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Abstract. Land cover has been changing rapidly throughout the world, and this 
issue is important to researchers, urban planners, and ecologists for sustainable 
land cover planning for the future. Many modeling tools have been developed 
to explore and evaluate possible land cover scenarios in future and time scales 
vary greatly from one study to another. The main objective of this study is to 
test land cover change prediction at different time scales in a Mediterranean 
catchment in SE France. Land cover maps were created from aerial photographs 
(1950, 1982, 2003, 2008, and 2011) of the Giscle catchment (235 Km2) and sur-
faces were classified into four land cover categories: forest, vineyard, grassland, 
and built area. Explanatory variables were selected through Cramer’s coeffi-
cient. Different time scales were tested in the study: short (2003-2008), inter-
mediate (1982-2003), and long (1950-1982). To test the model’s accuracy, 
Land Change Modeler (LCM) of IDRISI was used to predict land cover in 2011 
and predicted images were compared to a real 2011 map. Kappa index and con-
fusion matrix were used to evaluate the model’s accuracy. Altitude, slope, and 
distance from roads had the greatest impact on land cover changes among all 
variables tested. Good to perfect level of spatial and perfect level of quantitative 
agreement were observed in long to short time scale simulations. Kappa indices 
(Kquantity = 0.99 and Klocation = 0.90) and confusion matrices were good for inter-
mediate and best for short time scale. The results indicate that shorter time 
scales produce better predictions. Time scale effects have strong interactions 
with specific land cover dynamics, in which stable land covers are easier to 
predict than cases of rapid change and quantity is easier to predict than location 
for longer time periods. 

Keywords: Time scale, Land cover change modeling, Mediterranean Europe, 
Land change Modeler (LCM).  

1 Introduction 

1.1 Land Cover Change Modeling 

Land cover is changing rapidly throughout the world, and it has become an important 
issue for urban planners, ecologists, economists, and resource managers to evaluate 
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environmental change and establish sustainable development planning [7, 10, 17]. 
Land cover change models are able to identify location and quantity of change,  
predict land cover change considering past changes, test explanatory variables, and 
simulate management policies. For this reason, many interdisciplinary research 
projects have been initiated for land cover change modeling, measuring regional and 
global land cover change, forecasting future conditions, and planning for sustainable 
development [28]. As a result, researchers have created a large set of operational 
modeling tools to implement prediction and exploration of possible land cover change 
trajectories and land cover planning and policy in recent years [29]. Moreover, land 
cover change, urban growth, and spatial modeling have drawn considerable interest in 
the last two decades due to better computing power, availability of spatial data, and 
the need for innovative planning tools for decision support [7]. Advanced urban and 
land cover change modeling techniques have been included in many GIS software 
package.  

1.2 The Role of Time Scale in Land Change Prediction 

The selection of prediction and validation time intervals has a great impact on predic-
tion accuracy [6]. Prediction accuracy can depend on the rate and process of transi-
tions in both time intervals. Modeling of land cover change using a coarser temporal 
scale may fail to understand landscape change patterns properly and can hamper 
model performance [2], so most studies on future land cover change use short to in-
termediate historical time scales (5–15 years). Many studies on urban land cover 
change modeling use short time scales that achieve better prediction [1, 11, 18, 24]. 
Some studies use intermediate time scales [13, 14, 15, 20, 25, 26, 27] and very  
few studies use long time scales to simulate urban land cover [4] and multiple land 
cover change [10, 21]. Average historical and prediction time periods are about 10 
and 12 years, respectively, analyzing 25 recent studies on land cover change using 
CA-Markov and Multi-Layer Perceptron (MLP). 

Very few studies were found on the comparison of the impact of historical time pe-
riods on land cover prediction using different time scales. To investigate the impact of 
time interval on prediction accuracy in Gorizia-Nova Gorica (Italy), urban area was 
predicted for different years (2005 to 2010) from initial conditions in 1985 and 2004 
[5]. The authors found that prediction accuracy increased with decreasing prediction 
time period.  

1.3 Objectives 

The objective of this paper is to explore the impact of temporal scales on land cover 
change modeling for predicting land cover change in a Mediterranean catchment in 
SE France. Land cover maps of 2011 were predicted from different time scales (1950-
1982, 1982-2003, and 2003-2008) and compared with the digitized land cover map of 
2011 to measure model accuracy. The study is part of a larger program to evaluate the 
impacts of land cover change on runoff and soil erosion at the catchment scale. 
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2 Methods 

Study area, land change modeling steps, and data are discussed in this section. 

