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Tidal front ecosystems are especially dynamic environments usually characterized by high phytoplankton bio-
mass and high primary production. However, the description of functional microbial diversity occurring in
these regions remains only partially documented. In this article, we use a numerical model, simulating a large
number of phytoplankton phenotypes to explore the three-dimensional spatial patterns of phytoplankton abun-
dance and diversity in the Iroise Sea (western Brittany). Our results suggest that, in boreal summer, a seasonally
marked tidal front shapes the phytoplankton species richness. A diversity maximum is found in the surface mixed
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Plankton functional traits layer located slightly west of the tidal front (i.e., not strictly co-localized with high biomass concentrations)
Biodiversity which separates tidally mixed from stratified waters. Differences in phenotypic composition between sub-re-
Biogeography gions with distinct hydrodynamic regimes (defined by vertical mixing, nutrients gradients and light penetration)

Local adaptation
Dynamical transport
Tidal front

are discussed. Local growth and/or physical transport of phytoplankton phenotypes are shown to explain our
simulated diversity distribution. We find that a large fraction (64%) of phenotypes present during the considered
period of September are ubiquitous, found in the frontal area and on both sides of the front (i.e., over the full sim-
ulated domain). The frontal area does not exhibit significant differences between its community composition and
that of either the well-mixed region or an offshore Deep Chlorophyll Maximum (DCM). Only three phenotypes
(out of 77) specifically grow locally and are found at substantial concentration only in the surface diversity max-
imum. Thus, this diversity maximum is composed of a combination of ubiquitous phenotypes with specific
picoplankton deriving from offshore, stratified waters (including specific phenotypes from both the surface
and the DCM) and imported through physical transport, completed by a few local phenotypes. These results
are discussed in light of the three-dimensional general circulation at frontal interfaces. Processes identified by
this study are likely to be common in tidal front environments and may be generalized to other shallow, tidally
mixed environments worldwide.

© 2017 Published by Elsevier B.V.

1. Introduction functional characteristics generally coexists and contributes to biologi-

cal production at higher trophic levels. The maintenance of high biolog-

Marine phytoplankton play a key role as the first link in ocean food
webs, producing almost 50% of the Earth's annual net primary produc-
tion (Field et al., 1998). In every location of the ocean, a large number
of photoautotrophic species, both prokaryotic and eukaryotic
(Falkowski et al., 2004), with very diverse genetic, taxonomic or
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ical diversity is crucial to ensure resilience of ecosystem functioning
(Ptacnik et al., 2008) as it allows complementarity between species or
taxa to efficiently access heterogeneously distributed resources
(Chisholm, 1992). Coexistence between phenotypes having various
physiological and functional traits is enabled by several top-down or
bottom-up complementary mechanisms. An example of top-down con-
trol is the regulation of primary producers' diversity by herbivorous
consumers (i.e., zooplankton) that adjust their predation to the most
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abundant prey (e.g., through prey selectivity as described in Chase et al.,
2002 and Hillebrand et al., 2007). On the other hand, bottom-up control
can occur through ecological processes of adaptation (i.e. selection of
optimal traits within evolutionary mutational changes), acclimation
(i.e. phenotypic plasticity) enabling species locally adapted to environ-
mental conditions to thrive and exclusive competition. As long as the
residence time of water masses is sufficiently long (i.e., quasi steady
state), this last process occurs, benefiting species with the highest fit-
ness with a negative impact on the diversity. Indeed, following resource
competition theory (Tilman, 1977, 1982), species with the lowest posi-
tive equilibrium resource concentration R* (which measures the fitness
of each phenotypes) outcompete other, less locally adapted organisms
over time. This process of natural selection (bottom up control) could
lead to diversity decline. However, high variability in environmental
conditions at timescales similar to phytoplankton ecological rates can
prevent complete exclusion and contributes to the maintenance of
high diversity levels (Hutchinson, 1961; Sommer, 1984; Huston, 1979;
Huisman and Weissing, 2001; Scheffer et al., 2003).

