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ACYLINDRICAL HYPERBOLICITY AND EXISTENTIAL CLOSEDNESS

Let G be a nitely presented group, and let H be a subgroup of G. We prove that if H is acylindrically hyperbolic and existentially closed in G, then G is acylindrically hyperbolic. As a corollary, any nitely presented group which is existentially equivalent to the mapping class group of a surface of nite type, to Out(Fn) or Aut(Fn) for n ≥ 2 or to the Higman group, is acylindrically hyperbolic.

Introduction

Acylindrically hyperbolic groups, dened by Osin in [START_REF] Osin | Acylindrically hyperbolic groups[END_REF], form a large class of groups that has received a lot of attention in the recent years. Notable examples of acylindrically hyperbolic groups include non-elementary hyperbolic and relatively hyperbolic groups, mapping class groups of most surfaces of nite type, Out(F n ) and Aut(F n ) for n ≥ 2, many groups acting on CAT(0) spaces, and many other groups. This short note is motivated by the following question, asked by Osin.

Question 1.1. Is acylindrical hyperbolicity preserved under elementary equivalence among nitely generated groups?

In [START_REF] Sela | Diophantine Geometry over Groups. VII. The elementary theory of a hyperbolic group[END_REF], Sela proved that hyperbolicity is preserved under elementary equivalence, among torsion-free nitely generated groups, and we proved that the torsion-freeness assumption can be omitted (see [START_REF] André | Hyperbolicity and cubulability are preserved under elementary equivalence[END_REF]). The question whether there exists an analogous result for weaker forms of negative curvature in groups is natural. Note that unlike hyperbolic groups, acylindrically hyperbolic groups need not be nitely generated, and Question 1.1 makes sense even if we don't assume nite generation; however, the answer to this question is negative in general, even among countable groups (see Section 5 for further details).

Let G be a group, and let H be a subgroup of G. One says that H is existentially closed in G if the following holds: for every existential formula φ(x) and every tuple h ∈ H p with p = |x|, the sentence φ(h) is satised by H if and only if it is satised by G. Equivalently, H is existentially closed in G if any disjunction of systems of equations and inequations with constants in H has a solution in H if and only if it has a solution in G. We prove the following result. Theorem 1.2. Let G be a nitely presented group, and let H be a subgroup of G. If H is acylindrically hyperbolic and existentially closed in G, then G is acylindrically hyperbolic.

A group G is called equationally Noetherian if the set of solutions in G of any innite system of equations in nitely many variables Σ coincides with the set of solutions in G of a nite subsystem of Σ. For instance, hyperbolic groups are equationally Noetherian (see [START_REF] Sela | Diophantine Geometry over Groups. VII. The elementary theory of a hyperbolic group[END_REF] and [START_REF] Reinfeldt | Makanin-razborov diagrams for hyperbolic groups[END_REF]). By contrast, acylindrically hyperbolic groups are not equationally Noetherian in general: given a group H that is not equationally Noetherian, the free product H * Z is acylindrically hyperbolic and is not equationally Noetherian (since the equational Noetherian property is inherited by subgroups). We prove the following variant of Theorem 1.2. Theorem 1.3. Let G be a nitely generated group, and let H be a subgroup of G. If H is acylindrically hyperbolic, equationally Noetherian and existentially closed in G, then G is acylindrically hyperbolic. Remark 1.4. Note that, in Theorems 1.2 and 1.3, the subgroup H is not assumed to be nitely generated.

These results follow from the well-known Rips machine, adapted by Groves and Hull to acylindrically hyperbolic groups in [START_REF] Groves | Homomorphisms to acylindrically hyperbolic groups i: Equationally noetherian groups and families[END_REF].

Note that Theorems 1.2 and 1.3 do not remain true if one removes the assumption that the subgroup H is existentially closed. Indeed, acylindrical hyperbolicity is not inherited by overgroups in general. As an example, H = F 2 is acylindrically hyperbolic, but the group G = F 2 × Z is not acylindrically hyperbolic. In this example, one easily sees that H = F 2 is not existentially closed in G: let h 1 and h 2 be two non-commuting elements of H. The only element of H that commutes both with h 1 and h 2 is the trivial element. Hence, the following system of equations and inequations has a solution in G but not in

H: ([x, h 1 ] = 1) ∧ ([x, h 2 ] = 1) ∧ (x = 1).
In addition, we construct in Section 5 an elementary embedding of the free group F 2 into a (necessarily not nitely generated) group that is not acylindrically hyperbolic, which shows that the property that G is nitely generated cannot be omitted from Theorem 1.3, even if we replace the condition that H is existentially closed with the stronger condition that H is elementarily embedded into G.

