + -and the x --integral:

S I,II ≡ S x (I,II) SP (•) , (115) where x 
K (0, q, T ; 0, Q, T 0 ) = K (q, T ; Q, T 0 ) * K (q, T ; Q, T 0 ) (116) = e -i S I x -=x (I) SP + e -i S II x -=x (II) SP e i S I x + =x (I) SP + e i S II x + =x (II) SP .
In the two Feynman integrals representing the K * K-product the respective integration variables x + (t) and x -(t) "decide" independently whether they want to be approximated by one or the other saddle point, making a total of four cases: Γ II,II :

K (0, q, T ; 0, Q, T 0 ) = e -i S I + e -i S II e i S I + e i S II = 1 + 1 + e i (S I -S II ) + e -i (S I -S II ) . (117) 
x + = x (II) SP , x -= x (II) SP Γ I,II : x + = x (I) SP , x -= x (II) SP Γ II,I : x + = x (II) SP , x -= x (I) SP . (118) 
These four curves are sketched in Figure 4.

From (117) we obtain

K (0, q, T ; 0, Q, T 0 ) = 2 + 2 cos (∆S/ ) = 4 cos 2 ∆S 2 , (119) 
and so it remains to compute the difference of the "on-shell" actions, ∆S ≡ S I -S II . Using that S [x] = 1 2 m dt ẋ2 along the straight sections of Γ I,II , a simple calculations yields 13∆S = mv (a/ ) u with v and m the velocity and the mass of the electrons, a the distance of the two slits, and the distance from the obstacle to the screen. Furthermore, u is a coordinate on the screen given by the perpendicular distance of q from the central axis. In evaluating ∆S we take the limit in which the distance between the source and the obstacle is much bigger than any other length in the problem.

As a result the intensity on the screen is given by

I (u) ∝ K (0, q, T ; 0, Q, T 0 ) = 4 cos 2 mv 2 a u . (120) 
This is the well known formula which exhibits the modulation typical of an interference pattern.

B. The (X, Y)-Perspective

Now let us pretend that we are unaware of the hidden product structure of Marinov's path integral, and let us evaluate the integral (113) directly, i.e., by integrating over the "classical variable" X (t) and the response field Y (t). Equivalently, we may also start out from its integrated-by-parts version:

K (0, q, T ; 0, Q, T 0 ) = X(T )=q X(T 0 )=Q DX (•) Y(T )=0 Y(T 0 )=0 DY (•) × exp -2 i T T 0 dt Y • Ẍ + V (X, Y) . (121) 
Herein the sole purpose of

V (X, Y) ≡ 1 2 V (X + Y) -V (X -Y) (122) 
is to implement the constraint caused by the slit geometry. To avoid technical issues, let us assume that V (x) is actually an appropriately smoothened variant of the characteristic function which equals infinity (zero) when the point x lies on (off) the obstacle.

(1) Response field is not "small". A word of caution might be appropriate here. While we shall invoke the semiclassical expansion again, it would be quite wrong to apply the approximation of a small response field at this point. In fact, using

V (X, Y) = Y • ∇V (X) + O Y 3 (123) 
would turn (121) into

K (0, q, T ; 0, Q, T 0 ) = X(T )=q X(T 0 )=Q DX (•) δ Ẍ + ∇V (X) . (124) 
This integral describes entirely classical physics, however, and "knows" nothing about the interference pattern on the screen, which we expect to find.

(2) Saddles of Marinov's integral. Thus, let us be careful and try to find an approximation in the form

K (0, q, T ; 0, Q, T 0 ) = (X SP ,Y SP ) exp 2 i S [X SP , Y SP ] ( 125 
)
where the sum is over the saddle points SP (t) , Y SP (t)) of the action functional

S [X, Y] ≡ T T 0 dt Ẋ • Ẏ -V (X, Y) , (126) 
and we are open-minded as for the magnitude of Y SP (t).

