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Learning Exploration for Contextual Bandit

We study here the problem of learning the exploration exploitation trad-off in the contextual bandit problem with linear reward function setting. In the traditional algorithms that solve the contextual bandit problem, the exploration is a parameter that is tuned by the user. However, our proposed algorithm learn to choose the right exploration parameters in an online manner based on the observed context, and the immediate reward received for the chosen action. We have presented here two algorithms that uses a bandit to find the optimal exploration of the contextual bandit algorithm, which we hope is the first step toward the automation of the multi-armed bandit algorithm.

Introduction

In sequential decision problems such as clinical trials [START_REF] Villar | Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges[END_REF] or recommender system [START_REF] Mary | Bandits and recommender systems[END_REF][START_REF] Bouneffouf | Risk-aware recommender systems[END_REF], a decision-making algorithm must select among several actions at each given time-point. Each of these actions is associated with side information, or context (e.g., a user's profile), and the reward feedback is limited to the chosen option. For example, in the clinical trials [START_REF] Villar | Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges[END_REF]Bouneffouf, Rish, and Cecchi 2017;[START_REF] Bouneffouf | A contextual-bandit algorithm for mobile context-aware recommender system[END_REF], the actions correspond the treatment options being compared, the context is the patient's medical record (e.g. health condition, family history, etc.) and the reward represents the outcome (successful or not) of the proposed treatment. In this setting, we are looking for a good trade-off between the exploration of the new drug and the exploitation of the known drug.

This inherent exploration-exploitation trade-off exists in many sequential decision problems, and is traditionally modeled as multi-armed bandit (MAB) problem, stated as follows: there are K "arms" (possible actions), each associated with a fixed but unknown reward probability distribution [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF][START_REF] Auer | Finitetime analysis of the multiarmed bandit problem[END_REF]Lin et al. 2018a). At each step, an agent plays an arm (chooses an action) and receives a reward. This reward is drawn according to the selected arm's law and is independent of the previous actions.

A particularly useful version of MAB is the contextual multi-armed bandit problem. In this problem, at each it-eration, before choosing an arm, the agent observes a Ddimensional feature vector, or context, associated with each arm. The learner uses these contexts, along with the rewards of the arms played in the past, to choose which arm to play in the current iteration. Over time, the learner's aim is to collect enough information about the relationship between the context vectors and rewards, so that it can predict the next best arm to play by looking at the corresponding contexts (feature vectors) [START_REF] Agrawal | Thompson sampling for contextual bandits with linear payoffs[END_REF]. One smart solution for the contextual bandit is the LINUCB algorithm, which is based on online ridge regression, and takes the concept of upper-confidence bound [START_REF] Li | A contextual-bandit approach to personalized news article recommendation[END_REF] to strategically balance between exploration and exploitation. The α parameter essentially controls exploration/ exploitation. The problem is that it is difficult to decide in advance the optimal value of α We introduce in this paper two algorithms, named "OPLIN-UCB" and " DOPLINUCB", that computes the optimal value of α in both stationer and switching environment by adaptively balancing exr/exp according to the context.

The main contributions of this paper include proposing two new algorithms, for both stationary and non-stationary settings, which extend the existing bandit algorithms to the new setting, and (3) evaluating the algorithms empirically on a variety of datasets.

RELATED WORK

The multi-armed bandit problem is a model of exploration versus exploitation trade-off, where a player gets to pick within a finite set of decisions the one maximizing the cumulative reward. This problem has been extensively studied. Optimal solutions have been provided using a stochastic formulation [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF][START_REF] Auer | Finitetime analysis of the multiarmed bandit problem[END_REF]Bouneffouf et al. 2019;Lin et al. 2018b;[START_REF] Bouneffouf | Multi-armed bandit problem with known trend[END_REF]Balakrishnan et al. 2019a;2019b;[START_REF] Bouneffouf | Contextual bandit for active learning: Active thompson sampling[END_REF][START_REF] Noothigattu | Interpretable multi-objective reinforcement learning through policy orchestration[END_REF]., a Bayesian formulation [START_REF] Bouneffouf | A survey on practical applications of multi-armed and contextual bandits[END_REF]Thompson 1933b;Bouneffouf et al. 2017), or using an adversarial formulation [START_REF] Auer | On-line learning with malicious noise and the closure algorithm[END_REF]Auer et al. 2002;[START_REF] Balakrishnan | Using contextual bandits with behavioral constraints for constrained online movie recommendation[END_REF]). However, these approaches do not take into account the context which may affect to the arm's performance. In LINUCB [START_REF] Li | A contextual-bandit approach to personalized news article recommendation[END_REF][START_REF] Chu | Contextual bandits with linear payoff functions[END_REF] and in Contextual Thompson Sampling (CTS) [START_REF] Agrawal | Thompson sampling for contextual bandits with linear payoffs[END_REF] and neural bandit [START_REF] Allesiardo | A neural networks committee for the contextual bandit problem[END_REF], the authors assume a linear dependency between the expected reward of an action and its context; the representation space is modeled using a set of linear predictors. However, the exploration magnitude on these algorithms need to be given by the user. Authors in [START_REF] Sharaf | Meta-learning for contextual bandit exploration[END_REF], addresses the exploration trade-off by learning a good exploration strategy for offline tasks based on synthetic data, on which it can simulate the contextual bandit setting. Based on these simulations, the proposed algorithm uses an imitation learning strategy to learn a good exploration policy that can then be applied to true contextual bandit tasks at test time. the authors compare the algorithm to seven strong baseline contextual bandit algorithms on a set of three hundred real-world datasets, on which it outperforms alternatives in most settings, especially when differences in rewards are large.

