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ABSTRACT  24 

The aim of this study was to determine the amount, composition and origin of plastic debris 25 

in one of the world largest river, the Paraná River in Argentina (South America), focusing 26 

on the impact of urban rivers, relationships among macro, meso and microplastic, socio-27 

political issues and microplastic ingestion by fish. 28 

We recorded a huge concentration of macroplastic debris of domestic origin (up to 5.05 29 

macroplastic items per m
2
) dominated largely by bags (mainly high- and low-density 30 
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polyethylene), foodwrapper (polypropylene and polystyrene), foam plastics (expanded 31 

polystyrene) and beverage bottles (polyethylene terephthalate), particularly downstream 32 

from the confluence with an urban stream. This suggests inadequate waste collection, 33 

processing and final disposal in the region, which is regrettably recurrent in many cities of 34 

the Global South and Argentina in particular. 35 

We found an average of 4654 microplastic fragments m
-2

 in shoreline sediments of the 36 

river, ranging from 131 to 12687 microplastics m
-2

. In contrast to other studies from 37 

industrialized countries from Europe and North America, secondary microplastics 38 

(resulting from comminution of larger particles) were more abundant than primary ones 39 

(microbeads to cosmetics or pellets to the industry). This could be explained by differences 40 

in consumer habits and industrialization level between societies and economies. 41 

Microplastic particles (mostly fibres) were recorded in the digestive tract of 100% of the 42 

studied Prochilodus lineatus (commercial species). 43 

Contrary to recently published statements by other researchers, our results suggest neither 44 

macroplastic nor mesoplastics would serve as surrogate for microplastic items in pollution 45 

surveys, suggesting the need to consider all three size categories. 46 

The massive plastic pollution found in the Paraná River is caused by an inadequate waste 47 

management. New actions are required to properly manage waste from its inception to its 48 

final disposal. 49 

 50 

CAPSULE 51 

Massive plastic pollution in a mega-river from Argentina, mainly caused by inadequate 52 

waste management.  53 

 54 

1. INTRODUCTION 55 

Plastic pollution is one of the great challenges for environmental management in our times.  56 

Plastic debris is a combination of high persistence, low density, and extremely wide size 57 

distribution. This causes the behavior of plastic debris to show a far wider variety than most 58 

other materials, such as suspended fine sediments (Kooi et al. 2018). Plastic particles cause 59 

severe damage to freshwater and marine ecosystems (Galloway et al. 2017). In the oceans 60 

alone, the economic damage due to plastic pollution is estimated as high as 21 billion Euro 61 

(Beaumont et al. 2019). In spite of a great scientific effort to tackle this problem worldwide 62 

the state of our knowledge is yet deficient for different reasons. Firstly, despite wide 63 
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research efforts investigating plastic pollution in oceans, considerable less attention has 64 

been paid on freshwater systems (Blettler et al. 2018). Nevertheless, this imbalance seems 65 

to be reversing in the last years (e.g. Gündoğdu et al. 2018; Battulga et al. 2019; Mani et al. 66 

2019; van Wijnen et al. 2019; Zhang et al. 2019).  67 

Secondly, research on freshwater plastic pollution have been mainly carried out in 68 

industrialized countries (the Global North; Rochman et al. 2015; Blettler et al. 2018). This 69 

is not surprising due to the bias in the scientific output between the Global North and the 70 

Global South (Guterl 2012). However, this disparity causes concern, as increasing 71 

population levels, rapid urbanization, informal settlements, and the rise in consumption 72 

levels have greatly accelerated the solid waste generation rate in the Global South, where 73 

waste collection, processing and final disposal is still poor (Minghua et al. 2009; United 74 

Nations Human Settlements Programme 2016). 75 

Thirdly, there is a clear dominance of microplastic over macroplastic studies in freshwater 76 

environments worldwide (less than 20% of the total surveys in freshwater systems have 77 

been focused on macroplastics; Blettler et al. 2018). Consequently, more 78 

macroplastics studies in freshwaters are urgently required since: i) studies estimating the 79 

amount of plastic exported from rivers into the ocean are limited due to the scarcity of 80 

field-data in rivers (Lebreton et al. 2017, Schmidt et al. 2017); ii) global studies estimating 81 

the amount of plastic exported from rivers into the ocean have evidenced a significantly 82 