Local ecological processes alone are not sufficient to explain ob-
served diversity patterns in the ocean. Indeed, apart from modulating
the background environmental conditions, physical processes also no-
ticeably gather phytoplankton types from different regions through ad-
vective transport by ocean currents combined with mixing that yields
dispersion. The contemporaneous disequilibrium framework
(Richerson et al., 1970) suggests that dispersal in a dynamic ocean con-
tributes to maintain low fitness phenotypes in significant proportion by
preventing the system from reaching a stable equilibrium. Indeed, as
described by MacArthur and Wilson (1967), passive movements of spe-
cies by physical transport associated with mixing have the potential to
significantly affect qualitative and quantitative measures of local diver-
sity by combining properties from different regions.

According to the neutral theory of biodiversity (Hubbell, 2001), the
fate of species that are considered to be equivalent in terms of fitness
is locally governed by stochastic processes (ecological drift) rather
than determined by environmental traits selection. In contrast with
niche segregation theory and resource competition, the observed diver-
sity patterns would therefore be primarily explained by replenishment
or discharge of local species pool through physical dynamics. Processes
of local growth, exclusive competition and physical dispersal all shape
the ocean diversity landscape and interact such that their individual im-
pact depends on their relative timescale (Clayton et al.,, 2013).

At the global scale, marine microbial diversity has been explored
through several field studies (Hillebrand, 2004; Irigoien et al., 2004;
Pommier et al., 2007; Fuhrman et al., 2008) and modeling efforts
(Barton et al., 2010). Species richness varies with latitude, generally de-
creasing from tropics to poles (corresponding to a low to high environ-
mental variability). Also, it has been shown that dynamical transport
contributes to higher local diversity (o) by decreasing the differences
between distinct oceanic regions in terms of phytoplankton community
composition (Clayton et al., 2013; Levy et al.,, 2014). Thus, local and re-
gional diversity patterns are strongly influenced by large-scale diversity
(Ricklefs, 1987). Transport over about a hundred kilometers is sufficient
and acts sufficiently rapidly to significantly shape the diversity of plank-
tonic ecosystems at local scales (Adjou et al., 2012).

At a more regional scale, physical dynamics induced by the presence
of time-evolving mesoscale (10-100 km) structures with a lifetime of
the same order of magnitude as phytoplankton generation timescales
(D'Ovidio et al., 2010) also impact the regional diversity landscape in
many distinct ways. Indeed, besides passive stirring of organisms be-
tween physical regimes, these structures may create ecological niches
through variability in nutrient supply (Sedigh Marvasti et al., 2016),
resulting in heterogeneously distributed primary producers' abun-
dance, total chlorophyll (Gaube et al., 2014) and diversity patterns
(McGillicuddy and Dennis, 2016). Uptakes rates, primary production
(Levy et al., 2001; Riviére and Pondaven, 2006) and carbon export
(Sharples, 2008) are likewise affected by mesoscale eddies and fronts.

Because the lifetime of eddies or vortices is longer than a few days,
water masses in their interiors remain isolated and could act as shelters
for less-fit species (Bracco et al., 2000; Perruche et al., 2010) whereas
their edges and other frontal interfaces are generally more diverse
than surrounding areas (Lévy et al., 2015) for two complementary rea-
sons. High biomass associated with widely diversified plankton com-
munities at frontal interfaces are then explained by (i) the encounter
of water masses from both sides of the front (Perruche et al., 2010) po-
tentially increasing the number of different species coexisting locally at
the interface and (ii) the local growth of opportunistic fast growing phe-
notypes which may be enabled by vertical mixing and a net upward nu-
trient flux into the euphotic layer (Levin and Paine, 1974; Claustre et al.,
1994; Barton et al., 2014).

However, the relative importance of these two complementary
mechanisms (passive transport and local growth) on high diversity at
fronts has not been effectively tested. Here, we explore how much phe-
notypic diversity in phytoplankton can be sustained by lateral and ver-
tical advection and/or mixing relative to local growth in a highly
dynamic tidal front environment with heterogeneous growth condi-
tions including both spatial and temporal variability. To answer this
question, we use a coupled physical/biogeochemical model including a
large number of phytoplankton phenotypes which are differentiated
by their optimal growth conditions (temperature, nutrient and light)
and therefore compete for resources while they are consumed by zoo-
plankton grazers and carried by currents.