In [START_REF] Bastani | Mostly exploration-free algorithms for contextual bandits[END_REF][START_REF] Bouneffouf | Exponentiated gradient exploration for active learning[END_REF]), the authors show that greedy algorithms that exploit current estimates without any exploration may be sub-optimal in general. However, exploration-free greedy algorithms are desirable in practical settings where exploration may be costly or unethical (e.g., clinical trials). They find that a simple greedy algorithm can be rate-optimal if there is sufficient randomness in the observed contexts. They prove that this is always the case for a two-armed bandit under a general class of context distributions that satisfy a condition they term covariate diversity. Furthermore, even absent this condition, we show that a greedy algorithm can be rate optimal with positive probability.

As we can see, none of these previously proposed approaches involves learning dynamically the exploration tradeoff in the contextual bandit setting, which is the main focus of this work.

Key Notion

This section focuses on introducing the key notions used in this paper.

The Contextual Bandit Problem.

Following [START_REF] Langford | The epoch-greedy algorithm for multi-armed bandits with side information[END_REF], this problem is defined as follows. At each time point (iteration) t ∈ {1, ..., T }, a player is presented with a context (feature vector) c(t) ∈ R N before choosing an arm i ∈ A = {1, ..., K}. We will denote by C = {C 1 , ..., C N } the set of features (variables) defining the context. Let r = (r 1 (t), ..., r K (t)) denote a reward vector, where r i (t) ∈ [0, 1] is a reward at time t associated with the arm i ∈ A. Herein, we will primarily focus on the Bernoulli bandit with binary reward, i.e. r i (t) ∈ {0, 1}. Let π : C → A denote a policy. Also, D c,r denotes a joint distribution (c, r). We will assume that the expected reward is a linear function of the context, i.e. E[r k (t)|c(t)] = µ T k c(t), where µ k is an unknown weight vector (to be learned from the data) associated with the arm k.

Thompson Sampling (TS).

The TS (Thompson 1933a), also known as Basyesian posterior sampling, is a classical approach to multi-arm bandit problem, where the reward r k (t) for choosing an arm k at time t is assumed to follow a distribution P r(r t |μ) with the parameter μ. Given a prior P r(μ) on these parameters, their posterior distribution is given by the Bayes rule, P r(μ|r t ) ∝ P r(r t |μ)P r(μ). A particular case of the Thomson Sampling approach assumes a Bernoulli bandit problem, with rewards being 0 or 1, and the parameters following the Beta prior. TS initially assumes arm k to have prior Beta(1, 1) on µ k (the probability of success). At time t, having observed S k (t) successes (reward = 1) and F k (t) failures (reward = 0), the algorithm updates the distribution on µ k as Beta(S k (t), F k (t)). The algorithm then generates independent samples θ k (t) from these posterior distributions of the µ k , and selects the arm with the largest sample value. For more details, see, for example, [START_REF] Agrawal | Analysis of thompson sampling for the multi-armed bandit problem[END_REF].

Regression Tree

In total generality unsupervised learning is an ill posed problem. Nevertheless in some situations it is possible to back the clustering problem by a supervised one. In our setting we can use the reward estimation as a supervision for the group creation. Thus we just need a supervised learning technique which explicitly creates groups that we could reuse. See [START_REF] Kotsiantis | Supervised machine learning: A review of classification techniques[END_REF]) for a survey on such techniques. Among all existing approaches, the use of a tree built by recursive partitioning is a popular approach. It allows to estimate different means under specifics explanatory variables and have an interpretation as a regression analysis [START_REF] Strasser | The asymptotic theory of permutation statistics[END_REF]. Moreover some efficient implementations as "CART" [START_REF] Breiman | Classification and Regression Trees[END_REF]) and "C4.5" are available.