(>100 times) greater input in terms of weight of macroplastics (compared with 83 

microplastics, Schmidt et al. 2017); iii) removing macroplastics in rivers (e.g. using 84 

artisanal boom barriers) is an effective/low-cost action to avoid plastics reach the ocean but, 85 

on the contrary, the same action on microplastic is virtually impossible. Microplastics can 86 

be categorized by their source. Primary microplastics are purposefully made to be that size 87 
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(e.g. microbeads used in cosmetics and personal care products, virgin resin pellets used in 88 

plastic manufacturing processes), while secondary microplastics are the result of larger 89 

items of plastic breaking down into smaller particles (Weinstein et al. 2016). Studies 90 

indicated that wastewater treatment plants (WWTPs) play an important role in releasing 91 

primary microplastics to the environment (Ou and Zeng 2018; Gündoğdu et al. 2018). 92 

Fourthly, the largest rivers in the world (also called mega-rivers) are located in developing 93 

countries (see Latrubesse et al. 2008). The great discharges, basin sizes and poor sanitary 94 

conditions of people living in these catchments, potentially increase the amount of plastic 95 

debris flowing through mega-rivers to the ocean. However, information about plastic 96 

pollution in mega-rivers of developing countries is still very scarce (Pazos et al. 2017, 97 

Blettler et al. 2018), even though all the plastic input conveyed by rivers is eventually 98 

released into oceans (Morritt et al. 2014) or accumulated in estuaries (Vermeiren et al. 99 

2016). 100 

Fifthly, the ingestion of microplastics by fish, and the associated risks to human health, 101 

remain major knowledge gaps (Santos Silva-Cavalcanti et al. 2017), even though the major 102 

inland fisheries are located precisely in the most plastic polluted rivers (Lebreton et al. 103 

2017) of the Global South (FAO 2016). The above suggests an urgent need to focus 104 

monitoring efforts in the most polluted rivers, specially where inland fisheries are crucial 105 

for local consumption and economies, as it is the case with the Paraná River. 106 

Taking into account the rationale outlined above, the objectives of this study were to 107 

determine: i) the amount, origin and composition of plastic debris deposited in sediments of 108 

a mega-river (Paraná River), ii) the plastic input conveyed by an urban stream joining the 109 

Paraná River; iii) quantitative relationship between macro, meso and microplastics in 110 

https://www.sciencedirect.com/science/article/pii/S026974911632396X#!
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sediments; iv) microplastic ingestion by Prochilodus lineatus, an iliophagous fish (that 111 

feeds mud containing detritus and associated organisms). 112 

 113 

2. MATERIALS AND METHODS 114 

2.1. Study area 115 

La Plata basin is one the ten largest fluvial basins of the world, draining five countries 116 

(southern part of Brazil, the northern of Argentina, Bolivia, Uruguay and Paraguay), 117 

accounting for 17% of the surface area of the South America and supporting 19 large cities 118 

(with a population greater than 100,000 inhabitants). The Paraná River is the largest river of 119 

this basin, ranking ninth among the largest rivers of the world, according to its mean annual 120 

discharge to the Atlantic Ocean (18,000 m
3
 s

-1
; Latrubesse 2008). However, this river is 121 

also one of the world’s top-ten rivers at risk due to anthropogenic pressure (Wong et al. 122 

2007). 123 

The study took place near Paraná city (Argentina), located on its eastern shore of the river, 124 

with a population of about 300,000 inhabitants. The collection, processing and final 125 

disposal of waste of this city is still deficient resulting in strongly polluted urban streams. 126 

We selected three sampling areas in the Paraná River bank sediments: upstream of the city 127 

(Escondida beach), in the city (Thompson beach, a municipal public beach), and in an 128 

island located in front of the city (Curupí island; Figure 1). Thompson is a recreational 129 

beach influenced by the mouth of a strongly polluted urban river (“Las Viejas” stream) that 130 

flows through the Paraná city. Fish were caught in the vicinity of the sampling sites. Due to 131 

flow conditions, we expected that the upstream site would be the least polluted, followed by 132 

Curupí island, whereas Thompson beach, is influenced by the strongly polluted “Las 133 

Viejas” stream crossing the city. 134 
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 135 

>>>>>> Figure 1. 136 

  137 

2.2. Sampling. 138 

 139 

We selected 2 transects of 50 m in length and 3 m wide for the macroplastic survey (Noik 140 

and Tuah 2015) in each sampling area. Transects were selected parallel to the riverbank, 141 

randomly chosen, and covering more than a 20% of the shoreline section (Lippiatt et al. 142 

2013). All visible macroplastic items on the surface of each transect were collected by 143 

hand.  144 

Plastic debris was sorted according to size and classified as macroplastic (> 2.5 cm), 145 

mesoplastic (5 mm to 2.5 cm), or microplastic (≤5 mm). This classification is currently 146 

used by the UNEP (Cheshire et al. 2009), NOAA (Lippiatt et al. 2013) and MSFD (2013). 147 

