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a b s t r a c t 

We consider estimating the covariance matrix from two data sets, one whose covariance matrix R 1 is the 

sought one and another set of samples whose covariance matrix R 2 slightly differs from the sought one, 

due e.g. to different measurement configurations. We assume however that the two matrices are rather 

close, which we formulate by assuming that R 

1 / 2 
1 

R 

−1 
2 

R 

1 / 2 
1 

| R 1 follows a Wishart distribution around the 

identity matrix. It turns out that this assumption results in two data sets with different marginal distri- 

butions, hence the problem becomes that of covariance matrix estimation from two data sets which are 

distribution-mismatched. The maximum likelihood estimator (MLE) is derived and is shown to depend 

on the values of the number of samples in each set. We show that it involves whitening of one data set 

by the other one, shrinkage of eigenvalues and colorization, at least when one data set contains more 

samples than the size p of the observation space. When both data sets have less than p samples but the 

total number is larger than p , the MLE again entails eigenvalues shrinkage but this time after a projection 

operation. Simulation results compare the new estimator to state of the art techniques.
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. Problem statement 

Analysis or processing of multichannel data most often relies on

he covariance matrix, which is a fundamental tool e.g., for princi-

al component analysis, spectral analysis, adaptive filtering, detec-

ion, direction of arrival estimation among others [1–3] . In practical

pplications, the p × p covariance matrix R needs to be estimated

rom a finite number n of samples. When the latter are indepen-

ent and Gaussian distributed, the maximum likelihood estimator

f R is n −1 S where X is the p × n data matrix and S = XX 

T is the

ample covariance matrix (SCM) [1] . However, in low sample sup-

ort or when deviation from the Gaussian assumption is at hand,

he SCM tends to behave poorly. In particular it was observed that

he sample covariance matrix is usually less well-conditioned than

he true covariance matrix, and therefore considerable effort has

een dedicated to regularizing it with a view to improve its per-

ormance. 

One of the most important approach in this respect is due to

tein [4–6] who, instead of maximizing the likelihood function,

dvocated to minimize a meaningful loss function within a given

lass of estimators. Stein hence introduced the concept of admissi-

le estimation and minimax estimators under the so-called Stein’s

oss. He showed that the SCM-based estimator is not minimax and
E-mail address: olivier.besson@isae-supaero.fr 
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erived minimax estimators in two important classes, namely es-

imators of the form 

ˆ R = GDG 

T where D is a diagonal matrix and

 is the Cholesky factor of S , or of the form 

ˆ R = U diag 
(
ϕ(λ) 

)
U 

T 

here U diag( λ) U 

T is the eigenvalue decomposition of S and ϕ( λ)

s a non-linear function of λ. This seminal work of Stein gave rise

o a great number of studies, see for instance [7–13] and refer-

nces therein. A second class of robust estimates is based on lin-

ar shrinkage of the SCM to a target matrix (an approach which

an be interpreted as an empirical Bayes technique), i.e., esti-

ates of the form 

ˆ R = αR t + βS where R t = I is the most widely

pread choice, see e.g., [14–20] . Note that these techniques ap-

lied with R t = I achieve an affine transformation of the eigen-

alues of S , while retaining the eigenvectors, and therefore bear

esemblance with Stein’s method, although the selection of α, β
ay not be driven by the same principle. Robustness to a pos-

ibly non Gaussian distribution has also been a topic of consid-

rable interest and many papers have focused on robust estima-

ion for elliptically distributed data, see e.g., [21–30] and references

herein. 

Most of the above cited works deal with estimation of a co-

ariance matrix from a single data set. In this paper, we consider a

ituation where two data sets X 1 and X 2 are available, with respec-

ive covariance matrices R 1 and R 2 . This situation typically arises

n radar applications when one wishes to detect a target buried in

lutter with unknown statistics [31,32] . In order to infer the lat-

er, training samples are generally used, which hopefully share the

https://doi.org/10.1016/j.sigpro.2019.107285
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same statistics as the clutter in the cell under test (CUT). However,

it has been evidenced that clutter is most often heterogeneous

[31] , with a discrepancy compared to the CUT that may grow with

the distance to the CUT [33] . Therefore, one is led to use some

clustering that separates training samples, either based on their

proximity to the CUT or by means of some statistical criterion,

such as the power selected training [34] . The samples so selected

are deemed to be representative of the clutter in the CUT while

others are less reliable, which corresponds to the situation consid-

ered herein. A second example is in the field of synthetic aper-

ture radar in the case where a scene is imaged on two consecutive

days, with possible changes in between [35] . Finally, in hyperspec-

tral imagery, the problem of target or anomaly detection leads to

a very similar framework. Indeed, the background in a pixel under

test has to be estimated from the local pixels around and pixels lo-

cated further apart [36] . In the present paper, we assume that R 2 

is close to R 1 , the covariance matrix we wish to estimate. Since R 2 

differs from but is close to R 1 we investigate using both X 1 and

X 2 to estimate R 1 . The reason for using also X 2 is that despite its

covariance matrix is not R 1 , it is close to. Additionally, one might

face situations where the number of samples in X 1 is very small.

This paper constitutes a first approach to this specific problem and

we focus herein on the most natural approach, namely maximum

likelihood estimation. The objective is to figure out the pros and

cons of the latter and the conditions under which it is an accu-

rate estimator. The paper is organized as follows. In section 2 we

formulate the statistical assumptions: more precisely, we assume

that R 

1 / 2 
1 

R 

−1 
2 

R 

1 / 2 
1 

| R 1 is a random matrix with a Wishart distribu-

tion around the identity matrix, and we derive the joint distri-

bution of ( X 1 , X 2 ). Section 3 is devoted to the derivation of the

maximum likelihood estimator of R 1 from ( X 1 , X 2 ), taking into ac-

count the possible configurations regarding the number of samples

in each data set. Numerical simulations illustrate the performance

of the MLE and compare it with existing alternatives in section 4 .

Conclusions and possible extensions of the present work are drawn

in section 5 . 

2. Data model 

Let us assume that we have two sets of measurements

X 1 ( p × n 1 ) and X 2 ( p × n 2 ) which are distributed according to

X 1 
d = N ( 0 , R 1 , I ) and X 2 

d = N ( 0 , R 2 , I ) where N ( 0 , �, �) de-

notes the matrix-variate normal distribution whose density is

(2 π) −pn / 2 | �| −n/ 2 | �| −p/ 2 
etr {− 1 

2 X 

T �−1 X�−1 } with |.| the determi-

nant and etr{.} the exponential of the trace of a matrix. Note

that we consider real-valued data here whereas in radar appli-

cations it is customary to consider complex-valued signals. In

Appendix A we show how the results below can be readily ex-

tended to the complex case. Our goal in this paper is to esti-

mate R 1 , using both X 1 and X 2 even if R 1 � = R 2 . However we as-

sume that the two matrices are close to each other. In order to

define a model that can reflect the proximity between R 1 and

R 2 , we note that the natural distance between them is given by

d 2 (R 1 , R 2 ) = 

∑ p 

k =1 
log 

2 λk (G 

T 
1 R 

−1 
2 

G 1 ) [37,38] where G 1 is a square-

root of R 1 , i.e., R 1 = G 1 G 

T 
1 

and λk (G 

T 
1 

R 

−1 
2 

G 1 ) stands for the k th

eigenvalue of G 

T 
1 

R 

−1 
2 

G 1 . This matrix is pivotal in adaptive detec-

tion problems also. More precisely, in the case of a covariance mis-

match between the training samples and the data under test, it is

shown in [39] that the performance of the well-known adaptive

matched filter depends essentially on this matrix. Therefore, it be-

comes natural to encapsulate the difference between R 1 and R 2 

through the matrix W = G 

T 
1 

R 

−1 
2 

G 1 and its proximity to the iden-

tity matrix. There are of course different ways to translate this

constraint in the model. For instance a frequentist approach may

be advocated where the joint probability density function of ( X ,
1 
 2 ) would be maximized under the constraint that the distance

etween W and I is smaller than some value. Alternatively, and

his is what we elect here, one can resort to an empirical Bayes

pproach where the random matrix W follows some prior distri-

ution rather concentrated around I . For mathematical tractability,

e choose a conjugate prior for W and we assume that W fol-

ows a Wishart distribution with ν degrees of freedom and param-

ter matrix μ−1 I , i.e., W 

d = W p 

(
ν, μ−1 I 

)
. Of course, this is a rather

trong assumption whose validity would be difficult to check, e.g.,

n real data. However, it is in accordance with the mere knowl-

dge we have about the relation between R 1 and R 2 , and it allows

or tractable derivations. 