One says that two groups G and H are existentially equivalent if they satisfy the same existential rst-order sentences. In general, acylindrical hyperbolicity is not preserved under existential equivalence, even among nitely presented groups. For instance, H = F 2 × Z is existentially closed in G = H * Z as a consequence of Lemma 3.1 below (since there exists a discriminating sequence of retractions (ϕ n : G → H) n∈N ). In particular, H and G are existentially equivalent. But G is acylindrically hyperbolic and H is not acylindrically hyperbolic. However, we deduce the following result from Theorem 1.2 (see Section 4 for details).

Corollary 1.5. Let G be a nitely presented group. If G is existentially equivalent to the mapping class group Mod(Σ g ) of a closed orientable surface Σ g of genus g ≥ 4, then there is an embedding

i : Mod(Σ g ) → G such that i(Mod(Σ g )) is existentially closed in G.
Therefore, G is acylindrically hyperbolic (by Theorem 1.2). The same result is true if one replaces Mod(Σ g ) with one of the following groups: Out(F n ) and Aut(F n ) for n ≥ 2, or the Higman group.

The acylindrical hyperbolicity of Mod(Σ g ) was proved in [START_REF] Bowditch | Tight geodesics in the curve complex[END_REF]. For Out(F n ), Aut(F n ) and the Higman group, acylindrical hyperbolicity was proved respectively in [START_REF] Bestvina | A hyperbolic Out(Fn)-complex[END_REF], [START_REF] Genevois | Acylindrical hyperbolicity of automorphism groups of innitely-ended groups[END_REF] and [START_REF] Martin | On the cubical geometry of Higman's group[END_REF]. Recall that the Higman group was constructed in [START_REF] Higman | A nitely generated innite simple group[END_REF] as the rst example of a nitely presented innite group without non-trivial nite quotients. It is given by the following presentation:

H = a 1 , a 2 , a 3 , a 4 | a i a i+1 a -1 i = a 2 i+1 , i ∈ Z/4Z .
In [START_REF] Groves | Homomorphisms to acylindrically hyperbolic groups i: Equationally noetherian groups and families[END_REF], in the paragraph below Denition 3.1, Groves announced that the mapping class group of a surface of nite type is equationally Noetherian. By Theorem 1.3, this result implies that one can replace `nitely presented' with `nitely generated' in the previous statement.

Corollary 1.6. Let G be a nitely generated group. If G is existentially equivalent to Mod(Σ g ) for g ≥ 4, then G is acylindrically hyperbolic.

Last, it is worth mentioning a result proved recently by Bogopolski in [START_REF] Bogopolski | Equations in acylindrically hyperbolic groups and verbal closedness[END_REF]. A subgroup H of a group G is said to be verbally closed if, for any w(x 1 , . . . , x n ) ∈ F n and h ∈ H, the equation w(x 1 , . . . , x n ) = h has a solution in H if and only if it has a solution in G. Bogopolski proved the following theorem: let G be a nitely presented group, and let H be a nitely generated, acylindrically hyperbolic subgroup of G. Suppose in addition that H has no non-trivial normal nite subgroup. Then H is verbally closed in G if and only if H is a retract of G. Moreover, if H is equationally Noetherian, one can simply assume that G is nitely generated. Of course, this result does not imply that G is acylindrically hyperbolic, since for instance F 2 is a retract of F 2 × Z, which is not acylindrically hyperbolic.
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Acylindrically hyperbolic groups

The following denition was introduced by Bowditch in [START_REF] Bowditch | Tight geodesics in the curve complex[END_REF]. Denition 2.1. An action of a group G by isometries on a metric space (X, d) is called acylindrical if for every ε ≥ 0 there exist N > 0 and R > 0 such that for every two points x, y ∈ X satisfying d(x, y) ≥ R, there are at most N elements g ∈ G such that d(x, gx) ≤ ε and d(y, gy) ≤ ε.