We collected mesoplastic debris from triplicate samples (1 m
2
) randomly located into each 148 

macroplastic-transects (after macroplastic being picked up; Lippiatt et al. 2013). 149 

Mesoplastics particles were carefully removed from the top 3 cm of sediments of each 1m
2
 150 

quadrat (using stainless steels of 5 mm mesh size to sieved the sediments). In a similar way, 151 

we took microplastics samples also per triplicate from the macroplastic-transects but using 152 

smaller quadrats (0.25 x 0.25m x 3cm depth; Klein et al. 2015). Mesoplastic particles were 153 

hand-picked in the field using stainless steels (5 mm mesh size), while microplastic 154 

samples were directly transferred to the laboratory for processing.  155 

All sampled (macro and mesoplastics and sediment with microplastics) were transferred to 156 

the laboratory for further analyses (see below).  157 
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Prochilodus lineatus (locally called “Sábalo”) is a dominant detritivorous fish species of 158 

great importance for commercial and artisanal fishing (Espínola et al. 2016). For the 159 

analysis of fish, we obtained 21 fresh specimens that were caught with gill nets of 14 and 160 

16 cm between opposite knots at the respective sites of the study area, respecting local 161 

policies. Fish were caught in the early morning hours and transported to the laboratory on 162 

ice within 3 hours. For each individual, total length (cm) was measured and the body total 163 

weight (g) was also determined. Afterward, fish samples were cut open using a scalpel and 164 

gastrointestinal tracts were removed and immediately placed in clean glassware in order to 165 

minimize the risk of laboratory contamination (Bessa et al. 2018). In addition to the 166 

methods described below, we also noted the color of the eaten particles in order to identify 167 

potential preferences. 168 

In order to avoid contamination from microplastics, potentially present in the laboratory 169 

environment, the use of cotton lab coats, gloves and mask was mandatory. Moreover, 170 

glassware and working place were cleaned with solution of ethanol (96%) before starting 171 

all experiments in order to conserve a sterile environment. From the beginning of the 172 

operations until the observation under the microscope, the samples were covered with 173 

aluminium foil.  174 

The organic matter presents in the samples was digested with hydrogen peroxide (H2O2) 175 

(30%) at 60°C (Pazos et al. 2017; Jabeen et al. 2017). According to Sujathan et al. (2017), 176 

H2O2 is an oxidizing agent that no changes or bleach the structure of microplastic particles. 177 

According to our environmental principles, all sampling campaigns were performed using 178 

kayaks (zero emission and free noise pollution). 179 

 180 

2.3. Samples analysis and processing. 181 



8 

 

Macroplastic particles were washed, counted and classified in the laboratory (item by item). 182 

The classification accounted for their functional origin (e.g. food wrappers, packaging, 183 

beverage bottles, shopping bags, personal care products, etc.) following the NOAA 184 

(Lippiatt et al. 2013) and resin composition. The ASTM International Resin Identification 185 

Coding System (RIC 2016) was used to recognise the plastic resin used in manufactured 186 

macroplastics (Gasperi et al. 2014). As the later procedure was not always possible to use 187 

(sometime this code is lost or not clearly visible), we used a FT‒IR Spectrophotometer 188 

Shimadzu IR Prestige 21™ to identify the plastic resin (Song et al. 2015).  189 

According to Gündoğdu and Çevik (2017), mesoplastics were counted and classified in: 190 

Styrofoam, hard plastic, fishing line, and films. 191 

Microplastic separation was performed following the method proposed by Masura et al. 192 

(2015). Thus, full samples were dried at 60°C per 24hs, weighed and sieved through a 193 

stainless steel sieve of 350 μm mesh size using a Retsch™ sieve shaker. The remaining 194 

material was transferred to a 1L beaker for wet 30% peroxide oxidation (H2O2), and located 195 

on a hot plate set at 60°C until all organic material digested (Yonkos et al. 2014). After 196 

completion, H2O2 was washed using distilled water through a 350 μm mesh size. 197 

Afterwards, a concentrated saline NaCl solution (1.2 g cm
-3

) was added and strongly stirred 198 

for about one minute (Hidalgo-Ruz et al. 2012). Afterward, the supernatant with floating 199 

microplastics was extracted and washed with distilled water for further processing. This last 200 

step was repeated as many times as it was needed in order to catch every floating plastic 201 

particle.   202 

Microplastics were separated from other materials (present in the supernatant) and 203 

classified under a Boeco™ zoom stereo microscope and a Nikon™ binocular microscope 204 