2.1 Site Description 

The study area (about 235 km²) is situated in the Var department of SE France near 
the Gulf of St. Tropez. The western part of the watershed (about 70% of the catch-
ment) is forest (mostly pine and oaks), and the topography is uneven with the highest 
elevation at about 650 m. The lower part of the catchment is a gently sloping alluvial 
plain. The catchment area is characterized by a Mediterranean climate with hot dry 
summers, and cooler rainier winters. Average temperatures range between 22°C to 
26°C in summer and 5°C to 10°C in winter. The mean annual rainfall is about 900 
mm, and the main rainy season is from October to January [9]. Several tributaries 
flow into the Giscle main channel, including the Môle, the Grenouille, the Tourre, and 
the Verne. Three main municipalities are located within the catchment: Cogolin, Gri-
maud, and La Môle. 

2.2 Land Change Modeling Procedure 

Land Change Modeler (LCM) in IDRISI [8] was originally designed to manage  
impacts on biodiversity, and analyze and predict land use and land cover changes. 
Only thematic raster images with the same land cover categories listed in the same 
sequential order can be inputted in LCM for analysis, and background areas must be 
identified on maps coded with 0. LCM evaluates land cover changes between Time 1 
(initial time) and Time 2 (second time). It calculates the changes, and displays the 
results with various graphs and maps. Finally, it predicts future (Time 3) land  
cover on the basis of relative transition potential maps. LCM was used in this study to 
identify explanatory variables, create transition potentials, and predict future land 
cover maps.  

Digital Data and Land Cover Categories 
Land cover maps were digitized from grey scale ortho-rectified aerial photographs of 
1950 and 1982, and color ortho-photos of 2003, 2008, and 2011. Spatial resolution for 
all aerial photographs was reduced to 1 m from 0.5 m to facilitate data manipulation 
during digitization. Surfaces were initially characterized into five categories: forest 
(F), vineyard (V), grassland (G), urban (U) and suburban (S), but the last 2 categories 
were collapsed into a single built area (B) class to improve category attribution as 
described below. Methods of land cover digitization, classification, and characteristics 
of land cover classes were discussed in [23]. Land cover classification was facilitated 
by numerous field visits, and validation was carried out through a group of 15 third 
year Geography students of the University of Nice Sophia Antipolis. Each student 
was provided with a sample of 20 selected cells to identify land cover class; each 
sample had a roughly equal number of cells in each category, and there were 5  
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students for each year (1950, 1982, and 2003). This was the students’ first contact 
with digital air photos, so the validation is considered a worst case scenario. 

Slope was created from a 25 m Digital Elevation Model (DEM). Road and stream 
networks were screen digitized from the aerial photographs of 2008. Only major roads 
were taken into account, so road network was considered constant for all time periods. 
In order to make the land cover maps compatible with the explanatory variables, celle 
size was converted to 25 m. 

Explanatory Variables and Constraints  
Topographic and distance variables have been used to simulate land cover change 
studies throughout the world [16, 18, 19, 27]. In an earlier study [23], major topo-
graphic and distance variables were identified. These include the following: slope, 
altitude, distance from roads, distance from built area (initial year), and distance from 
streams. In addition, three constraints and incentives (forest to built area, vineyard to 
built area, and grassland to built area) were included in the prediction process. These 
were created from the “Plan Local d’Urbanisme” (PLU) and “Schéma de Coherence 
Terrtoriale” (SCOT). The PLU is the local urban plan in France; it determines land 
use guidelines. The SCOT integrates different policies regarding urban planning: 
social and private housing, communication infrastructure and public transport, com-
mercial infrastructure, and environment protection. Constraints and incentives are 
multiplied by the corresponding transition potential during modeling. In this study, 
values of 0 on the map were used to define absolute constraint, and 1.1 was used for 
incentives to emphasize the expansion of built areas in suitable selected zones for 
development according to the regional plan. In addition, distance from streams was 
also added with above mentioned constraints. Disincentive areas situated within a 
distance from streams of 0-25 m, and 25-50 m were defined by values of 0.6 and 0.8, 
respectively to maintain the historical trend of less urbanization near stream networks 
in the study area according to [23]. 