In fact, eqs. ( 125) and ( 124) are the respective leading terms of two different expansions:

As for (125), this is the saddle point expansion of Marinov's integral; there the eligible saddles may well possess a large Y SP (t), and only the fluctuations of the response field about Y SP (t) are assumed small. On the other hand, (124) is the leading term of the expansion in the number of V -derivatives which obtains by replacing -1 sinh Y k ∂ k V (X) in the integrand of (50) with its power series expansion with respect to Y , i.e., Y V (X) +

2 6 V (X) Y 3 + O Y 5 if N = 1.
Being an expansion about Y (t) = 0, the validity of the resulting approximation requires the total response field to be small, not just the fluctuations. This is something which we do not assume in the present section. 14 Therefore we adopt (125) as our starting point, and also allow for saddle points with a non-zero and possibly large Y SP (t). Now, such (X, Y)-saddle points should be determined by solving the coupled system of equations ( 41) which looks rather unwieldy. Even if V (x) is the characteristic function of a fairly simple geometry, the support of V (X, Y) on the doubled configuration space, and the trajectories it allows, are not easily visualized. However, after a moment of contemplation even the hypothetical physicists who are unaware of the hidden product structure of Marinov's integral will discover that by introducing new variables x ± via

X SP (t) = 1 2 [x + (t) + x -(t)] , Y SP (t) = 1 2 [x + (t) -x -(t)] , (127) 
the system (41) can be decoupled, and that it boils down to a doubled Newton equation, ẍ± = -∇V (x ± ). Furthermore, these physicists will find out that the standard Newton equation ẍ = -∇V (x) admits two solutions consistent with the boundary data, namely SP . These latter two trajectories on the (ordinary) configuration space happen to be saddle points of a Feynman-type path integral, but this fact is of no relevance from the present perspective.

The complete set of solutions to the doubled Newton equation is found by picking x + (t) and x -(t) independently from the set x These are the saddle points to be summed over in (125). We list them in Table I.

The first two saddle points in the table, (α, β) = (I, I) and (α, β) = (II, II), are trivial in the sense that they have an identically vanishing response field, (X SP , Y SP ) α,α = x (129)

The saddle points of Marinov's integral are depicted symbolically in Figure 5.

(3) The result. Using the entries of Table I, it is now easy to evaluate the sum over saddle points in eq. ( 125):

K (0, q, T ; 0, Q, T 0 ) = 

) 130 
Thus we recover the result of our first calculation, equation (119), and so (120) ultimately, as it should be.

(4) Importance of the response field. The most interesting aspect of this second calculation are the stationary points which, besides the "classical mechanics-field" X (t), also involve the less familiar response field Y (t). It is seen here to co-determine the semiclassical limit and is on a par with X (t).

The time dependence of the stationary points is displayed in Figure 5. Several essential points must be noted here. As a consequence, the "classical mechanics-component" of the saddle point, i.e., X SP (t), passes through neither of the two slits: at first it follows the symmetry axis, then it hits the obstacle, seems to tunnel through it, and gets deflected only then.

Here we can observe quite nicely what is needed in order to promote classical mechanics to semiclassical quantum mechanics: it is the additional information provided by the response field. The "improved" trajectories X SP (t) ± Y SP (t) actually do pass through one or the other slit, and are responsible for the interference pattern ultimately. Indeed, perturbatively speaking the final result (120) sums up arbitrarily high orders of a. If one tries to enforce a small response field by choosing a tiny value of a, and Taylor expands (120) in this quantity, the periodicity of the interference pattern is ruined at any finite order.

C. The Bohm-Aharonov Effect

After the following modification the above experimental set up lends itself for a demonstration of the Bohm-Aharonov effect [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF]: at equal distances from the slits we place a solenoid close to the obstacle, producing a magnetic field B (x) that is non-zero in a small domain only and gives rise to a magnetic flux Φ through the transverse plane, see Figure 6. The classical paths Γ I and Γ II computed above for B (x) ≡ 0 are assumed to pass well outside this domain.

Let us use the Moyal-Marinov path integral again to find the modified interference pattern in presence of the solenoid.