(10−40x). We used the criteria suggested by Norén (2007) to identify microplastics. 205 
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However, items of doubtful origin were analysed with a FT-IR Spectrophotometer in order 206 

to confirm (or reject) their plastic composition (Frias et al. 2014; Li et al. 2016). Spectra 207 

ranges were set at 4000‒400 cm
-1

, using the IRsolution Agent software. The resulting 208 

spectra were directly compared with the reference library databases. 209 

Microplastics were classified in Styrofoam (trademarked brand of closed-cell extruded 210 

polystyrene foam), hard plastic, film, fiber and fiber-roll (very large fibers twisted), 211 

according to Castañeda et al. (2014) and Gündoğdu and Çevik (2017).  212 

 213 

2.4. Data analyses 214 

Tables and figures were created to identify presence, abundance and type of plastic debris 215 

in order to compare the sampling sites between each other. Correlations were performed 216 

among the different plastic seize ranges. In order to test spatial patterns of similarity in the 217 

abundance and type of microplastics, a Canonical Analysis of Principal (CAP) coordinates 218 

was performed. The CAP is a constrained ordination analysis that calculates unconstrained 219 

principal coordinate axes followed by canonical discriminant analysis on the principal 220 

coordinates to maximize the separation between predefined groups (Anderson, 2004). The 221 

Bray-Curtis dissimilarity index and 999 permutations were the parameters selected in this 222 

procedure. Subsequent one-way Permutational Multivariate Analyses of Variance 223 

(PERMANOVA) (Anderson, 2001) was conducted to determine differences between scores 224 

of the CAP Axis 1. 225 

Statistical analyses were carried out using the CAP software Version 1.0 (Anderson, 2004) 226 

and the MULTIV software, version 2.4.2 [Pillar, 2004], with a statistical significance level 227 

was p < 0.05. 228 

 229 
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3. RESULTS 230 

3.1. Macroplastics. 231 

We recorded a total of 18 categories of macroplastic debris (based on the NOAA’s 232 

classification; Lippiatt et al. 2013); being bag, foodwrapper, Styrofoam and beverage bottle 233 

the most abundant particles, representing almost the 80% of the total (Table 1). 234 

 235 

>>>>> Table 1. 236 

 237 

The three sampling sites have strong differences in amount (number of items) and type of 238 

macroplastic debris (Figure 2a). Thus, Escondida beach (4 km upstream Paraná city) 239 

showed the lower values (52 macro-items per transect; 150m
2
), with a heterogeneous 240 

composition of plastic types (13 different categories) but dominated by fishing lines (23 241 

items). The Curupí island (in front of the Paraná city), was dominated by only 2 types of 242 

macroplastics: beverage bottles (81) and Styrofoam fragments (99). Finally, the Thompson 243 

beach (slightly downstream to the Las Viejas outlet) showed a clear dominance of shopping 244 

bags (490; many different colors and textures) and food wrappers (202.5), having the 245 

highest amount of plastics: 757.5 items per transect (i.e. 5.05 macroplastic particles per m
2
), 246 

14 times more than the Escondida beach. By far, the most abundant plastic resins were 247 

HDPE, LDPE, PP and PS in the Thompson beach, EPS and PET in the Curupí island and 248 

Nylon in the Escondida beach. Cellulose acetate, Polyester and PVC resins were found at 249 

low densities.  250 

 251 

>>>>> Figure 2. 252 

 253 



11 

 

3.2. Mesoplastics. 254 

In contrast to macroplastics, mesoplastics had the highest abundance in the Escondida 255 

beach (55.6 items m
-2

), followed by Curupí island (35.5 items m
-2

) and Thompson beach 256 

(only 18.5 particles per m
2
; Figure 2b). The average abundance of mesoplastic was close to 257 

46 items m
-2

, being foam plastic (Styrofoam) the dominant category (41.1 items m
-2

) (Table 258 

2). 259 

 260 

>>>>>Table 2. 261 

 262 

3.3. Microplastics. 263 

Films and fibers were the dominant items in the microplastic samples (Table 3). An average 264 

of 4654 microplastic fragments (per m
2
) was found in shoreline sediments of the three 265 

sampling (beaches and island). An average of 12687 micro-particles m
-2

 (81% of the total) 266 

were recorded in the Thompson beach, but only 131 in the Curupí island (Figure 2c). 267 

Microplastic film and fibber were extremely abundant in the Thompson beach.
 