Selection of Explanatory Variables  
The simulation of multiple categories of land cover change depends on several expla-
natory variables [18]. Explanatory variables that were drivers of past land cover 
change are expected to be an influential force in future changes and are selected based 
on available data and their explanatory abilities. DEM, slope, and distance from road 
represent the accessibility of a neighborhood, and distance from built area highlights 
the proximate location of urbanization. The significance of explanatory variables was 
tested using Cramer’s V which measures the strength of association between two 
categorical variables based on Chi-square statistics [21]. In this study, land cover 
change in a historical time period and explanatory variables are taken into account to 
test Cramer’s V for a particular variable. LCM calculates Cramer’s V automatically 
and displays the association level of explanatory variables with land cover categories. 
Variables with greater values are considered more important than other variables. 
Cramer’s V values of �0.4 and �0.15 are considered good and useful, respectively; 
and values <0.15 should be removed from the model [8].  



   Predicting Land Cover Change in a Mediterranean Catchment at Different Time Scales 319 

Transition Potentials 
Transition potential maps were created for each transition possibility (F to V, F to G, 
F to B, V to F, V to G, V to B, G to F, G to V, and G to B) based on historical 
changes and selected explanatory variables. The Multi-Layer Perceptron Neural Net-
work (MLPNN) algorithm of IDRISI [8] was employed to create transition potentials. 
Each transition potential was modeled individually using the same explanatory va-
riables, but only transition potentials with an accuracy rate greater than 70% were 
utilized for land cover prediction.  

Land Cover Prediction and Time Scales Test 
Land cover change prediction has two aspects: the quantity of change is provided by 
the Markov change model matrix and the spatial distribution of change is given by 
MLPNN. LCM provides the quantity of change by evaluating the Markov matrix 
comparing the initial (T1) and second land cover (T2), and then predicts the future 
land cover (T3) using a transition probability matrix for the future. The transition 
probability matrix displays the probability of each land cover category changing into 
another category. A value close to 0 indicates a low conversion probability, and 1 
indicates a high conversion probability for the target land cover. Land cover maps 
were predicted for 2011 using transition potential maps from several historical time 
periods (1950-1982, 1982-2003, 2003-2008) (Table 1). The same variables and con-
straints were incorporated in all simulations. 

Table 1. Historical time periods, prediction and validation dates for different scales 

Historical time 
period 

Prediction 
date 

Historical time 
interval 

Validation time 
interval 

1950-1982 2011 32 29 
1982-2003 2011 21 8 
2003-2008 2011 5 3 

Land Cover Prediction Validation 
Validation of a model is needed in order to assess its accuracy. To do this, simulated 
land cover maps of 2011 created using different time scales were compared with a 
digitized map of the same year. Kappa indices and error matrix analysis were used in 
the study for model validation. The standard ‘Kappa index’ is a comparative analyti-
cal process that measures spatial and non-spatial aspects between predicted and refer-
ence maps [8]. Kappa values were characterized as excellent over 0.75, 0.40 to 0.75 
as fair to good, and below 0.40 as poor [8].  

Several components of Kappa indices are described in [22]: Kappa standard (Kstan-

dard), Kappa for location (Klocation),  and Kappa for quantity (Kquantity). They [22] define 
“Kstandard as an index of agreement that attempts to account for the expected agree-
ment due to random spatial reallocation of the categories in the comparison map, 
given the proportions of the categories in the comparison and reference maps, re-
gardless of the size of the quantity disagreement”. Kquantity is a ratio of quantitative 
difference between the categories in the comparison map and reference map, and 
Klocation is the spatial allocation agreement between them. 
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The confusion matrix was analyzed using the ERRMAT module of IDRISI [8] to 
assess the fitness of spatial cell allocation between predicted and true values. 
ERRMAT outputs an error matrix containing a tabulation of the number of cells 
found in each possible combination of true and mapped categories and a summary of 
statistics [8]. Error of omission estimates the proportion of the area of a particular 
land cover that is omitted by the model. Error of commission represents the propor-
tion of wrongly attributed land cover of a particular category that is overestimated by 
the model for each category.  