(1) The Kand K M -integrals for the electrons exposed to an external magnetic field are described in Appendix B. They have the by now familiar structure, except that their Lagrangean L X, Y, Ẋ, Ẏ contains additional terms depending on the vector potential, see equations (B2), (B3). It implies the following Euler-Lagrange equations for the saddle dτ 1 2 ẋ2 + V (x) , i.e., they satisfy ẍ = V (x). It turns out important to consider not only real solution, but also complex solutions to the equation of motion, involving a holomorphic potential then [START_REF] Behtash | Complexified path integrals, exact saddles and supersymmetry[END_REF]:

d 2 dτ 2 z (τ ) = V (z (τ )) , (139) 
with z (τ ) = X (τ ) + iY (τ ). This is the holomorphic Newton equation which we mentioned in the Introduction already. By comparing the real and the imaginary parts of (139) and thereby employing the Cauchy-Riemann equations for the holomorphic potential, it can be checked straightforwardly that (139) is actually equivalent to (138).

This establishes an intriguing connection between the instantons of the Moyal path integral with a "Wick rotated" response field on one side, and the complex instantons in standard Feynman integrals on the other.

It must be emphasized though that these instantons actually enter in different actions and different kernels of propagation. It is therefore difficult to state a precise relation, if any, between the results obtained in the two frameworks. We hope to be able to come back to this issue in the future.

A related question one may ask is about the possibility of instantons in the proper Marinov's integral, i.e., the original one over X and Y without the Wick rotation. Being a double copy of Feynman's real time path integral, the real time instantons of the latter, if they exist, could be doubled to obtain special instantons for the former. 16 It is not yet known whether there exist also other (and possibly better behaved) types of instantons in Marinov's path integral which cannot be obtained by "squaring" those of Feynman's integral. Presumably this can be decided about in a case by case study only.

VII. SUMMARY AND CONCLUSIONS

Marinov's path integral and its connections to the other commonly used tools of quantum mechanics are presumably not as well known as they deserve to be. In this paper we tried to convince the reader that actually this path integral is the natural starting point both for general structural investigations in quantum theory and for generating new approximation

DK M ≡ K 0 M

 0 . Preferred Kinematical Variables: Quantum vs. Classical Mechanics (1) A common language. Analyzing both the configuration-and phase-space path integrals for the Moyal kernel we saw explicitly that it approaches a well defined generalized function (distribution) in the strictly classical limit, and that lim →0 evolution kernel of the Liouville equation of classical statistical physics.
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 3 FIG. 3:The geometry of the double slit experiment for electrons.

  ) denote the classical solutions corresponding to the paths Γ I and Γ II , respectively. In the double slit geometry they are the only relevant saddle points.
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 4 FIG.4: The closed curves shown represent the saddle points (118) that appear if one adopts the (x + , x -)-perspective. Figure4a:The backtracking paths Γ I,I and Γ II,II . Figure4b:The path Γ I,II . The saddle point Γ II,I is obtained by reversing its orientation.

  (α, β) x + x -X SP Y SP (I, I) x x Σ -x ∆TABLE I: The saddle points for (x + , x -) and (X, Y) in terms of x (I) SP , x (II) SP , x Σ , and x ∆ .

  ) . Then transforming back to the (X, Y ) language via equation (127) gives rise to a total of four open curves on the doubled configuration space:(X SP , Y SP ) : [T 0 , T ] → R 3 × R 3 , t → (X SP (t) , Y SP (t)) α,β , α, β ∈ {I, II} . (128)

  (α) SP , 0 . The third and the fourth instead, (α, β) = (I, II) and (α, β) = (II, I), are of the form
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 5 FIG. 5: The diagrams illustrate the saddle points of Marinov's path integral. They are open curves on the doubled configuration space. Figures5a and 5bshow projections onto the classical X-space; they are to be combined with Y (t) ≡ 0. In Figures5c and 5d, the tip of the Y (t) vector lies on the dashed lines when added to X (t), which in turn is given by solid lines.