268 

 269 

>>>>> Table 3. 270 

 271 

The CAP (and subsequent PERMANOVA) showed significant differences in abundance 272 

and type of microplastics between the three beaches (sampling sites) (p-values= <0.003; 273 

Sum of squares (Q) within groups= 2.829) (Figure 3). 274 

 275 

>>>>> Figure 3. 276 

 277 
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Table 4 shows that the density values of the size classes (macro, meso and microplastic) 278 

were not surrogate of each other (no correlations were detected). While some weak 279 

tendencies could be detected (ex.: high concentration values of macro and microplastics in 280 

the Thompson beach), they were not statistically significant. Particularly, the mesoplastic 281 

abundance showed a completely independent tendency. For ex.: lowest values of 282 

macroplastic were found in the Escondida beach, but mesoplastic showed the highest 283 

concentration in the same beach. While the highest concentrations of macro- and 284 

microplastics were found in the Thompson beach, the mesoplastic concentration there was 285 

the lowest one. 286 

 287 

>>>>> Table 4. 288 

 289 

3.4. Fish ingestion. 290 

All fish were contaminated with at least one microplastic. The number of items recorded in 291 

the digestive tracts of adult P. lineatus averaged 9.9 microplastic particles, The maximum 292 

value of microplastic particles recorded in an individual was 27 (Figure 4). Particle sizes 293 

ranged between 0.5 to 3mm and recorded colours were blue (most of them), black, yellow, 294 

red and transparent. 295 

 296 

>>>>> Figure 4. 297 

 298 

4. DISCUSSION 299 

4.1. Massive plastic concentration: geo-political issues and societies. 300 
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Macroplastic materials are the most visible form of plastic pollution. Blettler et al. (2017) 301 

reported an average of 172.5 macroplastic items per transect of 150 m
2
 (~1.15 items m

2
) in 302 

a floodplain lake of the Paraná River, located only 18km from our sampling area. In the 303 

present study, we found almost twice that amount: 340.8 macroplastics per 150 m
2 

(~2.27 304 

m
2
).  305 

While several studies on macroplastics have been performed in water surface of rivers 306 

(Gasperi et al. 2014; Faure et al. 2015; Baldwin et al. 2016; Lahens et al. 2018) and lakes 307 

(Faure et al. 2015), macroplastic studies in riverine sediments are still scare, especially for 308 

beaches. Some examples include Imhof et al. (2013) in the Garda lake (Italy) and Faure et 309 

al. (2015) in 6 lakes of Switzerland. However, direct comparison with the present study are 310 

unfeasible since these authors considered macroplastics as the particles higher than 5mm 311 

(including mesoplastic size). 312 

The great amount of macroplastic debris recorded in the Thompson beach and Curupí 313 

island, as well as the origin of them (household waste, Table 1), suggest a deficient waste 314 

collection, processing and final disposal in the Paraná city. Waste management is one of the 315 

key environmental issues concerning urban hydrosystems on a global scale, however, in the 316 

Global South it still remains strongly based on uncontrolled dumping and/or littering 317 

(Guerrero et al. 2013). As a result, serious environmental problems (Al-Khatib et al. 2010) 318 

and increasing plastic pollution (Battulga et al. 2019) occur, particularly in freshwater 319 

systems. Municipalities in low-income countries are spending lower proportion of their 320 

budgets on waste management, and yet over 90% of waste in low-income countries is still 321 

openly dumped (Kaza et al. 2018). In addition, increasing population levels and the rise in 322 

consumption levels have greatly accelerated the solid waste generation rate in Argentina 323 
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(waste generation rates: 1.14 kg/capita/day; Kaza et al. 2018). The present study shows, in 324 

part, this global trend.  325 

Most of the macroplastics recorded in the present research were shopping bags, followed by 326 

food wrappers and foam packaging (almost 80%; Table 1). The first communities to 327 

embrace the anti-plastic bag norm were in the Global South, with those in the Global North 328 

only doing so much more recently (Clapp and Swanston, 2009). However, an anti-plastic-329 

bag municipal ordinance was not adopted in the Paraná city before 2017.  330 

Results from available microplastics studies in freshwater systems are extremely variable 331 

according to the used methodology used (e.g. grab sampler, sediment core, manta net, 332 

pump, etc), size range reported (including nanoplastic), reporting unit (e.g. m
2
, m

3
, l, kg), 333 

environment (river, lake, reservoir, estuary, sewage, etc), and sampling compartment (water 334 

surface or column, bottom or beach sediment, etc). As a result, comparisons between 335 

worldwide studies are very difficult. We found an average of 5239 microplastics m
-2 

(size 336 

range: 0.35-5mm) in bank sediments of the Paraná River, ranging from only 75 to a 337 

maximum of 34443 microplastics m
-2

 (Table 3). Castañeda et al. (2014) found about 13832 338 

m
-2 

polyethylene microbeads, retained by a 0.5 mm sieve, from industrial effluents in the 339 