Using the fact that X 1 | R 1 and X 2 | R 2 are independent and Gaus-

ian distributed with respective covariance matrices R 1 and R 2 ,

nd since R 2 = G 1 W 

−1 G 

T 
1 
, we thus assume the following stochastic

odel: 

p(X 1 , X 2 | R 1 , W ) = (2 π) −p(n 1 + n 2 ) / 2 | R 1 | −n 1 / 2 
∣∣W 

−1 R 1 

∣∣−n 2 / 2 

×etr 

{ 

−1 

2 

X 

T 
1 R 

−1 
1 X 1 − 1 

2 

X 

T 
2 G 

−T 
1 WG 

−1 
1 X 2 

} 

(1a)

p(W ) = 

μνp/ 2 

2 

νp/ 2 �p (ν/ 2) 
| W | (ν−p−1) / 2 etr 

{ 

−1 

2 

μW 

} 

(1b)

Note that E 

{
W 

−1 
}

= (ν − p − 1) −1 μI so that E { R 2 } =
 

{
G 1 W 

−1 G 

T 
1 

}
= (ν − p − 1) −1 μR 1 : therefore, for E { R 2 } to be equal

o R 1 , one must select μ = ν − p − 1 . Observe also that W comes

loser to I as ν grows large. Indeed, E { W } = ν(ν − p − 1) −1 I and

 

{
( W − E { W } ) 2 } = pν(ν − p − 1) 2 I which goes to zero as ν → ∞

40] . 

The marginal distribution of ( X 1 , X 2 ) is obtained by integrating

1) with respect to W , which results in 

p(X 1 , X 2 | R 1 ) = 

∫ 
W > 0 

p(X 1 , X 2 | R 1 , W ) p(W ) dW 

= 

(2 π) −p(n 1 + n 2 ) / 2 μνp/ 2 

2 

νp/ 2 �p (ν/ 2) 
| R 1 | −(n 1 + n 2 ) / 2 etr 

{ 

−1 

2 

X 

T 
1 R 

−1 
1 X 1 

} 

×
∫ 

W > 0 
| W | (ν+ n 2 −p−1) / 2 etr 

{ 

−1 

2 

W 

[
μI + G 

−1 
1 X 2 X 

T 
2 G 

−T 
1 

]} 

dW 

= 

(2 π) −p(n 1 + n 2 ) / 2 μνp/ 2 

2 

νp/ 2 �p (ν/ 2) 
2 

(ν+ n 2 ) p/ 2 �p ((ν + n 2 ) / 2) 

× | R 1 | −(n 1 + n 2 ) / 2 ∣∣μI + G 

−1 
1 X 2 X 

T 
2 G 

−T 
1 

∣∣−(ν+ n 2 ) / 2 
etr 

{ 

−1 

2 

X 

T 
1 R 

−1 
1 X 1 

} 

= (2 π) −pn 1 / 2 | R 1 | −n 1 / 2 etr 

{ 

−1 

2 

X 

T 
1 R 

−1 
1 X 1 

} 

× π−pn 2 / 2 �p ((ν + n 2 ) / 2) 

�p (ν/ 2) 
| μR 1 | −n 2 / 2 

∣∣I + X 

T 
2 [ μR 1 ] 

−1 X 2 

∣∣−(ν+ n 2 ) / 2 

(2)

n order to obtain the third equality, we made use of the fact that,

f S 
d = W p ( ν, �) , 

 

S > 0 

p(S ) dS = 1 ⇒ 

∫ 
S > 0 

| S | (ν−p−1) / 2 etr 

{ 

−1 

2 

S�−1 
} 

dS 

= 2 

νp/ 2 �p (ν/ 2) | �| ν/ 2 
(3)

ote that p ( X 1 , X 2 | R 1 ) in (2) can be factored as

p(X 1 , X 2 | R 1 ) = f 1 (X 1 , R 1 ) × f 2 (X 2 , R 1 ) which shows that X 1

nd X 2 are marginally independent and that p(X 1 , X 2 | R 1 ) =
p(X 1 | R 1 ) p(X 2 | R 1 ) with p(X 1 | R 1 ) ∝ etr 

{
− 1 

2 X 

T 
1 R 

−1 
1 

X 1 

}
and

p(X 2 | R 1 ) ∝ 

∣∣I + X 

T 
2 [ μR 1 ] 

−1 X 2 

∣∣−(ν+ n 2 ) / 2 
. Due to the model adopted

or the random matrix W = G 

T 
1 

R 

−1 
2 

G 1 , X 2 follows a matrix variate

tudent distribution [41] . Therefore, the fact that R 2 � = R 1 results

ere in to two data sets with different distributions: one set
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 1 is Gaussian distributed with covariance matrix R 1 while the

ncertainty in R 2 leads to a Student distribution for X 2 . This is a

ather original situation where one has to carry covariance matrix

stimation from two data sets which are mismatched in their dis-

ributions. This peculiarity will result in new schemes compared

o the conventional case of a single set with given distribution, as

etailed now. 

. Maximum likelihood estimation 

In this section we address estimation of R 1 from ( X 1 , X 2 ) and

e focus on the most natural estimator, i.e., the maximum likeli-

ood estimator. From (2) , the log-likelihood function is, up to an

dditive and constant term 

f (R 1 ) = − n 1 + n 2 
2 

log | R 1 | − ν + n 2 
2 

log 
∣∣I + μ−1 R −1 

1 
S 2 

∣∣ − 1 

2 
Tr 

{
R −1 

1 
S 1 

}
= 

ν − n 1 
2 

log | R 1 | − ν + n 2 
2 

log 
∣∣R 1 + μ−1 S 2 

∣∣ − 1 

2 
Tr 

{
R −1 

1 
S 1 

}
(4) 

here S 1 = X 1 X 

T 
1 and S 2 = X 2 X 

T 
2 . Differentiating the previous

quation and using the fact that d | R | = | R | Tr 
{

R 

−1 dR 

}
and dR 

−1 =
R 

−1 (dR ) R 

−1 , we obtain the following equation that the ML solu-

ion should satisfy 

(ν − n 1 ) R 

−1 
1 − (ν + n 2 ) 

(
R 1 + μ−1 S 2 

)−1 + R 

−1 
1 S 1 R 

−1 
1 = 0 (5)

n order to solve (5) , we must investigate various configurations for

 n 1 , n 2 ) as the solution will depend on them. Before going to the

echnical details of each case, we give an overview of the results

btained. 

.1. Summary of results 

As is illustrated below, the expression of the maximum like-

ihood estimator depends on the respective values of n 1 and n 2 .

n the sequel three cases will be distinguished: a first situation

here n 1 < p and n 2 ≥ p , a second one which is the mirror situa-

ion, namely n 1 ≥ p and n 2 < p , and finally a third more challenging

ase where n 1 < p, n 2 < p and n 1 + n 2 ≥ p. 

In the first [respectively second] case, the ML solution is given

y (11) [resp. (21) ]: it will be shown that the estimation process

ntails whitening of X 1 [resp. X 2 ] by the inverse of the square-

oot of the sample covariance matrix of X 2 [resp. X 1 ], followed by

hrinkage of eigenvalues and finally colorization by the square-root

f the sample covariance matrix of X 2 [resp. X 1 ]. The technique of

igenvalue shrinkage is rather well known but usually applied to

he SCM of a single set: herein, due to the presence of two data

ets, this technique is applied to one data set after it has been

hitened by the second one. Interestingly enough, the ML solu-

ion can also be written as (14) [resp. (22) ], that is as a weighted

um of the SCM of each data set, where the weighting matrix is

iagonal for one set of samples, and non diagonal for the other

et. 