3 Results 

3.1 Land Cover Change Analysis during Different Time Periods 

The classification validation procedure revealed that classifying land cover into five 
categories was difficult from grey scale photographs and simpler for the 2003 color 
air photos. For 1950, classification error was 27%, and sources of error were either a 
confusion between vineyard and grassland or urban and suburban. The classification 
error decreased to 20% when urban and suburban were collapsed into a single built 
category. For 1982, category error was 10% and 20% for 4 and 5 categories, respec-
tively. Finally, for 2003, the error was only 4% for 4 categories, down from an initial 
15% due to confusion between urban and suburban classes (by one student). It 
should be noted that the exercise was for unexperienced undergraduates just intro-
duced to digital air photos. The actual classification was carried out by an expe-
rienced user over several months and verified thoroughly by a second experienced 
user, so the actual classification accuracy can be considered much greater than the 
values cited above. 

Fig. 1a-d show land cover maps (1950, 1982, 2003, and 2008) digitized from the 
air photos. Most of the land cover changes occurred in the alluvial plain (East), where 
most of the vineyard, grassland and built areas are concentrated. 

 

  

Fig. 1a. Land cover map of 1950  Fig. 1b. Land cover map of 1982  
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Fig. 1c. Land cover map of 2003  Fig. 1d. Land cover map of 2008  

Fig. 2 a-d present land cover changes (ha) in all categories of the study area, and 
Table 2 shows the percentage of total surface area of each land cover category in dif-
ferent years. Two general trends can be identified in land cover change since 1950: 
forest and vineyard decreased while grassland and built area increased. Some changes 
in forest occurred in 1982-2003 as it lost about 120 ha (Fig. 2 a). A marked decrease 
was observed in vineyard (28% of the initial year) that lost 854 ha between 1950  
and 2003 (Fig. 2 b). Then, it increased 67 ha in 2003-2008 and resumed its decreasing 
trend in the last time period 2008-2011. Vineyard was 10.4% of the catchment  
in 1950 and decreased to 6.6% in 2003 and then remained more or less stable till 
2011. Grassland increased from 3.4% to 5.4% of the catchment in 1950-2003 and 
decreased slightly to 4.9% in 2011. It increased greatly (383 ha) in 1982-2003, de-
creased 122 ha in the next time period (2003-2008) but resumed the increasing trend 
again in 2008-2011 (Fig. 2 c). Built area remained a minor component of the catch-
ment, and increased rapidly from only 0.1% to 3.2% of the catchment during the 
study period (Table 2). 
 

  

Fig. 2a. Forest change in 1950-2011 Fig. 2b. Vineyard change in 1950-2011 
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Fig. 2c. Grassland change in 1950-2011 Fig. 2d. Built area change in 1950-2011 

Table 2. Percentage of the catchment area for each category 

 Total surface area (% of the catchment) 
 1950 1982 2003 2008 2011 

Forest 86.1 85.9 85.4 85.3 85.1 
Vineyard 10.4 9.3 6.6 6.9 6.8 
Grassland 3.4 3.7 5.4 4.8 4.9 
Built area 0.1 1.1 2.7 3.0 3.2 

 

 
Fig. 3. Mean rates of land cover change (ha) in different time periods 
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Fig. 3 summarizes the mean rate of change of each land cover category in the dif-
ferent time periods. Forest loss was -1.1 ha yr-1 and -5.8 ha yr-1 in 1950-1982 and 
1982-2003, respectively, it lost -10.1 ha yr-1 in the recent time period 2003-2011. 
The average forest depletion rate was -3.9 ha yr-1 in 1950-2011. The greatest rate of 
vineyard loss was -30.1 ha yr-1 in 1982-2003, and the average overall rate of vi-
neyard depletion was -14 ha yr-1. The rate of grassland expansion was 2.7 ha yr-1 in 
1950-1982; it increased to 18.2 ha yr-1 in 1982-2003, and then to 13.8 ha yr-1 in 
2003-2011. Grassland gained an average of 5.9 ha yr-1 in the study period. The rate 
of built area expansion was 7 ha yr-1 in 1950-1982 and increased to 17.6 ha yr-1 in 
the recent time period 2003-2011. So, the average rate of built area expansion was 12 
ha yr-1 in 1950-2011. 