St. Lawrence River sediments (Canada). Klein et al. (2015) have record about 228-3763 340 

microparticles kg
-1 

in shore sediments of the Rhine and Main rivers in Germany 341 

(microplastic size: 0.2-5 mm). Moreover, Su et al. (2016) have reported a range of 15-1600 342 

microplastics l
-1

 (>0.3 mm) in the Middle-Lower Yangtze River (China), Wang et al. 343 

(2016) recorded 178-544 microplastics l
-1

 (<5 mm) in the Beijiang River sediments, and 344 

Peng et al. (2017) found 410-1600 microplastics kg
-1 

(0.05-5 mm) in some rivers of 345 

Shanghai, most of them fragments, spheres and fibers.  346 
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Blettler et al. (2017), using the same methodology as the present study, have recorded a 347 

much lower average of 704 microplastics m
-2

 (size range: 0.35-5mm) in beach sediments of 348 

lentic environments of the Paraná River (a floodplain lake located 18 km from the sampling 349 

area of the present study). Xiong et al. (2018) reported 50-1292 microplastics m
-2

 (>0.1 350 

mm) in the Qinghai Lake (China); most of them were films, fibers and foams. 351 

In spite of the limitations and weaknesses of the above comparisons (i.e. different size 352 

ranges, units, environments), available information suggest a significant microplastic 353 

pollution present in sediments of the Paraná River.  354 

The variation of microplastics abundance and type between sampling sites was statistically 355 

significant (Figure 4), showing a clear differentiation per sampling beach. Thompsons 356 

beach showed the highest concentration of microplastics, while Escondida revealed the 357 

most heterogeneous distribution (sampling stations ranged from low to high microplastic 358 

concentration). 359 

Microplastic can occur either in a primary (beads) or secondary form (originating from the 360 

breakdown of larger plastic items; Cole et al. 2011). The relative importance of primary 361 

versus secondary sources of microplastics is still unknown. We found both of them, but the 362 

secondary ones were considerably more abundant (Table 3).  363 

Particular attention should be paid to synthetic clothes, which are an important source of 364 

fibers via washing (Conkle et al. 2018). In our study, fiber was the only primary 365 

microplastic (Cole et al. 2013) recorded. However, it should be noted that some authors 366 

consider fiber as secondary (e.g.: Dris et al. 2015). Other primary microplastics such as 367 

microbeads, capsules or pellets (used in cosmetics and personal care products, industrial 368 

scrubbers used for abrasive blast cleaning and virgin pellets used in plastic manufacturing 369 

processes, respectively) were absent. Similar lack of microbeads was observed in the 370 
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Yangtze River (Zhang et al. 2015) and the Three Gorges Reservoir (Zhang et al., 2017) in 371 

China, the Saigon River in Vietnam (Lahens et al. 2018), and the Paraná River estuary in 372 

Argentina (Pazos et al. 2018). Nevertheless, a great presence of microbeads was observed 373 

in the Rhine and St. Lawrence Rivers (Mani et al. 2015 and Castañeda et al. 2014, 374 

respectively) and in Laurentian Great Lakes (Eriksen et al. 2013). In some countries 375 

benefiting from advanced waste treatment facilities (mainly in Europe and North of 376 

America), secondary microplastics releases are even lower than primary microplastics 377 

(Gouin et al. 2015). Losses of primary microplastics can occur during the production, 378 

transport or recycling stages of plastics, or during the use phase of products containing 379 

microplastic (e.g. microbeads originated from facial cleansers widely used in developed 380 

nations; Napper et al. 2015; Gouin et al. 2015). This contrasts with secondary microplastics 381 

that mostly originate from mismanaged waste during the disposal of products containing 382 

plastics (Boucher and Friot 2017). The absence of microbeads in the Paraná River system 383 

could be explained by these differences in consumer habits and waste management between 384 

societies and countries. Herein, almost 50% of the recorded microplastics were film 385 

particles (as a secondary product of advanced bag breakdown process), 33.1% fibers (used 386 

in textiles) and 18.7% resulting from larger particles of plastic of uncertain origin breaking 387 

down into smaller items (probably beverage bottle, foodwrapper and foams) (Table 3). In 388 

contrast, other studies in rivers from developing countries have reported a dominance of 389 

microplastic fibers (Zhang et al. 2015; Lahens et al. 2018), even in the Paraná River estuary 390 

(Pazos et al. 2018).  391 

The variable ratios between macro- or mesoplastics in our study have shown that these data 392 

cannot serve as surrogates for microplastics monitoring (Table 4). This is important since 393 
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surveys of macroplastics debris can be easily conducted by volunteers, who have played 394 

important roles in many debris monitoring programs (Ribic et al. 2012). 395 

 396 

4.2. Role of urban streams in plastic dissemination. 397 

Urban rivers and streams suffer from multiple interactive stressors, especially in the Global 398 