( 4a )

 4a There exist saddle points of the Marinov path integral with an identically vanishing response field, Y (t) = 0 ∀t ∈ [T 0 , T ]. In a way, they are "more classical" than the other ones, in that they are fully described by the trajectory of the classical field, X (t). In our example, these are the cases (α, β) = (I, I) and (α, β) = (II, II), respectively, describing a perfectly classical electron that travels through slit I in the first, and slit II in the second case.(4b) The third and the fourth saddle point have a quite intriguing structure, (X SP , Y SP ) = (x ∆ , ±x Σ ). Their classical-(response-) field component is given by the vectorial sum (difference) of the above trajectories passing through slit I and II, respectively.
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 6 FIG.6: Modified double slit experiment to demonstrate the Bohm-Aharonov effect. The magnetic field is nonzero in the darkened circle only, giving rise to a magnetic flux Φ.

  SP , Y SP ) α,β

	α,β∈{I,II} i S (X = exp 2 exp i S (x + ) α,β -	i S (x -) α,β
	α,β∈{I,II}		
	= 1 + 1 + e i∆S/ + e -i∆S/	
	= 4 cos 2 ∆S 2	.	(

See ref.[START_REF] Marinov | A new type of phase-space path integral[END_REF] for details concerning the discretization behind[START_REF] Gozzi | Hidden BRS Invariance in Classical Mechanics 2[END_REF]. Note also that in[START_REF] Marinov | A new type of phase-space path integral[END_REF] the variable ζ ≡

ξ is used instead of our ξ.

The discrete analog of J factorizes analogously, see equation (A10) in Appendix A.

δ (ẍ + V (x)). In this way we recover the delta function typical of the CPI, as it should be.In the semiclassical regime ( = 0), the function I (a, b) can be regarded an approximation of this delta function. It is noteworthy that, depending on the sign of its (real) argument, the Airy function achieves this approximation in two fundamentally different ways: For large positive arguments ξ → ∞, the Airy function Ai (ξ) is exponentially decreasing, while it is rapidly oscillating for large negative arguments, ξ → -∞. This behaviour is an example of Stokes phenomenon[START_REF] Berry | Uniform Asymptotic Smoothing of Stokes's Discontinuities[END_REF]. Moreover, in recent years the Airy function has even become a canonical example of resurgence theory[START_REF] Dunne | What is QFT? Resurgent trans-series, Lefschetz thimbles, and new exact saddles[END_REF][START_REF] Dunne | New Nonperturbative Methods in Quantum Field Theory: From Large-N Orbifold Equivalence to Bions and Resurgence[END_REF][START_REF] Dunne | WKB and Resurgence in the Mathieu Equation[END_REF]. At

The concept of effective classical trajectories behind the equation (68) is different from the one already studied in the literature, see[START_REF] Razavy | Quantum Theory of Tunneling[END_REF].

We apply here a formal manipulation in the continuum limit.

The requirement of vanishing terminal velocities excludes a "spilling over" as described in[START_REF] Balazs | Wigner's function and tunneling[END_REF].

See[START_REF] Gozzi | A Proposal for a differential calculus in quantum mechanics[END_REF][START_REF] Gozzi | Quantum deformed canonical transformations, W(infinity) algebras and unitary transformations[END_REF][START_REF] Gozzi | Quantum deformed geometry on phase space[END_REF][START_REF] Pagani | Note on the super-extended Moyal formalism and its BBGKY hierarchy[END_REF] for a detailed discussion of Marinov's path integral from that point of view.

In the subsection on Lagrangean path integrals it has been convenient to adopt notations such that Y and Y ≡ Y / correspond to ξ q and ξ q , respectively.

In this section 3D position and momentum vectors are printed in boldface.

This equation is valid to first order in the deflection angle, i.e., in u. It treats v and the geometric data of the apparatus as independent, hence the time difference T -T 0 is implicitly adjusted such that v (T -T 0 ) = +(distance obstacle-source).