Finally, when n 2 < p, n 1 < p and n 1 + n 2 ≥ p, the procedure

ncludes a partitioning between the subspace spanned by the

olumns of X 2 and its orthogonal complement. In the former,

hrinkage of eigenvalues is used while, in the latter, projection of

he SCM of X 1 is retained. 

.2. Case n 1 < p and n 2 ≥ p 

We consider first the case where n 1 < p and n 2 ≥ p , i.e., n 1 is

ot large enough for S 1 to be positive definite and one needs to

se X 2 in order to estimate R 1 , even though R 2 � = R 1 . Eq. (5) can

e rewritten as 

(ν − n 1 ) R 

−1 
1 

(
R 1 +μ−1 S 2 

)
−(ν + n 2 ) I + R 

−1 
1 S 1 R 

−1 
1 

(
R 1 +μ−1 S 2 

)
= 0 

⇒ −(n 1 + n 2 ) I + (ν − n 1 ) μ
−1 R 

−1 
1 S 2 +R 

−1 
1 S 1 +μ−1 R 

−1 
1 S 1 R 

−1 
1 S 2 = 0
⇒ −(n 1 + n 2 ) R 1 S 
−1 
2 R 1 + (ν − n 1 ) μ

−1 R 1 + S 1 S 
−1 
2 R 1 + μ−1 S 1 = 0 

⇒ R 1 S 
−1 
2 R 1 −

[ 
ν − n 1 

μ(n 1 + n 2 ) 
I + 

1 

n 1 + n 2 

S 1 S 
−1 
2 

] 
R 1 

− 1 

μ(n 1 + n 2 ) 
S 1 = 0 (6) 

et S 2 = L 2 L 
T 
2 and let us define ˜ R 12 = L −1 

2 
R 1 L 

−T 
2 

and 

˜ S 1 = L −1 
2 

S 1 L 
−T 
2 

.

hen, pre-multiplying the previous equation by L −1 
2 

and post-

ultiplying it by L −T 
2 

, we obtain 

˜ 
 

2 
12 −

[ 
ν − n 1 

μ(n 1 + n 2 ) 
I + 

1 

n 1 + n 2 

˜ S 1 

] 
˜ R 12 − 1 

μ(n 1 + n 2 ) 
˜ S 1 = 0 (7) 

et w be an eigenvector of ˜ R 12 associated with eigenvalue ξ .

hen, 

2 w − ξ
[ 

ν − n 1 

μ(n 1 + n 2 ) 
I + 

1 

n 1 + n 2 

˜ S 1 

] 
w − 1 

μ(n 1 + n 2 ) 
˜ S 1 w = 0 

⇒ 

[
1 

μ(n 1 + n 2 ) 
+ 

ξ

n 1 + n 2 

]
˜ S 1 w = ξ

[ 
ξ − ν − n 1 

μ(n 1 + n 2 ) 

] 
w (8) 

hich implies that w is also an eigenvector of ˜ S 1 . Either it is as-

ociated with a zero eigenvalue (there are p − n 1 of them) and, in

his case, ξ = 

ν−n 1 
μ(n 1 + n 2 ) , or it is associated with a strictly positive

igenvalue λ and ξ satisfies the second-order polynomial equation

2 − ξ

[
ν − n 1 

μ(n 1 + n 2 ) 
+ 

λ

n 1 + n 2 

]
− λ

μ(n 1 + n 2 ) 
= 0 (9) 

he above polynomial has obviously two real-valued roots, one

eing negative, the other being positive, and thus the latter is

he eigenvalue of ˜ R 12 . To summarize, if we let L −1 
2 

X 1 = U�V 

T =
 n 1 
k =1 

σk u k v 
T 
k 

be the singular value decomposition of L −1 
2 

X 1 , we

ave 

˜ 
 12 = 

n 1 ∑ 

k =1 

ξk u k u 

T 
k + 

ν − n 1 

μ(n 1 + n 2 ) 

p ∑ 

k = n 1 +1 

u k u 

T 
k 

= 

n 1 ∑ 

k =1 

[ 
ξk −

ν − n 1 

μ(n 1 + n 2 ) 

] 
u k u 

T 
k + 

ν − n 1 

μ(n 1 + n 2 ) 
I (10) 

here ξ k is the positive root of (9) with λ substituted for σ 2 
k 

. The

LE of R 1 is thus 

 1 = 

n 1 ∑ 

k =1 

(
ξk −

ν − n 1 

μ(n 1 + n 2 ) 

)
L 2 u k u 

T 
k L 

T 
2 + 

ν − n 1 

μ(n 1 + n 2 ) 
S 2 (11)

t is instructive to study the form of this solution. The original data

 1 is first adaptively whitened by L −1 
2 

and its sample covariance

atrix is computed. The eigenvectors of the latter are retained and

he eigenvalues are modified. Then, data is re-colored by L 2 . Note

hat the technique of regularizing eigenvalues while keeping eigen-

ectors is classical in robust covariance matrix estimation. How-

ver, this technique usually applies to one set of samples. Here it

pplies to one set of samples after it has been “whitened” by the

ther set. Indeed a whitening-colorization operation is performed

re and post eigenvalues modification. Another important obser-

ation is that the transformation λ→ ξ preserves the order of the

igenvalues, an important issue in Stein’s estimation using eigen-

alue decomposition [42–44] . This can be seen by differentiating

9) with respect to λ, which gives 

∂ξ

∂λ

[
2 ξ − ν − n 1 

μ(n 1 + n 2 ) 
− λ

n 1 + n 2 

]
= 

ξ

n 1 + n 2 

+ 

1 

μ(n 1 + n 2 ) 
(12) 

ince the bracketed term on the left-hand side of the previous

quation is positive, it follows that ∂ ξ / ∂ λ> 0 and therefore the

ransformation preserves ordering of the eigenvalues. This property

ill hold true in the other cases developed below. 
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A comment is also in order regarding the behavior of the MLE

when ν grow large, i.e., when W comes closer to I . Indeed, with

μ = ν − p − 1 , one has 

lim 

ν→∞ 

ξk = 

1 + λk 

n 1 + n 2 

⇒ lim 

ν→∞ 

˜ R 12 = 

1 

n 1 + n 2 

[
˜ S 1 + I 

]
⇒ lim 

ν→∞ 

R 1 = 

1 

n 1 + n 2 

L 2 
[
L −1 

2 S 1 L 
−T 
2 + I 

]
L T 2 

= 

1 

n 1 + n 2 
[ S 1 + S 2 ] (13)

which shows that, as W comes closer to I , i.e., as R 2 comes closer

to R 1 , the MLE is simply the sample covariance matrix of the

whole data, as may be expected. 