We recall the following classical denitions. Denition 2.2. Let (X, d) be a δ-hyperbolic metric space, and let G be a group acting on X by isometries. An element g ∈ G is called elliptic if some (equivalently, any) orbit of g is bounded, and loxodromic if the map Z → X : n → g n x is a quasi-isometry for some (equivalently, any) x ∈ X. Every loxodromic element g ∈ G has exactly two limit points g +∞ and g -∞ on the Gromov boundary ∂ ∞ X. Two loxodromic elements g, h ∈ G are called independent if the sets {g ±∞ } and {h ±∞ } are disjoint.

If a group G admits an acylindrical action on a δ-hyperbolic metric space, then G satises one of the following three conditions (see [START_REF] Osin | Acylindrically hyperbolic groups[END_REF]Theorem 1.1]).

(1) G is elliptic, that is every element g ∈ G is elliptic.

(2) G is virtually cyclic and contains a loxodromic element.

(3) G contains two (equivalently, innitely many) pairwise independent loxodromic elements. In this case, one says that G is acylindrically hyperbolic. In the rst two cases, one says that the action of G is elementary. Note that every group has an elementary acylindrical action on a hyperbolic space, namely the trivial action on a point. For this reason, the third condition is the only one of interest; in this case, one says that the action of G is non-elementary.

Proof of Theorems 1.2 and 1.3

Given two groups G and H, a sequence of morphisms (ϕ n ) n∈N ∈ Hom(G, H) N is said to be discriminating if the following condition holds: for every nite subset B ⊂ G \ {1}, there exists an integer n B such that ker(ϕ n ) ∩ B = ∅ for every n ≥ n B . Lemma 3.1. Let G be a nitely presented group, and let H be a subgroup of G. The following assertions are equivalent.

(1) H is existentially closed in G.

(2) For every nitely generated subgroup H ⊂ H, there exists a discriminating sequence

(ϕ n : G H) n∈N such that ϕ n|H = id H .
Proof. We rst prove that (2) implies [START_REF] André | Hyperbolicity and cubulability are preserved under elementary equivalence[END_REF]. Let θ(x, h) be a quantier-free formula with constants from H. Let H be the subgroup of H generated by h. By assumption, there exists a discriminating sequence (ϕ n : G H) n∈N such that ϕ n|H = id H . Suppose that there exists a tuple g of elements of G such that θ(g, h) holds in G. For n suciently large, θ(ϕ n (g), h) holds in H. Now, let us assume that H is existentially closed in G. Let s | R(s) = 1 be a nite presentation of G. Let H be a nitely generated subgroup of H and let {h 1 , . . . , h k } be a generating set of H . We denote by B n = {b 1 , . . . , b N (n) } ⊂ G the ball of radius n for the metric induced by s, with b 1 = 1. Every element h i (resp. b j ) can be written as a word w i (s) (resp. v j (s)). The following system of equations and inequations over H has a solution in G, namely x = s:

(R(x) = 1) ∧ k i=1 h i = w i (x) ∧   N (n) j=2 b j (x) = 1   .
Since H is existentially closed in G, this system has a solution t in H as well. The morphism ϕ n : G → H : s → t is well-dened, does not kill any element of B n \ {1}, and maps

h i = w i (s) to h i = w i (t).
The following lemma can be proved in a similar way. Indeed, given a presentation of G of the form s | R(s) = 1 , with R possibly innite, the equational Noetherian property satised by H has the following consequence: there exists a nite subset of relations R 0 ⊂ R such that Hom(G, H) is in one-to-one correspondence with the set of solutions in H of the system of equations R 0 (x) = 1.

Lemma 3.2. Let G be a nitely generated group, and let H be an equationally Noetherian subgroup of G. The following assertions are equivalent.

(1) H is existentially closed in G.

(2) For every nitely generated subgroup H ⊂ H, there exists a discriminating sequence H) n∈N such that ϕ n|H = id H . We are ready to prove Theorems 1.2 and 1.3. These results follow from Groves' and Hull's paper [START_REF] Groves | Homomorphisms to acylindrically hyperbolic groups i: Equationally noetherian groups and families[END_REF], in which the authors generalised the well-known Rips machine to acylindrically hyperbolic groups.