For a regression models describing the conditional distribution of a response variable X given the status of N F covariates by means of tree-structured recursive partitioning. The d-dimensional covariate vector f X = (f 1 X , ..., f m X ) is taken from a sample space F. Both response variables and covariates may be measured at arbitrary scale. If we assume that the conditional distribution D(X|f X ) of the respond X variable given the covariate f X depend of a function z of the covariate:

D(X|f X ) = D(X|f 1 X , ..., f m X ) = D(X|z(f 1 X , ..., f m X )) With m ≤ N F .
Let's L be a learning sample for training the model of regression relationship on a n random sample of independent and identically distributed observation, possibly with some covariates observation is missing :

L n = {X i , f 1 i , ..., f m i ; i = 1, .
.., n} CTree (conditional inference Tree) is an algorithm derived from C.A.R.T : CTree proposed by [START_REF] Hothorn | Unbiased recursive partitioning: A conditional inference framework[END_REF] which is a non parametric class of regression trees embedding tree-structured regression models into a well-defined theory of conditional inference procedures. The main advantage of CTree is to handle any kind of regresssion problemes, including nominal, ordinal, numeric, censored as well multivariate response variable and arbitrary measurement scales of the covariates . CTree also manages the bias induced by maximizing a splitting criterion over all possible splits simultaneously (Shih). The following algorithm consider for a learning sample L n as a non negative integer valued case weights w = (w 1 , ..., w n ). Each node of a tree is represented by a vector of case weights having non-zero elements when the corresponding observations are elements of the node and are zero otherwise. This algorithm Algorithm 1 CTree 1: Require: A learning sample of data L n 2: for w=w 1 ,...,w N do 3:

For case weights w test the global null hypothesis of independence between m covariates and the response.

Stop if hypothesis cannot be rejected. Otherwise select the covariate F * j with the strongest association to X.

4:

Choose a set b * ⊂ B * j in order to split B * j into two disjoint sets : b * and b * . Change the case weights for determine the two subgoups (left and right).

5:

Modify case weight of left and right subset respectively. 6: end for stops when the global null hypotheses of independence between the response and any m covariates cannot be rejected at a pre-specified normial α. Details about variable selection, stopping criteria, splitting criteria or missing values and surrogate splits can be found at [START_REF] Hothorn | Unbiased recursive partitioning: A conditional inference framework[END_REF]. This algorithm handles the missing values and uses a Bonferroni correction to counteract the problem of multiple comparisons. The computational complexity of the variable selection depend of the covariates nature: for continuous variable, searching the optimal split is of order n log n , for nominal covariates measured of L levels , the evaluation of all possible splits is maximize by 2 L-1 -1.

Algorithms for Learning the Exploration Value

We describe here two algorithm that learn the exploration of the contextual bandit algorithm.

OPLINUCB

The proposed algorithm is named "OPLINUCB" for Non-Parametric LINUCB. This algorithm has to solve two levels multi-armed bandit problems. The first level is the classical multi-armed bandit problem applied to find the parameters of the algorithm. The second level problem is a contextual bandit problem that use the parameters find in the first level to find the optimal arm to play. Let n αi (t) be the number of times the i-th exploration value has been selected so far, let r f αi (t) be the cumulative reward associated with the exploration value i, and let r k (t) be the reward associated with the arm k at time t. The algorithm takes as an input the candidate values for α, as well as the initial values of the Beta distribution parameters in TS. At each iteration t, we update the values of those parameters, S αi and F αi (steps 5 and 6), to represent the current total number of successes and failures, respectively, and then sample the "probability of success" parameter θ αi from the corresponding Beta distribution, separately for each exploration value α i to estimate µ i , which is the mean reward conditioned to the use of the variable i :

µ i = 1 K k E[r k .1{i ∈ C d }] (step 7).
The pseudo-code of OPLINUCB is sketched in Algorithm 3.

Algorithm 2 OPLINUCB

Input: (α 1 , ..., α N ) : candidate values for α, A t , the initial values S αi (0) and F αi (0) of the Beta distribution parameters.

for t=1 to T do Observe the context

x t ∈ R d for all α i do S αi (t) = S αi (0) + r f αi (t -1) F αi (t) = F αi (0) + n αi (t -1) -r f αi (t -1) Sample θ αi from Beta(S αi (t), F αi (t)) distribution end for Choose exploration α t = argmax α∈A p t,a for all a ∈ A t do if a is new then A a ← I d (d-dimensional identity matrix) b a ← 0 d * 1 (d-dimensional zero vector) end if Θ a ← A -1 a * b a p t,a ← Θ a x t,a + α t x t,a A -1
a x t,a end for Choose arm a t = argmax a∈At p t,a with ties broken arbitrarily, and observe a real-valued payoff r t A at ← A at + x t,at x t,at b at ← b at + r t x t,at end for In Algorithm 2, A t is the set of arms at iteration t, where x a,t is the feature vector of arms a with d-dimension, Θ a is the unknown coefficient vector of the feature x a,t , α is a constant and 

DOPLINUCB

The proposed algorithm is named "DOPLINUCB" for Dynamic Non-Parametric LINUCB. This algorithm has to solve two levels contextual bandit problems. The first level where the algorithm is using the context to decide on the exploration value of the algorithm, this is done using the CTree algorithm described in Algorithm 1. The second level problem is also contextual bandit problem, where the algorithm uses the context and the exploration provided by the first level to find the optimal arm to play. The pseudo-code of DOPLINUCB is sketched in Algorithm 3.