Finally, another interpretation of the MLE can be obtained by

rewriting the MLE in an other form. Noting that the range space of

L −1 
2 

X 1 coincides with the range space of u 1 , . . . , u n 1 , it follows that

u k = L −1 
2 

X 1 ηk for some vector ηk . Therefore, (11) can be rewritten

as 

R 1 = X 1 

[ 

n 1 ∑ 

k =1 

(
ξk −

ν − n 1 

μ(n 1 + n 2 ) 

)
ηk η

T 
k 

] 

X 

T 
1 + 

ν − n 1 

μ(n 1 + n 2 ) 
S 2 

= X 1 �1 X 

T 
1 + 

ν − n 1 

μ(n 1 + n 2 ) 
X 2 X 

T 
2 (14)

Consequently, the MLE is a weighted version of the sample covari-

ance matrices of each data set. In fact, it can be shown (we omit

the details) that if a solution to (5) is sought which is of the form

(14) , then �1 is solution to the equation 

�2 
1 + 

[ 
ν − n 1 

μ(n 1 + n 2 ) 

(
X 

T 
1 S 

−1 
2 X 1 

)−1 − 1 

n 1 + n 2 

I 

] 
�1 

− ν + n 2 

μ(n 1 + n 2 ) 2 

(
X 

T 
1 S 

−1 
2 X 1 

)−1 = 0 (15)

It ensues that �1 and X 

T 
1 S 

−1 
2 

X 1 share the same eigenvectors, which

are indeed the right singular vectors v k of L −1 
2 

X 1 . Moreover, the

eigenvalues γ k of �1 satisfy 

γ 2 
k + γk 

[
(ν − n 1 ) σ

−2 
k 

μ(n 1 + n 2 ) 
− 1 

n 1 + n 2 

]
− (ν + n 2 ) σ

−2 
k 

μ(n 1 + n 2 ) 2 
= 0 (16)

To summarize, the MLE of R 1 can either be written as in

(11) where the eigenvalues ξ k are related to the eigenvalues λk of

L −1 
2 

S 1 L 
−T 
2 

by (9) , or as in (14) where �1 is given by (15) . 

3.3. Case n 2 < p and n 1 ≥ p 

We now consider a situation where n 2 < p and n 1 ≥ p under

which one has a sufficient number of “good” samples X 1 for S 1 to

be full-rank. Yet, it might be of interest to use X 2 even though its

covariance matrix R 2 � = R 1 . The derivation of the MLE follows along

the same lines as in the previous case, except that now S 2 is rank-

deficient and S 1 is full-rank. Starting from the ML Eq. (5) , on can

write 

(ν − n 1 ) R 

−1 
1 

(
R 1 + μ−1 S 2 

)
− (ν + n 2 ) I + R 

−1 
1 S 1 R 

−1 
1 

(
R 1 + μ−1 S 2 

)
= 0 

⇒ −(n 1 + n 2 ) I + (ν − n 1 ) μ
−1 R 

−1 
1 S 2 + R 

−1 
1 S 1 + μ−1 R 

−1 
1 S 1 R 

−1 
1 S 2 = 0 

⇒ −(n 1 + n 2 ) R 1 S 
−1 
1 R 1 + (ν − n 1 ) μ

−1 R 1 S 
−1 
1 S 2 + R 1 + μ−1 S 2 = 0 

⇒ R 1 S 
−1 
1 R 1 − R 1 

[
(ν − n 1 ) 

μ(n 1 + n 2 ) 
S −1 

1 S 2 + 

1 

n 1 + n 2 
I 

]
− 1 

μ(n 1 + n 2 ) 
S 2 = 0 

(17)

Let S 1 = L 1 L 
T 
1 

and let us define ˜ R 11 = L −1 
1 

R 1 L 
−T 
1 

and 

˜ S 2 = L −1 
1 

S 2 L 
−T 
1 

.

Then, taking the transpose of the previous equation, pre-

multiplying by L −1 
1 

and post-multiplying by L −T 
1 

, we obtain 

˜ R 

2 
11 −

[
(ν − n 1 ) 

μ(n 1 + n 2 ) 
˜ S 2 + 

1 

n 1 + n 2 

I 

]
˜ R 11 − 1 

μ(n 1 + n 2 ) 
˜ S 2 = 0 (18)
s before, it can be seen that ˜ R 11 and 

˜ S 2 share the same eigen-

ectors. The p − n 2 eigenvectors of ˜ S 2 associated with zero eigen-

alue will correspond to a constant eigenvalue for ˜ R 11 equal to

(n 1 + n 2 ) 
−1 . A strictly positive eigenvalue ζ of ˜ R 11 is related to its

ounterpart λ of ˜ S 2 by 

2 − ζ

[
λ(ν − n 1 ) 

μ(n 1 + n 2 ) 
+ 

1 

n 1 + n 2 

]
− λ

μ(n 1 + n 2 ) 
= 0 (19)

ow, if we let L −1 
1 

X 2 = Y�Z 

T = 

∑ n 2 
k =1 

θk y k z 
T 
k 

be the singular value

ecomposition of L −1 
1 

X 2 , we have 

˜ 
 11 = 

n 2 ∑ 

k =1 

ζk y k y 
T 
k + 

1 

n 1 + n 2 

p ∑ 

k = n 2 +1 

y k y 
T 
k 

= 

n 2 ∑ 

k =1 

(
ζk −

1 

n 1 + n 2 

)
y k y 

T 
k + 

1 

n 1 + n 2 

I (20)

here ζ k is the positive root of (19) with λ substituted for θ2 
k 

. The

LE of R 1 becomes 

 1 = 

n 2 ∑ 

k =1 

(
ζk −

1 

n 1 + n 2 

)
L 1 y k y 

T 
k L 

T 
1 + 

1 

n 1 + n 2 

S 1 (21)

gain, since the range space of L −1 
1 

X 2 is spanned by y 1 , . . . , y n 2 ,

ne has y k = L −1 
1 

X 2 χk and hence 

 1 = X 2 

[ 

n 2 ∑ 

k =1 

(
ζk −

1 

n 1 + n 2 

)
χk χ

T 
k 

] 

X 

T 
2 + 

1 

n 1 + n 2 

X 1 X 

T 
1 

= X 2 �2 X 

T 
2 + 

1 

n 1 + n 2 

X 1 X 

T 
1 (22)

ote that (22) differs from (14) in that the weighting matrix ap-

lied between X 1 and X 

T 
1 

is now diagonal while that applied be-

ween X 2 and X 

T 
2 is no longer diagonal. Furthermore, if one looks

or a solution of the form (22) then �2 is the solution to 

�2 
2 + 

[
(X 

T 
2 S 

−1 
1 

X 2 ) 
−1 

n 1 + n 2 

− (ν − n 1 ) 

μ(n 1 + n 2 ) 
I 

]
�2 

− ν + n 2 

μ(n 1 + n 2 ) 2 
(X 

T 
2 S 

−1 
1 X 2 ) 

−1 = 0 (23)

2 and X 

T 
2 S 

−1 
1 

X 2 share the same eigenvectors (actually z k ) and the

igenvalue γ k of �2 is obtained as the positive solution to 

2 
k + γk 

[
θ−2 

k 

n 1 + n 2 

− (ν − n 1 ) 

μ(n 1 + n 2 ) 

]
− θ−2 

k 
(ν + n 2 ) 

μ(n 1 + n 2 ) 2 
= 0 (24)

emark 1. When n 1 ≥ p and n 2 ≥ p , the previous techniques can

till be used, with slight variations. In this case, ˜ S 1 and 

˜ S 2 are now

ull-rank, and therefore the MLE of R 1 is given by (11) but with

he first sum extended to p eigenvectors ( ̃ S 1 has now p non-zero

igenvalues), and the second term vanishes. The ML solution is also

iven by (21) with the first term extended to p eigenvectors and

he second term vanishing. 