(ϕ n : G
Proof of Theorem 1.2 and Theorem 1.3. Let G and H be two groups as in Theorem 1.2 or Theorem 1.3. Let S be a nite generating set of G. Let (X, d) be a δ-hyperbolic metric space on which the group H acts acylindrically and non-elementarily. Let h 1 and h 2 be two independent loxodromic elements of H. By Lemma 3.1 or Lemma 3.2, there exists a discriminating sequence (ϕ n : G H) n∈N such that ϕ n (h 1 ) = h 1 and ϕ n (h 2 ) = h 2 . Let ω be a non-principal ultralter. We dene the scaling factor of the homomorphism ϕ n as follows:

λ n = inf x∈X max s∈S d(x, ϕ n (s)x).
We denote by λ the ω-limit of the sequence (λ n ) n∈N , and distinguish two cases.

First case. Suppose that λ = +∞. Then the asymptotic cone

(X ω , d ω ) = n∈N (X, d/λ n ) /ω
is a real tree, and G acts on this tree non-trivially by isometries (see for instance [9, Theorem 4.4] for details). Let T be a minimal and G-invariant subtree of X ω . The action of G on this tree can be analysed using the Rips machine, adapted by Groves and Hull in [START_REF] Groves | Homomorphisms to acylindrically hyperbolic groups i: Equationally noetherian groups and families[END_REF] to the setting of acylindrically hyperbolic groups. The Rips machine converts the action of G on T into a non-trivial splitting G = A * C B or G = A * C where C is a virtually abelian group (for details, we refer the reader to [9, Theorem 4.18, Proposition 4.19 and Lemma 5.1]). If C is nite, then G is acylindrically hyperbolic (see for instance [13, Corollaries 2.2 and 2.3]). Now, assume that C is innite. By [9, Lemma 5.6], there exists a unique maximal virtually abelian group M containing C. This group is dened as follows:

M = {g ∈ G | g, C is virtually abelian} .
Moreover, by [9, Lemma 5.7], the group M has the following key property: for every g ∈ G \ M , the intersection M ∩ gM g -1 is nite. As a consequence, there exists an element g ∈ G such that the intersection of gCg -1 and C is nite (one says that C is weakly malnormal in G); otherwise, M ∩ gM g -1 is innite for every element g ∈ G, which implies that G coincides with M and thus is virtually abelian, contradicting the fact that G contains the acylindrically hyperbolic group H. Since C is weakly malnormal, G is acylindrically hyperbolic by [13, Corollaries 2.2 and 2.3].

Second case. Suppose that λ is nite. If H were hyperbolic, one could prove that ϕ n is injective ω-almost surely and conclude that G = H (see Remark 3.3 below). But this is not necessarily the case here. However, the sequence (ϕ n ) n∈N gives rise to an action of G on a δ-hyperbolic space, namely the ultraproduct (X ω , d ω ) = n∈N (X, d) /ω without rescaling the metric. As observed in [START_REF] Groves | Homomorphisms to acylindrically hyperbolic groups i: Equationally noetherian groups and families[END_REF], Proposition 6.1, this action is acylindrical: let ε > 0, let R and N be two constants given by the acylindrical action of G on X, and let

(x n ) n∈N , (y n ) n∈N be two sequences of points of X such that d ω (x ω , y ω ) ≥ R. We claim that the set E = {g ∈ G | d ω (
x ω , gx ω ) ≤ ε and d ω (y ω , gy ω ) ≤ ε} has at most N elements. Indeed, the inequalities d ω (x ω , gx ω ) ≤ ε and d ω (y ω , gy ω ) ≤ ε imply d(x n , ϕ n (g)x n ) ≤ ε and d(y n , ϕ n (g)y n ) ≤ ε ω-almost surely, and it follows that ϕ n (E) has at most N elements ω-almost surely; since (ϕ n ) n∈N is discriminating, one has |E| ≤ N . Hence, the action of G on the δ-hyperbolic space (X ω , d ω ) is acylindrical. Of course, this result is interesting only if we can prove that this action is non-elementary. This is indeed the case. Recall that there exist two independent loxodromic elements h 1 and h 2 of H such that ϕ n (h 1 ) = h 1 and ϕ n (h 2 ) = h 2 for every integer n. Therefore, the action of h 1 , h 2 ⊂ G on X ω is non-elementary. Hence, the action of G on X ω is non-elementary, and G is acylindrically hyperbolic. Remark 3.3. The group H being acylindrically hyperbolic, there exists a generating set S of H such that the Cayley graph Γ(H, S) is hyperbolic and such that the natural action of H on Γ(H, S) is non-elementary and acylindrical, by [START_REF] Osin | Acylindrically hyperbolic groups[END_REF]Theorem 1.2]. If this generating set S can be chosen nite (in other words, if H is a hyperbolic group), then any nondivergent discriminating sequence (ϕ n : G → H) n∈N is composed of injections ω-almost surely, since ϕ n is completely determined by the image of a nite generating set of G and since the graph Γ(H, S) is locally nite.