This modeling setup is applied to the Ushant Front ecosystem of the
Iroise Sea. The Ushant front is characterized by a sharp horizontal tem-
perature gradient of 2 °C-km™' (Mariette, 1983) associated with high
chlorophyll concentration during summer, from May to October (Le
Boyer et al., 2009). Its position, located roughly where the 15 °C surface
temperature isotherm intersects the surface (Fig. 1), oscillates with dif-
ferent time frequencies, varying from seasonal to bi-weekly and semi-
diurnal periods according to tidal fluctuations and annual forcing varia-
tions. Observed high phytoplankton biomass in the vicinity of the front
location has been shown to be related to a local increase of inorganic nu-
trients (Savidge, 1976). In this study, we use the model to investigate
underlying processes contributing to biomass and phenotypic diversity
patterns at the front. We specifically examine interactions between
phenotypes competing for light and macronutrients in this very dynam-
ic frontal environment. We aim to quantify the relative roles of local
ecological processes and physical transport in shaping the diversity of
this frontal ecosystem.
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Fig. 1. Surface chlorophyll in September 2007, computed from SeaWifs satellite
observations, following Gohin et al. (2002). Black contour line represents Sea Surface
Temperature from MODIS.
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2. Method

We use a three dimensional numerical physical-biogeochemical
model to describe the distribution of a large number of phytoplankton
phenotypes across the Ushant Front during a summer period. The sim-
ulations conducted in this study use the exact same set-up as presented
in Cadier et al,, 2017.

2.1. Physical model

A configuration of the ROMS-AGRIF model (Shchepetkin and
McWilliams, 2005; Penven et al., 2006), commonly used for regional in-
vestigations (e.g. Echevin et al., 2008; Auger et al,, 2015) has been set up
to simulate ocean circulation and thermodynamics in the Iroise Sea. This
model provides horizontal and vertical velocities as well as temperature
and salinity distribution in a three-dimensional environment. The
modeled area extends over the whole Iroise Sea, from 47.5 to 49.5° N
and 4 to 6.5°W with horizontal resolution of 1.5 km and 30 sigma levels
vertically. A single year is integrated three times by repeating the simu-
lation with a set of forcing and boundaries conditions derived from ob-
servations made during the year 2007. Results discussed in this study
cover a period of one month corresponding to September of the third
year. This choice is justified by the fact that September is the period
when the Ushant Front is most pronounced both in observations and
in our simulations (see Fig. 9 in the companion paper Cadier et al.,
2017). Expression of the processes shaping the diversity in this frontal
environment is therefore most pronounced during this period. More-
over, this limited time period of one month also allows analysis of
high frequency variability in the tidal front properties while avoiding
bias in the zonal front position resulting from a longer integration peri-
od and that is not addressed by this study.

2.2. Biological and ecological model

The biogeochemical model that has been used in this study is de-
rived from the DARWIN model (a general description of this model
and equations is found in Follows et al., 2007). This model resolves
lower trophic levels with the phytoplankton compartment divided
into 120 phenotypes and the zooplankton compartment consisting of
two size classes (micro- and mesozooplankton). It also simulates inor-
ganic nutrients (nitrogen in different forms, phosphorus and silica) as
well as dissolved and particulate organic matter. Phytoplankton pheno-
types are equally divided into four functional types. Among them, two
are small and belong to the picoplankton size class with a low maximum
growth rate but high affinity for nutrients (‘K’ strategy). They loosely
represent either Prochlorocococcus sp. analogs (PRO) that use only am-
monium as a source of nitrogen for growth or Synecococcus sp. and
more generally picoeucaryote analogs, labeled as the ‘small non
Prochlorococcus’ (SNP) generic group. The two other phytoplankton
groups represent large, microphytoplankton cells with conversely
higher growth rate (‘r’ strategy) but lower affinity for nutrients and
light compared to small cells. Some within this category require silica
to grow and are assigned to diatoms (DIA) while the remaining pheno-
types are called ‘Large Non Diatoms’ (LND), comprising mainly dinofla-
gellates and nanoflagellates with lower maximal growth rates than
diatoms.