.4. Case n 1 < p, n 2 < p and n 1 + n 2 ≥ p

We now consider the more challenging case where neither of

he two data sets contains enough samples for their respective

ample covariance matrices to be full rank, and thus it becomes

andatory to combine both sets. This situation is a bit trickier and

equires some carefulness. Going back to (5) , the MLE of R 1 should

atisfy 

(ν − n 1 ) R 

−1 
1 − (ν + n 2 ) 

(
R 1 + μ−1 S 2 

)−1 + R 

−1 
1 S 1 R 

−1 
1 = 0 

⇒ (ν − n 1 ) R 

−1 
1 + R 

−1 
1 S 1 R 

−1 
1 
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− (ν + n 2 ) 
[ 

R 

−1 
1 − μ−1 R 

−1 
1 X 2 

(
I + μ−1 X 

T 
2 R 

−1 
1 X 2 

)−1 
X 

T 
2 R 

−1 
1 

] 
= 0 

⇒ (n 1 + n 2 ) R 1 = (ν + n 2 ) μ
−1 X 2 

(
I + μ−1 X 

T 
2 R 

−1 
1 X 2 

)−1 
X 

T 
2 + X 1 X 

T 
1 

(25) 

efore pursuing, it is worthy looking at the previous equation to

et some insight. We observe that the projection of R 1 onto the

ubspace orthogonal to X 2 will be equal to the projection of S 1 
n this same subspace. This suggests to use a decomposition that

plits data in R (X 2 ) and its orthogonal complement. To do so,

et us consider the SVD of X 2 as X 2 = CDE 

T = 

[
C a C b 

][D a 

0 

]
E 

T =

 a D a E 

T , where C is p × p , C a is p × n 2 and D a is the n 2 × n 2 di-

gonal matrix of singular values. Let us also operate a change of

oordinates and define 

= C 

T R 1 C = 

(
C 

T 
a R 1 C a C 

T 
a R 1 C b 

C 

T 
b 

R 1 C a C 

T 
b 

R 1 C b 

)
= 

(
�aa �ab 

�ba �bb 

)
(26)

ith these definitions, it is straightforward to show that

 

T 
2 

R 

−1 
1 

X 2 = ED a �
−1 
a.b 

D a E 

T where �a.b = �aa − �ab �
−1 
bb 

�ba and

hus 

 2 

(
I + μ−1 X 

T 
2 R 

−1 
1 X 2 

)−1 
X 

T 
2 = C a D a 

[
I + μ−1 D a �

−1 
a.b 

D a 

]−1 
D a C 

T 
a 

= C a 

[
D 

−2 
a + μ−1 �−1 

a.b 

]−1 
C 

T 
a (27) 

herefore, pre-multiplying (25) by C 

T and post-multiplying it by C ,

e obtain 

(n 1 + n 2 ) 

(
�aa �ab 

�ba �bb 

)
= (ν + n 2 ) μ

−1 

([
D 

−2 
a + μ−1 �−1 

a.b 

]−1 
0 

0 0 

)

+ 

(
C 

T 
a S 1 C a C 

T 
a S 1 C b 

C 

T 
b 

S 1 C a C 

T 
b 

S 1 C b 

)
(28) 

hich immediately implies that 

(n 1 + n 2 ) �ba = C 

T 
b S 1 C a 

(n 1 + n 2 ) �bb = C 

T 
b S 1 C b (29) 

his corroborates the comments we made after Eq. (25) since one

as 

(n 1 + n 2 ) C b �bb C 

T 
b = (n 1 + n 2 ) C b C 

T 
b R 1 C b C 

T 
b = P 

⊥ 
X 2 

R 1 P 

⊥ 
X 2 

= C b C 

T 
b S 1 C b C 

T 
b = P 

⊥ 
X 2 

S 1 P 

⊥ 
X 2 

(30) 

t now remains to find �aa or equivalently �a.b . Towards this end,

ote that 

(n 1 + n 2 ) �aa = (ν + n 2 ) μ
−1 

[
D 

−2 
a + μ−1 �−1 

a.b 

]−1 + C 

T 
a S 1 C a (31)

owever, 

(n 1 + n 2 ) �aa = (n 1 + n 2 ) 
[
�a.b + �ab �

−1 
bb 

�ba 

]
= (n 1 + n 2 ) �a.b + 

(
C 

T 
a S 1 C b 

)(
C 

T 
b S 1 C b 

)−1 (
C 

T 
b S 1 C a 

)
(32) 

hich leads to 

(n 1 + n 2 ) �a.b = (ν + n 2 ) μ
−1 

[
D 

−2 
a + μ−1 �−1 

a.b 

]−1 + 

[
C 

T S 1 C 

]
a.b 

(33) 

or the sake of notational convenience, let us denote

 = 

[
C 

T S 1 C 

]
a.b 

. Post-multiplying the previous equation by

D 

−2 
a + μ−1 �−1 

a.b 

]
results in 
n 1 + n 2 ) �a.b D 

−2 
a −

[
(ν − n 1 ) μ

−1 I + FD 

−2 
a 

]
− μ−1 F�−1 

a.b 
= 0 

⇒ �a.b D 

−2 
a �a.b −

[ 
ν − n 1 

μ(n 1 + n 2 ) 
I + 

1 

n 1 + n 2 
FD 

−2 
a 

] 
�a.b −

1 

μ(n 1 + n 2 ) 
F = 0 

⇒ 

˜ �2 
a.b −

[ 
ν − n 1 

μ(n 1 + n 2 ) 
I + 

1 

n 1 + n 2 
˜ F 

] 
˜ �a.b −

1 

μ(n 1 + n 2 ) 
˜ F = 0 (34) 

here ˜ �a.b = D 

−1 
a �a.b D 

−1 
a and 

˜ F = D 

−1 
a FD 

−1 
a . Similarly to what was

one before, ˜ �a.b and 

˜ F share the same eigenvectors. When the

igenvalue λ of ˜ F is zero (there are actually p − n 1 of them [45] )

he corresponding eigenvalue φ of ˜ �a.b is 
ν−n 1 

μ(n 1 + n 2 ) . For each of the

 = n 1 + n 2 − p non-zero λ, the corresponding φ is the unique pos-

tive root of 

2 −
[

ν − n 1 

μ(n 1 + n 2 ) 
+ 

λ

n 1 + n 2 

]
φ − λ

μ(n 1 + n 2 ) 
= 0 (35) 

herefore, if ˜ u k are the eigenvectors of ˜ F , ˜ �a.b is given by 

˜ 
a.b = 

r ∑ 

k =1 

φk ̃  u k ̃  u 

T 
k + 

ν − n 1 

μ(n 1 + n 2 ) 

p ∑ 

k = r+1 

˜ u k ̃  u 

T 
k 

= 

r ∑ 

k =1 

[ 
φk −

ν − n 1 

μ(n 1 + n 2 ) 

] 
˜ u k ̃  u 

T 
k + 

ν − n 1 

μ(n 1 + n 2 ) 
I (36) 

nce ˜ �a.b is computed, �a.b = D a ̃
 �a.b D a and �aa can be obtained

rom (32) . Finally, the MLE of R 1 is given by C �C 

T . 

We now present an alternative way to compute the solution.

rom (25) , it appears that R 1 can be written as (n 1 + n 2 ) R 1 =
 1 X 

T 
1 + X 2 �2 X 

T 
2 where �2 = (ν + n 2 ) μ

−1 
(
I + μ−1 X 

T 
2 R 

−1 
1 

X 2 

)−1 
. Let

 = 

[
X 1 X 2 

]
and let X 

T = QR be the QR decomposition of X 

T 

ith Q a (n 1 + n 2 ) × p semi-unitary matrix, i.e., Q 

T Q = I p . Let us

artition Q as Q = 

[
Q 1 

Q 2 

]
so that X 

T 
1 = Q 1 R and X 

T 
2 = Q 2 R . Then, one

as 

(n 1 + n 2 ) R 1 = X 1 X 

T 
1 + X 2 �2 X 

T 
2 

= R 

T 
[
Q 

T 
1 Q 1 + Q 

T 
2 �2 Q 2 

]
R 

nd therefore 

(n 1 + n 2 ) 
−1 X 

T 
2 R 

−1 
1 X 2 = Q 2 

[
Q 

T 
1 Q 1 + Q 

T 
2 �2 Q 2 

]−1 
Q 

T 
2 

= Q 2 

[
I + Q 

T 
2 ( �2 − I ) Q 2 

]−1 
Q 

T 
2 

= Q 2 

[ 
I − Q 

T 
2 

[
( �2 − I ) 

−1 + Q 2 Q 

T 
2 

]−1 
Q 2 

] 
Q 

T 
2 

= Q 2 Q 

T 
2 − Q 2 Q 

T 
2 

[
( �2 − I ) 