Applications

In this section, we prove Corollary 1.5. Recall that a group G is called co-Hopan if any injective morphism G → G is bijective. In [START_REF] Houcine | Homogeneity and prime models in torsion-free hyperbolic groups[END_REF], Ould Houcine strengthened this denition, as follows. Denition 4.1. A group G is said to be strongly co-Hopan if there exists a nite subset S ⊂ G \ {1} such that, for any endomorphism φ of G, if ker(φ) ∩ S = ∅ then φ is an automorphism. Lemma 4.2. Let G and H be two nitely presented groups. Suppose that these groups are existentially equivalent. If H is strongly co-Hopan, then there exists an embedding i : H → G such that i(H) is existentially closed in G.

Remark 4.3. This lemma remains true if G is nitely generated and H is equationally Noetherian, or if H is nitely generated and G is equationally Noetherian.

Proof. Since G and H are existentially equivalent, and both are nitely presented, there exist two discriminating sequence (ϕ n : G → H) n∈N and (ψ n : H → G) n∈N (one can prove this fact exactly as in the proof of Lemma 3.1). Let S be the nite subset of H \ {1} given by the denition of the strongly co-Hopan property. There exists an integer n 0 such that ker(ψ n 0 ) ∩ S = ∅. Then, for n large enough, ker(ϕ n • ψ n 0 ) ∩ S = ∅. As a consequence, ϕ n • ψ n 0 is an automorphism of H. In particular, i := ψ n 0 is injective. In addition, there exists a sequence (σ n ) n∈N ∈ Aut(H) N such that σ n • ϕ n • i is the identity of H for every integer n large enough. If follows that (i

• σ n • ϕ n : G → i(H)) n∈N is a discriminating sequence of retractions. By Lemma 3.1, i(H) is existentially closed in G.
In order to prove Corollary 1.5, it remains to explain why Mod(Σ g ), Aut(F n ), Out(F n ) and the Higman group are strongly co-Hopan. This follows from the following facts.

• For g ≥ 4, any non-trivial endomorphism of Mod(Σ g ) is an automorphism (see [START_REF] Aramayona | Homomorphisms between mapping class groups[END_REF], Corollary 1.4). • For n ≥ 2, any endomorphism of Aut(F n ) that is not an automorphism has nite image (see [START_REF] Khramtsov | Endomorphisms of automorphism groups of free groups[END_REF]). • Any non-trivial endomorphism of the Higman group is an automorphism (see [START_REF] Martin | On the cubical geometry of Higman's group[END_REF], Theorem B).

• In [START_REF] Bridson | Automorphisms of automorphism groups of free groups[END_REF], Bridson and Vogtmann proved that Out(Out(F n )) is trivial for n ≥ 3. Their proof contains the fact, non-explicitly stated, that Out(F n ) is strongly co-Hopan for n ≥ 3. We sketch a proof of this result below. Note that Out(F 2 ) is isomorphic to GL 2 (Z), and one can prove that this group is strongly co-Hopan; however, in this particular case, Out(F 2 ) is virtually free, thus hyperbolic, and it follows from [START_REF] André | Hyperbolicity and cubulability are preserved under elementary equivalence[END_REF] that any nitely generated group with the same ∀∃-theory as Out(F 2 ) is hyperbolic.

Theorem 4.4 (Bridson and Vogtmann). The group Out(F n ) is strongly co-Hopan for n ≥ 3.

Proof. Let {x 1 , . . . , x n } be an ordered generating set of F n . For i ∈ 1, n , let e i be the automorphism of F n that sends x i to x -1 i and xes x j for j = i. For i ∈ 1, n -1 , let τ i be the automorphism that interchanges x i and x i+1 while leaving x j xed for j / ∈ {i, i + 1}.