A trade-off between growth rate and nutrient affinity is therefore
considered (Grover, 1991) with a differential uptake strategy (see ap-
pendix A) between large, fast-growing opportunistic phenotypes hav-
ing high nutrient requirements and small ones, with low maximum
growth rate and relatively low half-saturation constants (Litchman et
al.,, 2007). Moreover, large phytoplankton needs higher light intensity
to grow whereas small-size cells are likely to grow under lower light
levels (Edwards et al., 2015). Each phenotype is also given a specific
temperature optimum for growth, which is not constrained by the size.

Indeed, within the four functional groups (with 30 phenotypes per
group), each phytoplankton phenotype is unique, with its own particu-
lar combination of growth parameters associated with temperature,
light intensity and nutrient requirements, randomly assigned from a
plausible range of parameters defined by the functional group. This ran-
dom selection of parameters results in a large mixture of phenotypes
each of which has optimal growth potential in fairly unique environ-
mental conditions.

Phytoplankton specific growth rate (for phenotype noted j) per unit
of time can thus be written as:

M =M maxj Ynurj Yrj-Vij- P

With pimax the maximum growth rate (day”), Ynur,j Yrand 7y, the
growth limitations by nutrients, temperature and light, respectively,
and P; the concentration of phenotype j (mmolC-m~3). The detailed pa-
rameterizations for phytoplankton growth limitation are given in ap-
pendix A.

Phytoplankton phenotypes are also grazed by the two-zooplankton
size classes, following diet preferences established on predator/prey
size ratio rules. The prey selectivity is parameterized using an active
prey switching (‘kill-the-winner’) formulation (Vallina et al., 2014b)
in which an increased predation risk is assigned to the most abundant
and therefore most accessible and profitable prey, thus enhancing coex-
istence among phytoplankton types and stability in ecosystem dynam-
ics (Kigrboe et al., 1996; Gentleman et al., 2003). An additional
phytoplankton natural loss term is also added for each phenotype and
sinking occurs for large cells only.

Specific parameters' values that are used in the simulation are de-
scribed in details in Cadier et al. (2017).

Our model setup allows the emergence of entirely new phytoplank-
ton phenotypes through substitutions of unadapted ones while a simu-
lation is underway. A phenotype experiencing no positive growth
anywhere in the model grid suffers only biomass reductions; when its
biomass falls below 10~¢ mmolP-m™2 in all grid cells, it is removed
from the system and replaced by a new, randomly assigned, homolo-
gous phenotype from the same functional group. Newly created pheno-
types are homogeneously initialized at 10~% mmolP-m~3 throughout
the model domain and are assigned a unique phenotype number
(thus exceeding 120 as soon as a first substitution occurs). This method
allows each phenotype, corresponding to a unique and specific combi-
nation of growth parameters, to be easily tracked in time and space.

The number of substitutions decreases over time, with a plateau
achieved after the first year and some convergence toward fewest sub-
stitutions during the third year (Fig. 2, A and C). The community tends
to optimize with respect to regional environmental conditions with
some regionally adapted phenotypes being maintained throughout
winter from one year to the next although the substitution rate remains
highest during winter. Indeed, the frequency of substitutions in all
groups decreases during summer (Fig. 2) as environmental conditions
(mainly temperature and, to a lesser extent, light availability) become
more favorable to growth.

The use of substitutions during simulations allows a considerable re-
duction in the number of simulations by testing numerous growth strat-
egies simultaneously while using a limited number of phytoplankton
variables. The same effect has been demonstrated by Sauterey et al.
(2014) using periodically generated mutations within the phytoplank-
ton community and resulting in an increase in robustness of modeled
patterns and enhanced repeatability among runs with low initial rich-
ness. Therefore, this method allows a better sampling of traits space
within the phytoplankton community and leads to faster convergence
toward an ‘optimal’ community at the regional scale compared to the
classical ‘everything is everywhere’ (EIE) approach with fixed phyto-
plankton strategies (Follows et al., 2007; Dutkiewicz et al., 2009), al-
though long-term emergent ecosystem properties remain unchanged.
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Fig. 2. Three year cumulative sums of the number of substitutions inside (A) total
phytoplankton population, (B) Prochlorococcus sp. group only and (C) total
phytoplankton except Prochlorococcus sp. analogs for five different realizations of the
simulation.