−1 + Q 2 Q 

T 
2 

]−1 
Q 2 Q 

T 
2 

= 

[ (
Q 2 Q 

T 
2 

)−1 + �2 − I 

] −1 

(37) 

onsequently, if we define B 2 = 

(
Q 2 Q 

T 
2 

)−1 − I 

−1 
2 = (ν + n 2 ) 

−1 μ
[
I + μ−1 X 

T 
2 R 

−1 
1 X 2 

]
= (ν + n 2 ) 

−1 μI + (ν + n 2 ) 
−1 X 

T 
2 R 

−1 
1 X 2 

= (ν + n 2 ) 
−1 μI + (ν + n 2 ) 

−1 (n 1 + n 2 ) ( �2 + B 2 ) 
−1 

(38) 

re-multiplying the previous equation by ( �2 + B 2 ) and post-

ultiplying by �2 , we obtain the following second-order polyno-

ial equation: 

2 
2 + 

[ 
B 2 − ν − n 1 

μ
I 

] 
�2 − ν + n 2 

μ
B 2 = 0 (39) 

t follows that �2 and B 2 share the same eigenvectors. If λ is a

on-zero eigenvalue of B 2 (there are n 1 + n 2 − p of them), then the

orresponding eigenvalue γ of �2 is the unique positive root to the

ollowing polynomial equation 

2 + 

[ 
λ − ν − n 1 

μ

] 
γ − ν + n 2 

μ
λ = 0 (40) 



Fig. 1. Average distance between ˆ R 1 and R 1 in case 1. 

Fig. 2. Average distance between ˆ R 1 and R 1 in case 2. 
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Fig. 3. Average distance between ˆ R 1 and R 1 in case 3. 
f λ = 0 then γ = (ν − n 2 ) μ
−1 . Finally, the solution �2 is given

y 

2 = 

r ∑ 

k =1 

γk b k b 

T 
k + 

ν − n 1 

μ

n 2 ∑ 

k = r+1 

γk b k b 

T 
k 

= 

r ∑ 

k =1 

[ 
γk −

ν − n 1 

μ

] 
b k b 

T 
k + 

ν − n 1 

μ
I (41) 

here b k are the eigenvectors of B 2 . Note that 

 2 b = λb ⇒ (Q 2 Q 

T 
2 ) 

−1 b − b = λb 

⇒ (Q 2 Q 

T 
2 ) 

−1 b = (1 + λ) b 

⇒ (Q 2 Q 

T 
2 ) b = (1 + λ) −1 b 

nd hence b is an eigenvector of Q 2 Q 

T 
2 associated with eigenvalue

(1 + λ) −1 , or equivalently a right singular vector of Q 

T 
2 

. Observe

lso that, since X 

T 
2 

= Q 2 R and XX 

T = R 

T Q 

T QR = R 

T R , one has 

 2 Q 

T 
2 = X 

T 
2 R 

−1 R 

−T X 2 = X 

T 
2 (R 

T R ) −1 X 2 

= X 

T 
2 (XX 

T ) −1 X 2 = X 

T 
2 (X 1 X 

T 
1 + X 2 X 

T 
2 ) 

−1 X 2 

ence, if we let S = X 1 X 

T 
1 

+ X 2 X 

T 
2 

= LL T , then Q 

T 
2 

and L −1 X 2 share

he same right singular vectors. 

. Numerical simulations 

In this section, we evaluate numerically the performance of

he MLE presented above through Monte-Carlo simulations. We

onsider a scenario where the size of the observation space is

p = 128 . Three cases will be considered for the covariance matrix

 1 , which correspond to different kind of processes. In the first

ase the ( k , � ) element is R 1 (k, � ) = P ρ| k −� | + δ(k, � ) with ρ = 0 . 7 .

he second case assumes that R 1 (k, � ) = Pe −0 . 5(2 πσ f | k −� | ) 2 + δ(k, � )

ith σ f = 0 . 02 . In the third case, R 1 (k, � ) = r AR (| k − � | ) + δ(k, � )

here r AR (| k − � | ) corresponds to the correlation of an autoregres-

ive process whose poles are located at 0.95 e ± i 2 π0.05 , 0.9 e ± i 2 π0.15 ,

.9 e ± i 2 π0.18 . Finally P = 100 and r AR (0) = 100 . The corresponding

rocesses are rather lowpass in case 1 and 2, while case 3 con-

erns processes with sharp peaks in their spectrum. In each simu-

ation X 1 is generated from a Gaussian distribution with covariance

atrix R 1 . Then W is generated from a Wishart distribution with

= p + 2 degrees of freedom and parameter matrix (ν − p − 1) −1 I

nd R 2 is computed as R 2 = G 1 W 

−1 G 

T 
1 

. Then X 2 is generated from

 Gaussian distribution with covariance matrix R 2 . 

The MLE is compared with four competitors. The first is the

ample covariance matrix based on all samples, i.e., (n 1 + n 2 ) 
−1 S

here S = X 1 X 

T 
1 + X 2 X 

T 
2 . The second is of the form G SCM 

DG 

T 
SCM 

,

here G SCM 

is the Cholesky factor of S , and D is a diagonal ma-

rix which is chosen to minimize Stein’s loss and is given by

 k,k = 1 / (n 1 + n 2 + p − 2 k + 1) . The third is of the same form but

s meant at minimizing the natural distance between R 1 and

ts estimate: as shown in [13] , it amounts to choosing D k,k =
xp 

{ 

−E 

{ 

log χ2 
n 1 + n 2 −i +1 

} } 

. Finally, we consider the class of or-

hogonally invariant estimators of the form U SCM 

diag 
(
ϕ(λ) 

)
U 

T 
SCM 

here S = U SCM 

diag 
(
λ
)
U 

T 
SCM 

is the eigenvalue decomposition of S

nd ϕ(λ) = 

[
ϕ 1 (λ) . . . ϕ p (λ) 

]
. Stein showed that the choice

 k = λk / (n 1 + n 2 − p + 1 + 2 λk 

∑ 

j � = k (λk − λ j ) 
−1 ) is the best with

espect to Stein’s loss. However this choice has two drawbacks:

t can result in some ϕk < 0 and it does not preserve the order

f the eigenvalues λk , which is a problem [42] . In order to over-

ome these problems, Stein proposed an isotonizing scheme that

uarantees ϕk > 0 and preserves order, see [46] for details of this

cheme. We consider this improved estimator as the fourth alter-

ative. The figure of merit for all estimators will be the natural



Fig. 4. Average distance between ˆ R 1 and R 1 in case 1 versus ν . n 1 + n 2 = 2 p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

t  

p  

e  

s  

s  

p  

h  

S  

A

a  

p

D

A

 

c  

s  

t  

v  

c

-

w  

T

 

 

 

t
 

t  

i

 

a  

X  

i

 

distance between the true and the estimated covariance matrices

d 2 (R 1 , ̂  R 1 ) = 

∑ p 

k =1 
log 

2 λk (R 

−1 
1 

ˆ R 1 ) . 

The simulation results are shown in Figs. 1 - 4 where we con-

sider different values for the total number of samples n = n 1 + n 2 ,

namely n = p, n = 3 p/ 2 and n = 2 p. The main conclusions regard-

ing these simulations are the following: 

• the MLE is shown to outperform its competitors when n 1 is

small and n is large enough, typically it has the best perfor-

mance for n = 3 p/ 2 and n = 2 p. One can observe that the im-

provement achieved by the MLE is more important when n =
2 p and n 1 is small, i.e., when one has very few samples drawn

from R 1 and a large majority of samples drawn from R 2 . 
• in contrast, when n = p the other methods can perform bet-

ter than the MLE, especially when n 1 is above a threshold, i.e.,

when the number of “good” samples is large enough. 
• among the Stein-like methods, that based on eigenvalue de-

composition (with isotonizing) is the best, but the method

based on Cholesky factorization and minimization of the

geodesic distance comes very close. 