3.2 Selection of Explanatory Variables 

The association level between explanatory variables and land cover types in different 
time periods is shown in Table 3. It is measured through Cramer’s V. All variables 
have a Cramer’s V value �0.15 with all land cover types except forest in the long time 
period (1950-1982). 

Table 3. Cramer’s V coefficient (relationship between land cover change and explanatory 
variables). Values � 0.40 are highlighted in bold 

Time 
period 

 Altitude Slope Dist. 
Road 

Dist. Built 
area 

Dist. 
stream 

 
1950-1982 

Forest 0.20 0.15 0.31 0.40 0.12 
Vineyard 0.69 0.65 0.59 0.46 0.41 
Grassland 0.52 0.50 0.44 0.33 0.32 
Built area 0.39 0.36 0.28 0.22 0.20 

 
1982-2003 

Forest 0.30 0.22 0.49 0.60 0.16 
Vineyard 0.67 0.63 0.59 0.59 0.41 
Grassland 0.40 0.40 0.36 0.33 0.27 
Built area 0.44 0.42 0.30 0.30 0.25 

 
2003-2008 

Forest 0.30 0.22 0.49 0.64 0.16 
Vineyard 0.67 0.62 0.59 0.60 0.41 
Grassland 0.41 0.41 0.36 0.34 0.27 
Built area 0.39 0.38 0.27 0.29 0.25 

 
The strongest explanatory variable is altitude, which has a good association level 

(Cramer V �0.40) with all land covers except forest for all time periods. A good asso-
ciation level is also observed in slope with all land covers in all time periods, espe-
cially with vineyard and grassland. Distance from roads shows a high association 
level with vineyard in all time periods, and has good association level with forest and 
grassland in the intermediate (1982-2003) and long (1950-1982) time periods, respec-
tively. Distance from built area also has a good association level with forest and vi-
neyard in all time periods. Distance from streams is the weakest variable; it shows 
comparatively limited association with existing land covers and has only a good level 
of association with vineyard in all time periods. The lowest association is observed 
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for forest with all variables except distances from road and built area, indicating that 
the dominant forest category (about 85%) is less influenced by topographic variables.  

3.3 Transition Potentials  

Transition potentials for different time periods present similar patterns and the same 
explanatory variables were used in all simulations for the different time scales. Table 
4 presents the accuracy rate of all transition potentials for different time periods. Ac-
curacy rate represents the agreement between a particular transition and selected ex-
planatory variables. A high accuracy rate is observed for several transitions in all time 
periods: forest to all other categories, and vineyard and grassland to built area. Transi-
tion from vineyard to forest in 2003-2008 also shows high accuracy. Therefore, tran-
sition potentials from forest to all and vineyard and grassland to built area are good. 
All transitions from vineyard and grassland to other land covers except built area have 
low to intermediate accuracy rate.  

Table 4. Accuracy rate (%) of transition potentials in different time periods (F-Forest,  
V-Vineyard, G-Grassland, B-Built area) 

 Accuracy rate (%) 
Time period F-V F-G F-B V-F V-G V-B G-F G-V G-B 
1950-1982 85 86 99 64 58 97 63 58 97 
1982-2003 83 81 97 64 60 85 62 57 83 
2003-2008 91 97 98 100 63 85 63 64 82 

3.4 Validation of Predicted Land Cover 

Simulations for 2011 were executed using transition potentials from 1950-1982, 
1982-2003, and 2003-2008, respectively. Simulated and actual land cover maps of 
2011 are presented in Fig. 4a-d. Dissimilarities are observed mainly in the plain land  
 

  

Fig. 4a. Predicted land cover map of 2011 
from transition potentials 1950-1982 

Fig. 4b. Predicted land cover map of 2011 
from transition potentials 1982-2003 
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Fig. 4c. Predicted land cover map of 2011 
from transition potentials 2003-2008 

Fig. 4d. Land cover map 2011 (actual) 

of the eastern part of the catchment where most of the conversion took place as de-
scribed in [23]. Visual interpretation (Fig. 4 a-c) suggests the simulated maps from 
intermediate (Fig. 4 b) and short (Fig. 4 c) time scales are reasonably similar to the 
actual map of that year (Fig. 4 d). 