As a consequence, we based our work on the study of five realiza-
tions of the simulation with different initial seeding (different random
collections of growth rate parameters). In those simulations, an average
of 182.4 substitutions occurs during the first year, and 166.6 and 137.2
occur for second and third years, respectively. Moreover, all five realiza-
tions lead to similar results in terms of temporal dynamics of substitu-
tions during the three simulated years (Fig. 2). Prognostic selection of
communities' average functional traits according to environmental con-
ditions in light, temperature and availability of macronutrients is also
quite similar across realizations (Fig. 3). Due to those similarities and
for brevity, the subsequent presented results are based on only one of
the five realizations. Careful attention has been given to the universality

(among our five realizations) of the processes highlighted in the chosen
realization.

Prochlorococcus sp. analogs are the most frequently substituted phe-
notypes with 113 substitutions during the third year of the selected
simulation; these mainly occur during the winter period due to their
high temperature optimum that makes them poorly suited to modeled
wintertime temperatures generally below 15 °C. The group with the
minimal number of substitutions is the SNP group with 7 substitutions,
while LND and DIA go through 9 and 13 substitutions during the third
year, respectively. The September, monthly average number of substitu-
tions is 3.4 over the three years (1.7 in DIA, 0.7 in LND, 1 in SNP and no
substitutions in PRO), indicating that the proportion of substituted phe-
notypes is not likely to interfere with our results in terms of diversity in
a significant way.

2.3. Diversity measurements

2.3.1. Local diversity o

We measure the modeled species richness S in each grid point as the
number of phenotypes j whose concentration P; exceeds a relative
threshold of 1% of total biomass Py.

1
S= ng (Pj>mpmt>

A phenotype resulting from substitution is added to the system at
very low biomass throughout the domain and thus does not contribute
to the calculation of species richness in any grid cell unless it has under-
gone an increase in its local concentration such that it contributes to at
least 1% of total phytoplankton biomass in that cell. This approach pre-
vents an artificial species richness count due to substituted phenotypes
in low phytoplankton biomass regions.
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Fig. 3. Realized trait space in September for (A) light optimum (W-m~?), (B) phosphorus half saturation constant (mmolP-m~>) and (C) temperature optimum (°C) inside each functional
group; from left to right: diatoms, Large Non Diatoms (LND), Small Non Prochlorococcus (SNP) and Prochlorococcus sp. analogs for five realizations of the simulation. Scatter size is
proportional to the monthly average relative biomasses of each phenotype over the mixed layer during September. The second realization is used for subsequent analyzes. Ubiauitous

phenotypes are represented in red.
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2.3.2. Evenness index

Because rare and abundant phenotypes are counted equally in the
species richness S, we use the Shannon-Wiener index H to better quantify
equitability between phenotypes in each location of our model. This com-
plementary index provides an ‘evenness’ measure of richness by account-
ing for both the number of coexisting phenotypes and their relative
proportion (Pj/Py). We compute exp. (H) to get an effective number of
phenotypes that helps the interpretation of the index (Jost, 2006).

(PP
exp(H) = exp[ —>_ (5L In
j=1 l)tot Ptot

3. Results
3.1. Model solution

3.1.1. Functional traits selection

Each phytoplankton phenotype exhibits a distinct combination of
growth parameters concerning its preferences for light, temperature
and nutrients. Monthly mean traits are thus calculated and provide in-
sight into successful parameters in different regions (Fig. 3). Indeed, re-
alized phytoplankton communities within simulations consist of
phenotypes that, based on their growth parameters, are better adapted
to modeled environmental conditions.