In the jargon of quantum field theory, eq. (125) amounts to the tree level of a loop expansion, while the expansion in V -derivatives is analogous to perturbation theory in small coupling constants. Using the latter rather than the former in cases where Y SP = 0 would mean "expanding about the wrong vacuum", namely Y = 0.

For simplicity we omit here the scalar potential V whose sole purpose is to model the geometric obstructions imposed by the slit geometry.

In this manner the real-Y Marinov instantons would inherit the unusual or "pathological" properties the real-time Feynman instantons may have; see ref.[START_REF] Cherman | Real-Time Feynman Path Integral Realization of Instantons[END_REF] for an instructive example.

In writing down (A9) we also omitted a term from the sum over V (x n , y n ) which gives no contribution in the ν → ∞ limit of the multiple integral.
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(131)

They feature the bi-local functions

with B (x) ≡ ∇ × A (x) denoting the ordinary magnetic field.

(2) In view of the non-local appearance of the equation of motion (131) one must beware of a rather tempting speculation: Might it be that the (X, Y)-trajectories do feel the B-field, rather than just the A-field, while the usual ones don't?

The answer is no, however, since (131) is related to the decoupled saddle point equations ẍ± = e ẋ± × B (x ± ) by x ± = X ± Y, and each one of them has the same form as the classical equation, ẍ = e ẋ × B (x). As a result, if the relevant solutions to the latter are unaffected by the magnetic field, so are x + (t) and x -(t), and as a consequence, X (t) and Y (t).

(3) Thus, the saddle points of the doubled path integral are the same with and without the magnetic field. What is different, however, is the value of the action evaluated along those saddle point trajectories. A simple calculation shows that the ẋ•A-terms shift ∆S ≡ S I -S II by a term proportional to the magnetic flux, ∆S = mv (a/ ) u + eΦ, so that the intensity on the screen is now given by

This is indeed the correct result. The B-field confined to the interior of the solenoid causes a rigid, i.e., u-independent translation of the interference pattern visible on the screen [START_REF] Felsager | Geometry, Particles and Fields[END_REF].

VI. INSTANTONS OF THE "WICK ROTATED" RESPONSE FIELD

In the response field formalism, it is common to analytically continue, or "Wick rotate" the response field Y by defining a new field Y ≡ -iY and considering Y real then [START_REF] Täuber | Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior[END_REF].

As an example, let us consider an action associated to a stochastic differential equation, which often takes the form iS

, where the dots represent terms specific to the system under consideration. After introducing Y , the original expression for exp (iS

Although this change of variables is possibly harmless in perturbation theory, it is not clear if this is the case in the full path integral. Indeed, such a "Wick rotation" is not always legitimate even in the saddle point approximation.

In this section we consider only the class of theories for which the "Wick rotation" makes sense. For this class we show that the associated instantons are actually the same as the complex instantons found in standard Feynman path integrals, see e.g. [START_REF] Behtash | Complexified path integrals, exact saddles and supersymmetry[END_REF].

To see this explicitly we must first rewrite the action associated to the Moyal kernel by introducing the Euclidean time τ = it and then perform the transformation Y ≡ -iY . Let us start by considering

where the second line gives the Euclideanized action of the Marinov path integral. Next we rewrite the Euclidean action S E in terms of the symmetric and the anti-symmetric combinations, x + = X + Y and x -= X -Y . One finds

Finally we "Wick rotate" the response field via Y ≡ -iY and obtain

The equations of motion derived from

Surprisingly enough, the equations of motion (138) appear also in a different context and are particularly relevant in the resurgence program, see e.g. [START_REF] Behtash | Complexified path integrals, exact saddles and supersymmetry[END_REF].