Kappa Indices for Predicted Land Cover from Different Time Periods 
The summary of the Kappa indices at different time scale simulations is presented in 
Table 5. These indices are acquired from the VALIDATION module of IDRISI [8] 
and can also be obtained using the Pontius matrix following [22]. Results show that 
all Kappa components increase with decreasing time scale up to the near perfect level 
of agreement for the short time scale. However, simulation from long time scale also 
achieved a perfect level for Kquantity and a reasonable level of agreement for Klocation, 
and Kstandard. 

Values of Kquantity were observed in the perfect level of agreement in all three simu-
lations, and these values increased a little from 0.95 to 1.00 for long to short time 
scale simulations. Klocation gives the overall spatial accuracy of a simulation. Spatial 
accuracy was difficult to achieve from the long time simulation. Values of Klocation 
varied greatly from long to short time scale though the simulation for the long time 
scale also had a good level of agreement (0.75); this increased to 0.87 and 0.94 for 
intermediate and short time simulations, respectively. The greatest changes were also 
observed in Kstandard for different time scales which increased from 0.66 to 0.94 with 
decreasing time scale. 

Table 5. Summary of Kappa indices 

 Initial time period 
 1950-1982 1982-2003 2003-2008 

Kquantity 0.95 0.99 1.00 
Klocation 0.75  0.90 0.94 
Kstandard 0.66 0.87 0.94 
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Error Matrix Analysis for Predicted Land Cover from Different Time Periods  
Table 6 presents the error matrix analysis of the actual land cover map 2011 (column) 
against predicted land cover (row) for different time scales. The table contains three 6 
x 6 matrices for the 1950-1982, 1982-2003, and 2003-2008 time periods. In addition 
to overall errors, this table also shows where errors occur. For example, 158 ha of 
vineyard was wrongly attributed to forest, and 438 ha of vineyard was omitted that 
should be forest. 

Table 6. Error matrix analysis of actual land cover map 2011 (column) against predicted (row) 
land cover from transition potentials for different time periods. Values are expressed in hectares 
(ha) and errors of commission and omission are expressed in % and in bold.  

Initial time 
period 

 Forest Vineyard Grassland Built 
area 

Total Error of com-
mission (%) 

 
 
1950-1982 

(long) 

Forest 19,277 158 236 113 19,784 2.6 
Vineyard 438 1,305 488 156 2,387 45.3 
Grassland 295 113 403 118 930 56.6 
Built area 20 27 25 378 450 16.0 

Total 20,030 1,603 1,152 765 23,550  
Error of 

Omission (%) 
3.8 18.6 65.0 50.6 9.3 

 
 
1982-2003 
(interme-

diate) 

Forest 19,716 45 52 51 19,864 0.7 
Vineyard 68 1,413 80 30 1,590 11.2 
Grassland 204 119 965 37 1,326 27.2 
Built area 42 26 54 647 770 15.9 

Total 20,030 1,603 1,152 765 23,550  
Error of 

Omission (%) 
1.6 11.9 16.2 15.4 3.4 

 
 
2003-2008 

(short) 

Forest 19,953 30 45 27 20,055 0.5 
Vineyard 16 1,496 94 15 1,621 7.7 
Grassland 44 68 997 17 1,127 11.5 
Built area 16 9 16 706 747 5.4 

Total 20,030 1,603 1,152 765 23,550  
Error of 

Omission (%) 
0.4 6.7 13.4 7.7 1.69 

 
Errors for all land covers decreased with decreasing time scales. The lowest com-

mission and omission errors were observed in forest for all time scales and these de-
creased slightly with decreasing time scales. Errors of commission and omission were 
2.6% and 3.8%, respectively, for forest in the long time scale prediction, and these 
decreased to 0.7% and 1.6% in the intermediate and 0.5% and 0.4% in the short time 
scale predictions, respectively. High error of commission (45.3%) was observed in 
vineyard in the long time scale where the greatest amount of vineyard (1,082 ha) was 
wrongly attributed, and commission error decreased markedly in intermediate and 
short time scales. However, error of omission was relatively low in the long time 
scale simulation for vineyard. The highest errors of commission and omission were 
observed in grassland in all time scale simulations, particularly the long time scale 
where errors of commission and omission were 56.6% and 65%, respectively. Errors 
for this land cover also decreased greatly with decreasing time scale (Table 6). Consi-
derable amounts of vineyard and grassland were wrongly attributed to forest, and 
considerable areas of vineyard and grassland were omitted by the model in the long 
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time scale simulation; this occurred mainly due to high swapping of these land covers 
with forest. For this reason, high errors of commission and omission were generated 
for vineyard and grassland in the long time scale; errors decreased considerably in the 
intermediate and short time scale simulations. In long time simulation, errors of 
commission of built area were lower than for vineyard and grassland due to its small 
coverage in the catchment, and it was wrongly attributed 72 ha of other land covers. 
However, high error of omission was observed in the same simulation because much 
built area (388 ha) was omitted. 