Let W n (Z/2Z) n S n be the nite subgroup of Out(F n ) generated by e i for 1 ≤ i ≤ n and τ i for 1 ≤ i ≤ n -1. The group Out(F n ) is generated by W n together with the involution r that sends x 1 to x 1 x -1 2 and x 2 to x -1 2 while leaving

x i xed for i > 2. Let G be the nite subgroup of Out(F n ) generated by {r} ∪ {τ 1 } ∪ {e i , τ i | 3 ≤ i ≤ n}. The group Out(F n ) is generated by W n ∪ G. The automorphism u = re -1 2 maps x 1 to x 1 x 2 and xes x i if i > 2. It follows that u has innite order. Dene S = (W n ∪ G ∪ {u m! }) \ {1}
where m denotes the maximal order of a nite subgroup of Out(F n ) (note that this integer exists since every nite subgroup of Out(F n ) is isomorphic to the isometry group of a graph whose fundamental group is F n ).

Let φ be an automorphism of Out(F n ) such that ker(φ) ∩ S = ∅, and let us prove that φ is bijective. The subgroups of Out(F n ) that are isomorphic to W n are the stabilizers of the roses in outer space. Since the action of Out(F n ) is transitive on roses, each subgroup of Out(F n ) isomorphic to W n is conjugate to W n . As a consequence, φ(W n ) is conjugate to W n . Up to composing φ by an inner automorphism of Out(F n ), one can assume that φ(W n ) = W n . A calculation shows that the center of W n has order 2; let z be its non-trivial element. In [START_REF] Bridson | Automorphisms of automorphism groups of free groups[END_REF], the authors prove by studying the action of φ(G) on the spine of outer space that φ(G) = G or φ(G) = G z . Up to composing φ with ad(z), one can assume that φ(G) = G. Hence, one has φ(W n ) = W n and φ(G) = G. Since W n and G are nite, there is a non-zero integer k such that φ k coincides with the identity on W n and on G. Since Out(F n ) is generated by W n ∪ G, φ k is the identity. Therefore, φ is an automorphism.

Counter-example among countable groups

If G is any ultrapower of the free group F 2 with respect to a non-principal ultralter, then the centralizer of every element of G is uncountable. Indeed, (g n ) n∈N ∈ F N 2 commutes with (g kn n ) n∈N for all sequences of integers (k n ) n∈N . This implies that G is not acylindrically hyperbolic. Indeed, in an acylindrically hyperbolic group, every loxodromic element has virtually cyclic (and therefore countable) centralizer (see [7, Lemma 6.5 and Corollary 6.6]). Since G is elementarily equivalent to F 2 by o± theorem, this construction shows that acylindrical hyperbolicity is not preserved under elementary equivalence in general.

In fact, as observed by Osin, it is also not enough to restrict to countable groups. Indeed, let G 0 = F 2 and let g 1 , g 2 , . . . be an enumeration of the non-trivial elements of G 0 . Consider the following set of rst-order formulas: t 1 (x) = {[x, g 1 ] = 1, x = 1, x = g 1 , x = g 2 1 , . . .}.

Since for every nite subset t 1 (x) of t 1 (x) there exists an element h ∈ G 0 such that G 0 |= t 1 (h), by the compactness theorem there exists an elementary extension G 1 0 of G 0 and an element h 1 ∈ G 1 0 such that G 1 0 |= t 1 (h 1 ), i.e. h 1 commutes with g 1 but does not belong to g 1 . Iterating this operation, we get a chain of elementary extensions

G 0 ≺ G 1 0 ≺ G 2 0 ≺ • • •
such that for every g i ∈ G 0 , there exists an element h i ∈ G i 0 that commutes with g i but that does not belong to g i . Dene G 1 = ∪ i∈N G i 0 . This group is an elementary extension of G 0 . Continuing this process, we construct G 0 ≺ G 1 ≺ G 2 ≺ • • • and take the union G = ∪ i∈N G i . Then G is a torsion-free, countable, elementary extension of G 0 that has no element with cyclic centralizer. Such a group cannot be acylindrically hyperbolic since the centralizer of a loxodromic element in a torsion-free acylindrically hyperbolic group is cyclic.

Thus to make Question 1.1 non-trivial, we have to ask it for nitely generated groups.