In fact, let us consider instantons in the standard Feynman path integral. These instantons are finite action solutions to the equation of motion of the Euclidean action S E = schemes. In a way, it can be seen as the connecting link between a number of different approaches to, and formulations of both classical and quantum mechanics. Our focus was on the very boundary between between these two worlds, and in particular we made an effort to elucidate the pivotal role that is played by the response field at the classical-quantum interface. Feynman's path integral for pure states is one of the most used tools in theoretical physics and a frequent starting point of investigations into the mysteries of the quantum world. But ironically, pure quantum states are, in a sense, maximally far away from the classical states we are familiar with, namely probability densities on phase space; those obey Liouville's equation and can be time-evolved by means of the Classical Path Integral (CPI).

However, the classical densities, Liouville's equation, and the CPI are the → 0 descendants of, respectively, symbols of density matrices, Moyal's equation, and Marinov's path integral.

We therefore believe that the clash between classical and quantum mechanical notions can be mitigated to some extent by broadening the scope towards generic, i.e., mixed density matrices. As a benefit, some of the seemingly substantial qualitative differences between the classical and the quantum mechanical side turn into merely quantitative deviations whose size is controlled by the parameter .

(1) After outlining the scope of our work in Section I, in Section II we reviewed the connection between the Moyal approach to quantum mechanics and the path integral introduced by Marinov. In Section III we provided a derivation of the Marinov path integral by combining two Feynman path integrals. This allowed us to pin down the exact relationship between the kinematical variables used in quantum and strictly classical mechanics, respectively.

Furthermore, it led to an intriguing random force representation of the semiclassical time evolution which is based on concept of Airy averaging.

(Details regarding the precise definition of the path integrals by discretization on a time lattice have been confined in Appendix A.)

In Section IV we studied how quantum interference and correlation effects emerge in the Marinov path integral and we saw how crucially important the response field is in this regard.

In Section V we presented two illustrative applications of the approach advocated in the paper. Within the saddle point approximation, we displayed how the double slit interference and the Bohm-Aharonov effect make their appearance in the Marinov path integral in a novel and indeed quite intriguing fashion. Loosely speaking, the response field seems to provide a "local" description of what otherwise appears to be a non-local effect.

(The path integral of a particle interacting with an electro-magnetic field was given in Appendix B.)

In Section VI we highlighted a surprising relationship between the instanton solutions of the Marinov path integral with an analytically continued or "Wick rotated" response field on the one side, and ordinary complex instantons, as studied recently in the resurgence program, for instance, on the other. It turned out that after the "Wick rotation" of the response field the Euclidean equations of motion are actually the same as those studied in resurgence. This implies that the instantons found in one framework can be used also in the other.

(2) The perspective adopted in the present paper offers an alternative approach to the standard saddle point approximation, which is better suited to discuss the semiclassical approximation and the strictly classical limit of the results obtained. In particular it offers an improved conceptual understanding of the quantum-classical interface that cannot be provided by the Feynman integrals with their escalating oscillations for → 0.

Specifically we hope that the connection between complex instantons and those of Marinov's path integral can be of interest in the ongoing efforts towards a generalized Picard-Lefschetz theory that would be applicable to oscillating functional integrals. It remains to be seen whether this can lead to an efficient tool for obtaining semi-classical corrections, and whether there can exist a thimble decomposition in real time also that could be used for this purpose. Moreover, as an intermediate goal perhaps, it is presumably worthwhile to put the possibility of a complexified response field on a more solid footing in future work.

It would be also very interesting to generalize the present study to the BRS-symmetric extension of the Moyal formalism [START_REF] Gozzi | A Proposal for a differential calculus in quantum mechanics[END_REF][START_REF] Gozzi | Quantum deformed canonical transformations, W(infinity) algebras and unitary transformations[END_REF][START_REF] Gozzi | Quantum deformed geometry on phase space[END_REF]. Indeed, this is related to the recent super-extended Schwinger-Keldysh formalism [START_REF] Crossley | Effective field theory of dissipative fluids[END_REF][START_REF] Haehl | Schwinger-Keldysh formalism[END_REF], see [START_REF] Pagani | Note on the super-extended Moyal formalism and its BBGKY hierarchy[END_REF] for a discussion regarding the relationship between the two approaches.