In a final simulation, we evaluate the influence of ν: recall that,

as ν increases, W is closer to I and thus R 2 is closer to R 1 , which

means that X 2 should be nearly as informative as X 1 . In Fig. 4 we

display the average distance as a function of ν in case 1 with

n 1 + n 2 = 2 p. It is observed that, as ν increases, the performance

of all estimators improve. The proposed MLE is no longer the most

accurate above a threshold, where it is dominated by the Stein’s

estimator based on the eigenvalues of the whole sample covari-

ance matrix. However, the proposed MLE still performs better than

all other estimators. 

5. Conclusions 

In this paper, we considered the problem of estimating a covari-

ance matrix R 1 from two data sets, one set X 1 whose covariance

matrix is actually R 1 and another set X 2 whose covariance matrix

R 2 is different but close to R 1 . Since the distance between R 1 and

R 2 depends on the eigenvalues of W = G 

T 
1 

R 

−1 
2 

G 1 , we embedded the

latter in a statistical model and assumed that it followed a Wishart

distribution around the identity matrix. We showed that the prob-

lem is that of estimating R 1 from two data sets with different dis-

tributions. The maximum likelihood estimator was derived and its

expression was shown to depend on the number of samples in X 
1 
nd X 2 . The MLE was shown to perform quite well, as compared

o state of the art algorithms, at least when the number of sam-

les in X 1 is small and the total number of samples n is large

nough. However, as in a classical framework with a single data

et, there is room from improvement of the MLE, especially in low

ample support. Therefore, future work should be devoted to im-

roving the MLE in this situation. For instance, one could study

ow the MLE could be regularized or could investigate whether a

tein-like approach is possible for this two data sets framework.

lternatively, a frequentist approach where joint estimation of R 1 

nd W is performed under some constraints constitutes a worthy

ath of investigation. 

eclaration of Competing Interest 

None. 

ppendix A. Extension to complex-valued data 

In this appendix, we briefly show that the derivations con-

erning the maximum likelihood estimator can be extended in a

traightforward manner to the complex case. Let us assume here

hat X 1 | R 1 
d = CN ( 0 , R 1 , I ) and X 2 | R 2 

d = CN ( 0 , R 2 , I ) are complex-

alued data and distributed according to a circularly symmetric

omplex-valued matrix-variate normal distribution. Let R 1 = G 1 G 

H 
1 

where H stands for the Hermitian transpose- and R 2 = G 1 W 

−1 G 

H 
1 

here W 

d = CW p 

(
ν, μ−1 I 

)
follows a complex Wishart distribution.

he statistical (complex-valued) model is thus 

p(X 1 , X 2 | R 1 , W ) = π−p(n 1 + n 2 ) | R 1 | −n 1 
∣∣W 

−1 R 1 

∣∣−n 2 

×etr 
{
−X 

H 
1 R 

−1 
1 X 1 − X 

H 
2 G 

−H 
1 WG 

−1 
1 X 2 

}
(A.1a)

p(W ) = 

μνp 

˜ �p (ν) 
| W | ν−p etr { −μW } (A.1b)

Note that, in the complex case, E 

{
W 

−1 
}

= (ν − p) −1 μI [40] so

hat E { R 2 } = E 

{
G 1 W 

−1 G 

H 
1 

}
= (ν − p) −1 μR 1 . Therefore, for E { R 2 }

o be equal to R 1 , one must have μ = ν − p in the complex case,

nstead of μ = ν − p − 1 in the real case. 

The marginal distribution of ( X 1 , X 2 ) is now 

p(X 1 , X 2 | R 1 ) = 

∫ 
W > 0 

p(X 1 , X 2 | R 1 , W ) p(W ) dW 

= 

π−p(n 1 + n 2 ) μνp 

˜ �p (ν) 
| R 1 | −(n 1 + n 2 ) etr 

{
−X 

H 
1 R 

−1 
1 X 1 

}
×

∫ 
W > 0 

| W | ν+ n 2 −p etr 
{
−W 

[
μI + G 

−1 
1 X 2 X 

H 
2 G 

−H 
1 

]}
dW 

= 

π−p(n 1 + n 2 ) μνp ˜ �p (ν) 

˜ �p (ν) 
| R 1 | −(n 1 + n 2 ) 

etr 
{
−X 

H 
1 R 

−1 
1 X 1 

}∣∣μI + G 

−1 
1 X 2 X 

H 
2 G 

−H 
1 

∣∣−(ν+ n 2 ) 

= π−pn 1 | R 1 | −n 1 etr 
{
−X 

H 
1 R 

−1 
1 X 1 

}
× π−pn 2 ˜ �p (ν) 

˜ �p (ν) 
| μR 1 | −n 2 

∣∣I + X 

H 
2 [ μR 1 ] 

−1 X 2 

∣∣−(ν+ n 2 ) 

(A.2)

nd we recover the fact that X 1 | R 1 is Gaussian distributed and that

 2 | R 1 is Student distributed. From (A.2) , the log-likelihood function

s, up to an additive and constant term 

˜ f (R 1 ) = −(n 1 + n 2 ) log | R 1 | − (ν + n 2 ) log 
∣∣I + μ−1 R −1 

1 
S 2 

∣∣ − Tr 
{

R −1 
1 

S 1 
}

= (ν − n 1 ) log | R 1 | − (ν + n 2 ) log 
∣∣R 1 + μ−1 S 2 

∣∣ − Tr 
{

R −1 
1 

S 1 
}

(A.3)
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here S 1 = X 1 X 

H 
1 

and S 2 = X 2 X 

H 
2 

. Differentiating the previous

quation, it follows that the maximum likelihood estimator of R 1 

hould satisfy 

(ν − n 1 ) R 

−1 
1 − (ν + n 2 ) 

(
R 1 + μ−1 S 2 

)−1 + R 

−1 
1 S 1 R 

−1 
1 = 0 (A.4)

hich is exactly (5) , the equation in the real case. From there, all

revious derivations follow simply by replacing the transpose by

he Hermtian transpose. 

eferences 

[1] R.J. Muirhead , Aspects of Multivariate Statistical Theory, John Wiley & Sons,
Hoboken, NJ, 1982 . 

[2] L.L. Scharf , Statistical Signal Processing: Detection, Estimation and Time Series
Analysis, Addison Wesley, Reading, MA, 1991 . 

[3] M.S. Srivastava , Methods of Multivariate Statistics, John Wiley & Sons., New
York, 2002 . 

[4] C. Stein , Inadmissibility of the usual estimator for the mean of a multivariate
distribution, in: Proceedings 3rd Berkeley Symposium on Mathematical Statis-

tics and Probability, 1956, pp. 197–206 . 

[5] C. Stein , Lectures on the theory of estimation of many parameters, J. Math. Sci.
34 (1986) 1373–1403 . 

[6] W. James, C. Stein, Estimation with Quadratic Loss, Springer Series in Statistics
(Perspectives in Statistics), Springer, pp. 443–460. 

[7] D.K. Dey , C. Srinivasan , Estimation of a covariance matrix under stein’s loss,
Ann. Stat. 13 (4) (1985) 1581–1591 . 

[8] D.K. Dey , C. Srinivasan , Trimmed minimax estimator of a covariance matrix,

Ann. Inst. Stat. Math. 38 (1986) 101–108 . 
[9] F. Perron , Minimax estimators of a covariance matrix, J. Multivar. Anal. 43 (1)

(1992) 16–28 . 
[10] T. Ma , L. Jia , Y. Su , A new estimator of covariance matrix, J. Stat. Plan. Inference

142 (2) (2012) 529–536 . 
[11] H. Tsukuma , Estimation of a high-dimensional covariance matrix with the

stein loss, J. Multivar. Anal. 148 (2016) 1–17 . 

[12] H. Tsukuma , Minimax estimation of a normal covariance matrix with the par-
tial Iwasawa decomposition, J. Multivar. Anal. 145 (2016) 190–207 . 

[13] M.-T. Tsai , On the maximum likelihood estimation of a covariance matrix,
Math. Method. Stat. 27 (2018) 71–82 . 