4 Discussion 

Land cover dynamics and changes in individual land covers have an important impact 
on land cover simulation. As it is described in the results, forest is easy to predict, and 
it obtains the best level of agreement and the lowest error in all simulations using 
different time scales due to its dominant coverage in the study area. It is the least 
probable to change in all transition potentials of forest to other land covers, so Kquantity 
is better for all time scales. 

Simulations of vineyard and grassland are extremely difficult to predict: accuracy 
is lower and errors greater due to the dynamic changes in different time periods and 
high swapping between these covers. Hence, high commission and omission errors 
are observed in vineyard and grassland simulations, particularly in the long time 
scale. These errors may occur due to different rates of change in initial and prediction 
time periods and the selection of transition potentials where transition potentials from 
vineyard to forest and grassland, and grassland to forest and vineyard were avoided 
due to their limited accuracy rate (<70%). Simulations of vineyard and grassland may 
improve using constraints for vineyard and grassland. Vineyard fields belonging to 
the wine making “domaines” tend to remain stable and convert to other covers  
less [23], so a “domaine” layer could be used as a constraint for vineyard. This infor-
mation, however, was not available in this study. In addition, fire breaks, horseback 
riding, and other tourism related activity zones that are classified as grassland could 
perhaps be taken as a constraint for grassland.  

Accurate prediction of urban expansion is difficult due to the complexity in urbani-
zation which depends on several spatial variables, urban planning, and land use  
demand [12]. The rapid relative rate of urban growth impacted the urban prediction. 
For example, the model predicts (for 2011) about 40% less built area than the actual 
map of 2011 using the long time scale because the rate of built area expansion in-
creased by more than double in the latter time period (1982-2011) compared to the 
initial period (1950-1982) (Fig. 3). However, intermediate and short time periods 
perform better since increasing trends in the initial time periods are about the same as 
in the prediction time periods (2003-2011 and 2008-2011). In addition, several scat-
tered urban areas are developed exceptionally far away from existing built area in the 
recent year, and these remain difficult to predict because the model is based on histor-
ical trends. Earlier trials showed the use of constraints for the transitions to built area 
from other land covers reduced error in built area in all simulations. 
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Time scales have a significant impact on land cover simulation. Quantity was pre-
dicted better than location, probably due to the dominant forest cover in the study 
area. Therefore, Kquantity is nearly perfect in all time scales. However, complex land 
cover changes and swapping between land covers generate less perfect levels of 
agreement for Klocation than Kquantity , and values increase with decreasing time scales.  

Although different indexes are used, there is a general trend for Shorter time scales 
to Produce better prediction results [1, 15, 16, 20, 21, 24, and 27], as found in this 
study was. The values of Kquantity and Klocation are in acceptable ranges for different 
time scales in this study. Maximum commission and omission errors observed  
in crops and grassland [27] were also noted in this study since complex changes in 
grassland and vineyard are difficult to simulate. 

5 Conclusion 

Studies of the temporal and spatial distribution of land cover change have become an 
important issue due to the rapid conversion of land cover and its impact on environ-
ment change. Time scale has a significant impact on prediction. Near perfect quantita-
tive accuracy was achieved in all time scales but spatial accuracy varied with different 
time scales. High quantitative and location accuracy were found in forest prediction 
due to its large surface area, in which changes are relatively small and swapping does 
not impact prediction. Prediction of vineyard and grassland were difficult due to high 
swapping with one another and forest, and prediction of built area was complicated by 
the dramatic relative growth that increased in the recent time periods and the emer-
gence of urban lots far from historic centers. Cell size and catchment area may also 
impact land cover change simulation and this is under study now. 
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