Appendix A: Path integrals on a time lattice

In the main part of the paper the various path integrals are treated in a somewhat formal continuum notation. However, all manipulations described there can be justified more rigorously by performing them on their well defined discrete counterparts defined over a time lattice, and taking the temporal continuum limit corresponding to an arbitrarily fine lattice only thereafter. In this appendix we give some details of these (in general rather cumbersome) calculations, thereby focussing on the discrete version of the Lagrangean path integrals from Subsection III A.

(1) The lattice definition. We construct the regularized functional integral representation of the Moyal kernel, i.e., the actual definition of its path integral, by combining two discretized path integrals for the Feynman kernels. For systems with Lagrangeans

, the Feynman kernel is given by the ν → ∞ limit of the following ordinary (ν -1)-fold integral [START_REF] Schulman | Techniques and applications of path integration[END_REF]:

Here we set x 0 ≡ x , x ν ≡ x , and ≡ (T -T 0 ) /ν denotes the lattice constant corresponding to the regularization parameter ν. Inserting two copies of (A1), for finite and equal values of ν into (28) leads to

In the sums above, the index values n = 0 and n = ν refer to the terminal positions x ± n . They are not integrated over but rather are fixed by the boundary conditions:

Next we introduce new variables in (A2),

The transformation (A4) applies for all n = 0, 1, 2, • • • , ν -1, ν. Hereby the index values n = 1, 2, • • • , ν -1 refer to integration variables, while n = 0 and n = ν relate to the boundary variables:

In terms of the new variables, the integral (A2) reads as follows:

This multiple integral together with (A5) is our final result for the regularized path integral.

The kernels K, and after a Fourier transformation, K M , are given by the well defined ν → ∞ limit of (A6).

In the formal continuum limit (i.e. when ν → ∞ is applied to the integrand rather than the evaluated integral) the multiple integral (A6) gives rise to [START_REF] Englert | Statistical atom: Some quantum improvements[END_REF] with [START_REF] Razavy | Quantum Theory of Tunneling[END_REF] of the main text.

(2) Integration by parts. In writing down the alternate variant of the continuum Kintegral in equation ( 43) we performed an integration by parts on the Ẋ Ẏ term in the action. The justification of this step is slightly more subtle. First of all one shows that the terms of the discrete kinetic term in (A6) can be reorganized as follows

Note the different range of the sums in this identity.

Multiplying (A7) by 1/ and taking the limit ν → ∞ it would imply the continuum formula

which is nothing but the integration by parts performed formally in Section III.

Instead, the regularized expression which provides the actual definition of the alternative continuum path integral ( 43) is given by: 17

While the above sum over n involves the terminal positions X 0 = q and X ν = q, respectively, it is independent of s and s . Hence the entire s, s -dependence in (A9) is made explicit by the first exponential function under the integral. This proves the corresponding claim made in the main text in relation with equation [START_REF] Parisi | Supersymmetric Field Theories and Stochastic Differential Equations[END_REF].

Furthermore, at this point it is straightforward to perform the Fourier transform that connects K to K M . In this way we learn that a precise definition of the formal expression [START_REF] Gozzi | Ground-state wave-function "representation[END_REF] for the Moyal kernel is given by the ν → ∞ limit of K M (p, q, T ; p , q , T 0 ) = (π ) -N (ν-1) -N (ν-2)

whereby the four variables

are determined by the boundary data and also depend on the lattice constant .

The somewhat unusual conditions (A12) are implied by two delta functions that result from the Fourier transformation and allow performing the X 1 -and the X ν-1 -integrations, respectively. Together with (A11), those conditions have the effect of fixing the velocities at the terminal points:

In this way, the ν → ∞ limit of (A10) gives a precise meaning to the symbolic notation used in [START_REF] Gozzi | Ground-state wave-function "representation[END_REF].