Experimentation

We show in the following two senarios, one where we evaluate the algorithms in stationary environment, and the second 

Stationary Environment

In this scenario we consider the case of two Bernouilli amrs, our dataset is Adult dataset [START_REF] Kohavi | UCI machine learning repository[END_REF]. Reward is a prediction task to determine whether a person makes over 50K a year. Each person is define by some categorical and continuous information (age, work class, etc). We fix interval of possible α in [0.01; 1] with step of 0.01. Mean , median, min and max of empirical average cumulative of each LinUCB with different α are provided in 

Non-Stationary Environment

In this experiment, we consider a challenging setting: reward function of each arm changes at a fixed number of iteration. We keep a training-set of 5000 items. Table 2 show cumu-lative regrets when reward function of each arm changes at 100/1000/10000 iteration. We can observe that in this scenario the proposed algorithm outperform beats the best α value (min on table). This is explainable by the fact that the proposed algorithm is learning a dependency between the context and the right exploration value, which is not the case of the min approach. This results show that when we are facing an non-stationary environment, having a dynamic exploration exploitation trade-off is useful, to learn this context/exploration dependency, which is beneficial for the contextual bandit algorithm. 

Conclusion

We have studied the problem of learning the exploration exploitation trad-off in the contextual bandit problem with linear reward function setting. In the traditional algorithms that solve the contextual bandit problem, the exploration is a parameter that is tuned by the user. However, our proposed algorithm learn to choose the right exploration parameters in an online manner based on the observed context, and the immediate reward received for the chosen action. We have presented here two algorithms that uses a bandit to find the optimal exploration of the contextual bandit algorithm. The Evaluation showed that the two proposed algorithms gives better results then which we hope is the first step toward an automated multi-armed bandit algorithm.

  A a = D a D a + I d . D a is a design matrix of dimension m × d at trial t, whose rows correspond to m training inputs (e.g., m contexts that are observed previously for arm a), and b a ∈ R m is the corresponding response vector (e.g., the corresponding m click/no-click user feedback). Applying ridge regression to the training data (D a , c a ) gives an estimate of the coefficients: Θ a = (D a D a + I d ) -1 D a c a , where I d is the d × d identity matrix and c a are independent conditioned by corresponding rows in D a .

  Algorithm 3 DOPLINUCB Input: (α 1 , ..., α N ) : candidate values for α, A t for t=1 to T do Observe the context x t ∈ R d for all α i do p t,α ← CT ree(α 1 , ..., α N , x t ) end for Choose exploration α t = argmax α∈A p t,a for all a∈ A t do if a is new then A a ← I d (d-dimensional identity matrix) b a ← 0 d * 1 (d-dimensional zero vector) end if Θ a ← A -1 a * b a p t,a ← Θ a x t,a + α t x t,a A -1a x t,a end for Choose arm a t = argmax a∈At p t,a with ties broken arbitrarily, and observe a real-valued payoff r t A at ← A at + x t,at x t,at b at ← b at + r t x t,at end for with a non-stationary environment.

Table 1 .

 1 Rewards function of each arm are stationary. We ran LinUCB with a hundred different values of α and compare empirical average cumulative regret with DOPLINUCB and OPLIN-UCB. Without train set, it's not possible to use DOPLINUCB. Nevertheless, OPLINUCB choose an α in 100 value of alpha. DOPLINUCB and OPLINUCB can't beats the best α value (min on table ) but OPLINUCB beats every time the median/mean.

	size of train set 0	1000	5000	10 000
	max	5216	5116	4406	3658
	min	5096	4964	4297	3560
	mean	5152.1 5035,17 5035,17 3605,63
	median	5149	5031	5031	3605
	OPLINUCB	5121	4981	4334	3571
	DOPLINUCB		5014	4399	3654

Table 1 :

 1 Performance measures for α ∈ [0.01, 1]

Table 2 :

 2 Performance measures for when reward function of each arm changes for scenario 2

	switch iteration 100	1000	10 000
	max	16123	15970	11063
	min	15869	15331	9291
	mean	15973.04 15584.21 10179.37
	median	15960.5	15570	10200
	OPLINUCB	16061	15630	12601
	DOPLINUCB	13720	13569	10702