South (Wang et al. 2012; Wantzen et al. 2019). In this study, Las Viejas urban stream 399 

seems to play a crucial role transporting huge amounts of waste plastics and depositing 400 

them into the Thompson beach, immediately downstream to the confluence with the Paraná 401 

River (Figure 1d). This sampling area showed the highest concentration of macro and 402 

microplastic debris (Figure 2 and 4). Las Viejas stream flows all through the Paraná city, 403 

concentrating and transporting the municipal solid waste improperly managed. According 404 

to Xu et al. (2019) the development of sewer systems has not caught up with the 405 

urbanization speed in developing countries, with serious consequences for urban river water 406 

quality. Thus, many urban rivers become the end points of plastic pollution (McCormick et 407 

al. 2014, 2016). In the same way as rains and severe floods can dramatically increase the 408 

plastic levels in the sea (Gündoğdu et al. 2018), it is highly probable that the same 409 

phenomenon operates in urban streams discharging to large river systems. 410 

On the other side, the Curupí island showed an average of 190 macroplastics per transect 411 

(against 780 in the Thompson and only 52 in the Escondida beach; Table 1). This sampling 412 

site was dominated by two domestic items: beverage bottles and foam packaging fragments 413 

(Styrofoam; Figure 2). We hypothesize that these plastics arrived from Las Viejas stream. 414 

Floating waste is transported by the Paraná River current and dominant southern winds 415 

unto the Curupí island shores. This process could be facilitated by the high buoyancy of 416 

these items (EPS density: 11-32 kg m
-3

; while density of PET is 950 kg m
-3

 bottles initially 417 
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float due to the air trapped inside). Otherwise, shopping bags and food wrappers (most 418 

abundant items in the Thompson beach) were not recorded in the island which is, probably, 419 

related to their low buoyance (density of HDPE: 950 kg m
-3

; LDPE: 917-930 kg m
-3

, PP: 420 

946 kg m
-3

; PS: 1066 kg m
-3

). 421 

Finally, there are no urban river confluences in the Escondida beach, which was the least 422 

polluted sampling area. This beach showed a completely different plastic debris 423 

composition. While shopping bags, Styrofoam and beverage bottles were present, the 424 

dominant item was fishing line. It suggests that the main impact is given by the beach 425 

users, most of them artisanal and sports fishermen, and not by municipal waste poorly 426 

treated coming from large cities upstream.  427 

The most common plastic polymers recorded in this study were HDPE, LPDE, PP, PS and 428 

EPS, which can be very harmful to wild fauna (Kyaw et al. 2012). Moreover, PP and PS 429 

have been extensively recorded in food wrappers particles (Table 1). Finally, EPS (often 430 

referred as Styrofoam
TM

) products (takeout containers, dispensable cups, foam trays, etc) 431 

were widespread found in our study (Table 1). EPS is commonly reported as one of the top 432 

items of debris recovered from shorelines and beaches worldwide (Lee et al., 2013; Ocean 433 

Conservancy 2017). As a result, EPS products are now discussed for a ban in several 434 

countries (UNEP 2018). In the present study, EPS was the most abundant mesoplastic 435 

debris (almost 90%; Table 2). Zbyszewski et al. (2014) and Driedger (2015) reported a 436 

similar proportion in mesoplastics from the Great Lakes.   437 

 438 

4.3. Ingestion of plastic by fish and potential impacts 439 

Today, the ingestion of plastic has been reported in approximately 150 fish species 440 

worldwide (Jabeen et al. 2017), causing internal blockages and injury to the digestive tract 441 
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of fish (Cannon et al. 2016; Nadal et al. 2016). We recorded microplastics in the digestive 442 

tract of 100% of the sampled P. lineatus specimens, corroborating a similar study in the 443 

Paraná River estuary (Pazos et al. 2017). The latter could be explained from the 444 

detritivorous feeding strategy of this species and the high amount of microplastics recorded 445 

in the study area. Thus, the occurrence frequency of microplastics in fish from Paraná River 446 

seems to be higher than in other South American rivers. For example, in the Amazon 447 

estuary and northern coast of Brazil microplastics were found in 13.8% of digestive tracts 448 

examined (Pegado et al., 2018), 23 % and 13.4 % in the Goiana estuary (Possatto et al. 449 

2011 and Ramos et al. 2012, respectively). However, we recognize that the low number of 450 

specimens studied here does not allow generalizations. 451 

In our study, most of the recorded microplastics in fish were fibers (90%). In agreement, 452 

several studies worldwide have also reported greater number of ingested fibers compared to 453 

other microplastic types (Neves et al. 2015; Bellas et al. 2016; Nadal et al. 2016; Pazos et 454 

al. 2017). The reasoning behind the dominance of fibers is the diverse nature of this 455 

microplastic type, which may originate from the degradation of clothing items, furniture 456 

and fishing gear. Indeed, washing (through a washing machine) a single item of synthetic 457 

clothing resulted in the release of about 2000 microfibers (Browne et al. 2011; Carney 458 