In particular, strong selection pressure occurs due to light affinity in
September. Overall, regardless of the functional group or the region con-
sidered, phenotypes that have the highest affinity for low light levels are
preferentially selected (Fig. 3, A). For microphytoplankton (i.e. DIA and
LND), the most abundant phenotypes in terms of monthly average bio-
mass display light optima between 200 and 400 W-m™2. Within
picoplankton (i.e. SNP and PRO), phenotypes that grow optimally be-
tween 100 and 200 W-m ™2 are the most competitive. Prochlorococcus
sp. analogs are prescribed to require higher temperature for growth
compared to the rest of the simulated phytoplankton community
(Cadier et al., 2017). Consequently, temperature optima are even
more discriminating than light optima for this group (Fig. 3, C), and phe-
notypes that predominantly contribute in significant proportion to bio-
mass have temperature optima below 22 °C. Among other groups (DIA,
SNP and LND), growth is promoted for phenotypes which have temper-
ature optima in a less discriminant range, generally between 12 and
18 °C. Finally, differences in nutrient affinity do not act as strong dis-
criminating factors for selection within functional groups (Fig. 3, B). In
a given functional group (i.e., DIA, LND, SNP and PRO), the growth of
the different phenotypes only weakly depends on their nutrient half-
saturation constants, and they are quite distributed over the entire
range of biomass irrespective of this parameter. However, nutrient af-
finity does explain most of the inter-group variability, since large phe-
notypes have higher nutrient requirements than smaller ones. The
nutrient distribution is thus responsible for phytoplankton communitity
bioregionalization in terms of functional groups in summer (Cadier et
al,, 2017).

3.1.2. Surface distribution

During summer, the tidal front separates tidally mixed waters over
the continental shelf from stratified waters offshore. The surface
mixed layer does not exceed a monthly average of 15 m depth in the
deepest offshore region while the shallower continental shelf waters
are regularly homogenized by tides over the entire water column. In-
deed, the averaged surface mixed layer depth is deeper in the North
East region and reaches the bottom boundary layer near the coast,
with less light available for photosynthesis (Fig. 4, A). On average in Sep-
tember, the domain is thus characterized by a horizontal temperature
gradient at the surface with colder temperatures around 13-14 °C in
the well-mixed region compared to warmer temperatures of 17-18 °C

in the south-west (Fig. 4, C). The distribution of phytoplankton pheno-
types reflects these environmental conditions, with the community
having higher average temperature optima (16-17 °C) in the offshore
surface layer (Fig. 5, C). Prochlorococcus sp. analogs represent ~40% of
the total phytoplankton biomass in this region (Fig. 4, F).

Fig. 5 B shows higher phosphate half saturation constants
(0.05-0.06 mmolP-m™3) within coastal, well-mixed waters com-
pared to surface waters of the seasonally stratified South-West re-
gion (~0.03 mmolP-m™3). The coastal tidally-mixed region is
dominated by microplanktonic cells (i.e. LND and DIA), with
three times greater concentration than picoplankton cells (SNP
and PRO). In contrast, surface waters of the stratified west side of
the front are more suitable for picoplanktonic cells that coexist
with larger ones or dominate in the shallow surface mixed layer
(Fig. 4, E). This behavior is directly constrained by higher nutrient
concentrations in the well-mixed waters east of the front (exceed-
ing 0.3 mmolP-m?>) compared to those in offshore, oligotrophic
surface waters (Fig. 4, B).

The frontal region itself does not provide local specific ecological
characteristics in terms of phytoplankton functional group distribution
(Cadier et al., 2017) or realized functional traits (Fig. 5) although it ex-
hibits the strongest simulated phytoplankton biomass, reaching
>200 mgC-m~> in September (Figs. 4, D and 6, A).

With regard to realized light traits, higher light requirements are
simulated in the well-mixed coastal waters (Fig. 5, A) with averaged
values for light optima of ~260 W-m™ 2. Conversely, offshore surface
waters contain phenotypes with higher affinity for low light levels de-
spite this region having the highest mixed layer average photosynthetic
available radiation in the model domain (Fig. 4, A). Indeed, in the strat-
ified region, phytoplankton optimal growth is reached for a light inten-
sity of ~200 W-m™ 2. The presence of fewer phenotypes adapted to low
light conditions in the less illuminated waters of the well-mixed region
is connected to the trade-off between functional groups, foremost se-
lected through their differential affinity for nutrients. Indeed,
picoplankton cells (i.e., SNP and PRO), which predominate in the oligo-
trophic, highly illuminated surface waters to the west, are characterized
by both low half saturation constants for nutrients and low light
requirements.

3.1.3. Vertical structure

The vertical structure of phytoplankton biomass along the 48°N
transect (Fig. 6, A) reveals high concentrations of 200 mgC-m~> be-
tween 0 and 20 m at the physical position of the front where isopycnal
intersect 