[14] L.R. Haff, Empirical Bayes estimation of the multivariate normal covariance
matrix, Ann. Stat. 8 (3) (1980) 586–597 . 

[15] O. Ledoit , M. Wolf , A well-conditioned estimator for large-dimensional covari-

ance matrices, J. Multivar. Anal. 88 (2) (2004) 365–411 . 
[16] P. Stoica , J. Li , X. Zhu , J.R. Guerci , On using a priori knowledge in space–

time adaptive processing, IEEE Trans.Signal Process. 56 (6) (2008) 2598–
2602 . 

[17] Y. Chen , A. Wiesel , Y.C. Eldar , A.O. Hero , Shrinkage algorithms for MMSE
covariance estimation, IEEE Trans.Signal Process. 58 (10) (2010) 5016–

5029 . 

[18] T. Fisher , X. Sun , Improved stein-type shrinkage estimators for the high-dimen-
sional multivariate normal covariance matrix, Comput. Stat. Data Anal. 55 (5)

(2011) 1909–1918 . 
[19] A. Coluccia , Regularized covariance matrix estimation via empirical Bayes, IEEE

Signal Process. Lett. 22 (11) (2015) 2127–2131 . 
20] Y. Ikeda , T. Kubokawa , M.S. Srivastava , Comparison of linear shrinkage esti-

mators of a large covariance matrix in normal and non-normal distributions,
Comput. Stat. Data Anal. 95 (2016) 95–108 . 

[21] T. Kubokawa , M.S. Srivastava , Robust improvement in estimation of a covari-

ance matrix in an elliptically contoured distribution, Ann. Stat. 27 (2) (1999)
600–609 . 
22] F. Pascal , P. Forster , J.-P. Ovarlez , P. Larzabal , Performance analysis of covariance
matrix estimates in impulsive noise, IEEE Trans. Signal Process. 56 (61) (2008)

2206–2217 . 
23] Y. Chen , A. Wiesel , A.O. Hero , Robust shrinkage estimation of high-dimensional

covariance matrices, IEEE Trans. Signal Process. 59 (9) (2011) 4097–4107 . 
[24] E. Ollila , D. Tyler , V. Koivunen , H. Poor , Complex elliptically symmetric distri-

butions: survey, new results and applications, IEEE Trans. Signal Process. 60
(11) (2012) 5597–5625 . 

25] A. Wiesel , Unified framework to regularized covariance estimation in scaled

Gaussian models, IEEE Trans.Signal Process. 60 (1) (2012) 29–38 . 
26] M. Mahot , F. Pascal , P. Forster , J.-P. Ovarlez , Asymptotic properties of robust

complex covariance matrix estimates, IEEE Trans. Signal Process. 61 (13) (2013)
3348–3356 . 

[27] Y.I. Abramovich , O. Besson , Regularized covariance matrix estimation in com-
plex elliptically symmetric distributions using the expected likelihood ap-

proach - part 1: the oversampled case, IEEE Trans. Signal Process. 61 (23)

(2013) 5807–5818 . 
28] O. Besson , Y.I. Abramovich , Regularized covariance matrix estimation in com-

plex elliptically symmetric distributions using the expected likelihood ap-
proach - part 2: the under-sampled case, IEEE Trans.Signal Process. 61 (23)

(2013) 5819–5829 . 
29] F. Pascal , Y. Chitour , Y. Quek , Generalized robust shrinkage estimator and its

application to STAP detection problem, IEEE Trans. Signal Process. 62 (21)

(2014) 5640–5651 . 
30] E. Ollila , E. Raninen , Optimal high-dimensional shrinkage covariance estima-

tion for elliptical distributions, IEEE Trans. Signal Process. 67 (10) (2019)
2707–2719 . 

[31] W.L. Melvin , Space-time adaptive radar performance in heterogeneous clutter,
IEEE Trans. Aerospace Electron.Syst. 36 (2) (20 0 0) 621–633 . 

32] , Principles of Modern Radar: Advanced Principles, W.L. Melvin, J.A. Scheer

(Eds.), 2, Institution Engineering Technology, 2012 . 
[33] R. Nitzberg , An effect of range-heterogeneous clutter on adaptive doppler fil-

ters, IEEE Trans.Aerospace Electron.Syst. 26 (3) (1990) 475–480 . 
34] D.J. Rabideau , A.O. Steinhardt , Improved adaptive clutter cancellation through

data-adaptive training, IEEE Trans.Aerospace Electron.Syst. 35 (3) (1999)
879–891 . 

[35] L.M. Novak , Change detection for multi-polarization multi-pass SAR, in: Pro-

ceedings SPIE 5808, Algorithms for Synthetic Aperture Radar Imagery XII,
2005, pp. 234–246 . 

36] N.M. Nasrabadi , Hyperspectral target detection : an overview of current and
future challenges, IEEE Signal Process. Mag. 31 (1) (2014) 34–44 . 

[37] R. Bhatia , Positive Definite Matrices, Princeton University Press, 2007 . 
38] S.T. Smith , Covariance, subspace and intrinsic Cramér-Rao bounds, IEEE Trans.

Signal Process. 53 (5) (2005) 1610–1630 . 

39] R.S. Raghavan , False alarm analysis of the AMF algorithm for mismatched
training, IEEE Trans. Signal Process. 67 (1) (2019) 83–96 . 

40] J.A. Tague , C.I. Caldwell , Expectations of useful complex Wishart forms, Multi-
dimensional Systems and Signal Processing 5 (1994) 263–279 . 

[41] A.K. Gupta , D.K. Nagar , Matrix Variate Distributions, Chapman & Hall/CRC, Boca
Raton, FL, 20 0 0 . 

42] Y. Sheena , A. Takemura , Inadmissibility of non-order preserving orthogonally
invariant estimators of the covariance matrix in the case of Stein’s loss, J. Mul-

tivar. Anal. 41 (1992) 117–131 . 

43] B. Rajaratnam , D. Vincenzi , A theoretical study of Stein’s covariance estimator,
Biometrika 103 (2016) 653–666 . 

44] B. Naul , B. Rajaratnam , D. Vincenzi , The role of isotonizing algorithm in Stein’s
covariance matrix estimator, Comput. Stat. 31 (4) (2016) 1453–1476 . 

45] L. Guttman , General theory and methods for matric factoring, Psychometrica 9
(1) (1944) 1–16 . 

46] S. Lin , M. Perlman , A Monte Carlo comparison of four estimators of a covari-

ance matrix, in: P.R. Krishnaiah (Ed.), Multivariate Analysis VI, North Holland,
Amsterdam, 1985, pp. 411–429 . 

http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0001
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0001
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0002
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0002
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0003
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0003
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0004
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0004
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0005
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0005
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0007
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0007
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0007
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0008
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0008
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0010
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0010
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0011
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0011
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0012
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0012
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0013
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0013
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0014
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0014
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0014
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0017
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0017
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0017
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0018
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0018
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0020
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0020
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0020
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0021
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0021
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0021
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0021
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0021
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0022
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0022
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0022
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0022
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0024
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0024
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0026
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0026
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0026
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0027
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0027
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0027
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0028
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0028
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0028
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0028
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0029
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0029
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0029
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0030
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0030
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0031
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0032
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0032
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0033
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0033
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0033
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0034
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0034
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0035
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0035
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0036
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0036
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0037
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0037
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0038
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0038
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0039
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0039
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0039
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0040
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0040
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0040
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0041
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0041
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0041
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0042
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0042
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0042
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0043
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0043
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0043
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0043
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0044
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0044
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30339-1/sbref0045

	Maximum likelihood covariance matrix estimation from two possibly mismatched data sets
	1 Problem statement
	2 Data model
	3 Maximum likelihood estimation
	3.1 Summary of results
	3.2 Case n1 < p and n2  p
	3.3 Case n2 < p and n1  p
	3.4 Case n1 < p, n2 < p and 

	4 Numerical simulations
	5 Conclusions
	Declaration of Competing Interest
	Appendix A Extension to complex-valued data
	References