Almroth et al. 2018). Mesoplastics ingested by fish were not recorded in this study. In fact, 459 

this range size has been scarcely recorded in fish digestive tracts (Jabeen et al. 2016). 460 

 461 

5. CONCLUSIONS  462 

1. The recorded plastic debris concentration (macro, meso and microplastics) was several 463 

times higher than the values previously reported in the Paraná River floodplain. 464 

Comparisons with other studies worldwide are still difficult, since methodological 465 
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protocols are not yet standardized; however, they suggest massive pollution levels in this 466 

mega-river of South America. 467 

2. Macroplastics recorded herein have a domestic origin (shopping bags, food wrappers, 468 

beverage bottles and packaging foam fragments), suggesting an inadequate waste 469 

collection, processing and final disposal in the region, which is regrettably recurrent in the 470 

Global South. The further research must not overlook macroplastics in this geopolitical 471 

region, particularly if reliable estimates of global plastic waste entering to the ocean from 472 

rivers are intended. 473 

3. Secondary microplastics (originated from the breakdown of larger plastic items) were 474 

more abundant than primary ones (manufactured as microbeads, capsules, pellets used in 475 

industry). Microbeads (commonly found in industrialized regions) were absent in the 476 

Paraná River. This finding contrasts with studies performed in freshwater environments of 477 

developed countries, suggesting a difference in consumer habits and levels of 478 

industrialization between societies and economies from the developed and developing 479 

world. 480 

4. Most of the recorded plastic debris proceed from a highly polluted urban stream, which 481 

runs through the Paraná city. Urban rivers, particularly in the Global South, are vulnerable 482 

to different urban processes and activities that cause pollution and degradation of the water 483 

ecosystem.  484 

5. We recorded microplastic particles in the digestive tract of 100% of P. lineatus 485 

specimens, most of them were fibers. While we recognize the low number of collected fish, 486 

this finding evidenced that microplastics have penetrated in the aquatic food webs and 487 

ecological niches in the Paraná River, reinforcing the necessity of more studies.   488 
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6. Contrary to our expectations, the macroplastic or mesoplastic items would not serve as 489 

surrogates for microplastic surveys (and vice versa), suggesting that all plastic debris sizes 490 

should be considered in further studies. 491 
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CAPTIONS 754 

Figure 1. Location of the Paraná River (study area, Entre Ríos Province, Argentina) in the 755 

Global South (a). Escondida beach (b), Curupí island (c), and Thompson beach (at the 756 

confluence of Las Viejas urban stream with the Paraná main channel) (d). 757 

 758 

Figure 2. Bubble chart showing macro- (a), meso- (b) and microplastic (c) densities at each 759 

sampling area. Where: f-w: foodwrapper, sty: Styrofoam, b-b: beverage bottle, fishing-line, 760 

h-p: hard-plastic piece, fib: fibber. 761 

 762 

Figure 3. Ordination plot of the Canonical Analysis of Principal coordinates (CAP) 763 

showing significant differences in abundance and type of microplastics between the three 764 

sampling sites (Escondida beach, Thompson beach, Curupí island). 765 

 766 

Figure 4. Microplastic particles (fibers and others) found in the digestive tracts of P. 767 

lineatus. Number of items (a), fibers and a piece of plastic film (b). 768 
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 769 

Table 1. Type (origin/use), density per transect (150 m
2
), standard deviation, abundance 770 

(%) and resin composition of macroplastic debris (total and per sampling site). Where, 771 

HDPE: high-density polyethylene; LDPE: low-density polyethylene; PP: Polypropylene; 772 

PS: Polystyrene; EPS: Expanded polystyrene; PET: Polyethylene terephthalate; Nylon: dry 773 

polyamide; PE: Polyethylene; PVC: Polyvinyl chloride. 774 

 775 

Table 2. Type, density (m
2
), standard deviation, and abundance (%) of mesoplastic debris 776 

per sampling site.  777 

 778 

Table 3. Type, density (m
2
), standard deviation, and abundance (%) of microplastic debris 779 

per sampling site.  780 

 781 

Table 4. Correlations among the different plastic seize ranges.  782 

 783 
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  Marine environment Freshwater 

Topic of 

research 

Entanglement (%) 98.3 1.6 

Nest-material (%) 16.6 0 

 Freshwater microplastic  Freshwater macroplastic  

Macroplastics (%) 80 20 
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