(3) Example: the free particle. For simple potentials the nested multiple integrals encountered above can be calculated explicitly for any given ν and the limit ν → ∞ can be taken. For example, in the case of the free particle, the reader is invited to evaluate (A6) and (A9) at finite ν, to verify that both the original and the integrated-by-parts version of the regularized path integral possess well defined continuum limits, and to show that those are indeed equal, being

Plugging (A14) into [START_REF] Gozzi | FUNCTIONAL INTEGRAL APPROACH TO PARISI-WU STOCHASTIC QUANTIZATION: SCALAR THEORY[END_REF] then yields the corresponding Moyal kernel finally:

As in all systems with a quadratic Hamiltonian, it equals the solution to the classical Liouville equation.

Appendix B: Particle in a magnetic field

Since it is interesting in its own right, and as a background for our discussion of the Bohm-Aharonov effect, we briefly describe the Lagrangean Marinov integral and its classical limit for a particle interacting with an external magnetic field B (x) ≡ ∇ × A (x). 18 (1) Bilocal potentials. We start out from the standard Lagrangean for a particle of unit mass and charge e, coupled to a vector potential A (x) and scalar potential V (x):

(B1) 18 Letting N = 3 here, we follow the convention of denoting position and momentum vectors in R 3 by bold face letters.
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Following the steps outlined in Subsection III C we are again led to the formula (37) for K (s, q, T ; s , q , T 0 ), but with (38) replaced by

Herein the three bi-local potentials are given by

Given the (still exact) path integral for K (s, q, T ; s , q , T 0 ), the pertinent exact Moyal kernel is obtained by the usual Fourier transformation, equation ( 40).

(2) Occurrence of the gauge field. The semiclassical approximation of K M is governed by the small-Y expansion of the bi-local potentials. At leading order,

The Lagrangean L reads at this order:

Proceeding as in Section III we find in this approximation after performing the Y-integration:

Note that the first term on the RHS of (B5), a total derivative, has augmented the terminal velocities in the phase factors under the integral to Ẋ + eA (X), evaluated at the initial and final point, respectively. This combination is necessary to guarantee the gauge covariance of the formalism at the level of the function K.

(3) Classical kernel. The strictly classical special case of the kernel K M is obtained by inserting (B6) into [START_REF] Gozzi | FUNCTIONAL INTEGRAL APPROACH TO PARISI-WU STOCHASTIC QUANTIZATION: SCALAR THEORY[END_REF] and performing the Fourier transformation with respect to s and s .

This yields the classical Moyal kernel in the form lim →0 K M (p, q, T ; p , q , T 0 ) = DX (•) δ Ẍ -e Ẋ × B (X) + ∇V (X) . (B7)

Hereby the functional integration over X (t) is subject to the following four boundary conditions:

X (T ) = q, Ẋ (T ) = p -eA (q)

X (T 0 ) = q , Ẋ (T 0 ) = p -eA (q ) . (B8)

We see that the integrand of (B7) is strictly localized on solutions of the classical equation of motion, Ẍ = e Ẋ × B -∇V , which feels the magnetic field only via B, the gauge invariant curl of A. Instead, the boundary conditions (B8) depend on A directly. There, the presence of the vector potential is a consequence of the crucial total derivative terms in the L of equation (B5). Thus the classical limit of K M as given by (B7) with (B8) depends on the terminal momentum only via the combination p -eA (q), the counterpart of a covariant derivative in the phase space formulation.

(4) Gauge invariant probabilities. As a final consistency check we mention that equation [START_REF] Gozzi | Path Integrals for Pedestrians[END_REF] continues to be true in presence of a vector potential. Together with (B6), evaluated at vanishing s-arguments, it implies that in the classical limit |K (q, T ; q , T 0 )| 2 = X(T )=q X(T 0 )=q DX (•) δ Ẍ -e Ẋ × B (X) + ∇V (X) .

(B9)

As it must be, the path integral in (B9) is indeed seen to be a positive and manifestly gauge independent function of the position and time arguments, at least formally [START_REF] Schulman | Techniques and applications of path integration[END_REF][START_REF] Dittrich | Classical and Quantum Dynamics[END_REF][START_REF] Gozzi | Path Integrals for Pedestrians[END_REF].