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Short communication 

Adaptive detection using randomly re duce d dimension generalized 

likelihood ratio test 

Olivier Besson 

University of Toulouse, ISAE-SUPAERO, 10 Avenue Edouard Belin, Toulouse 31055, France 
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a b s t r a c t 

We address the problem of detecting a signal of interest in the presence of Gaussian noise with un- 

known statistics when the number of training samples available to learn the noise covariance matrix is 

less than the size of the observation space. Following an idea by Marzetta, a series of K random semi- 

unitary matrices are applied to the data to achieve dimensionality reduction. Then, the K corresponding 

generalized likelihood ratios are computed and their median value provides the final detector. We show 

that the semi-unitary matrices can be replaced by random Gaussian matrices without affecting the final 

test statistic. The new detector avoids eigenvalue decomposition and is easily amenable to parallel imple- 

mentation. It is compared to conventional techniques based on diagonal loading of the sample covariance 

matrix or based on rank reduction through eigenvalue decomposition and is shown to perform well. 
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. Problem statement 

Many radar systems are required to operate in an uncertain

nvironment where the number of data available to learn the

nvironment is smaller than the number of space and/or time

hannels [1–3] . This is typically the case with space-time adap-

ive processing where the size of the observations is large or in

eterogeneous environments where a limited number of cells are

eemed to share the same disturbance covariance matrix as the

ell under test. The problem of detecting a target with signature

 can be formulated as a composite hypothesis testing problem,

amely 

 0 : x 
d = CN ( 0 , R ) , z t 

d = CN ( 0 , R ) , t = 1 , . . . , T 

 1 : x 
d = CN ( αv , R ) , z t 

d = CN ( 0 , R ) , t = 1 , . . . , T (1) 

here α stands for the target amplitude, R is the disturbance

clutter and noise) covariance matrix and CN ( μ, R ) denotes the

ircularly symmetric complex Gaussian distribution with mean

and covariance matrix R . In (1) x ∈ C 

M×1 corresponds to the

ata under test while z t are training samples used to learn the

isturbance which affects x . When T ≥ M , the generalized like-

ihood ratio test (GLRT) was derived by Kelly [4] who showed

hat it enjoys the constant false alarm rate property and who

erived analytic expressions for the probability of detection.

elly’s GLRT is considered as the reference detector for the prob-
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t  
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em in (1) . A second reference detector is the so-called adaptive

atched filter (AMF) [5] which is indeed a two-step GLRT: first

he GLRT for known R is derived and then R is substituted for

he sample covariance matrix (SCM) ˆ R = T −1 
∑ T 

t=1 z t z 
H 
t . Both

etectors involve the inverse of the SCM and therefore need that

 ≥ M . 

However, in a number of situations, one has to deal with T < M

nd yet solve (1) . When some additional information about R

s available, e.g., it is persymmetric [6–8] or it possesses some

pecific structure [9,10] the number of actual unknown parameters

escribing R is somewhat reduced, and a low sample support

an be addressed properly. When R is arbitrary, which is the case

e consider herein, two main approaches can be advocated. The

rst approach consists in regularizing the SCM, generally by using

iagonal loading [11,12] , i.e., replace ˆ R by ˆ R + νI M 

where ν is the

oading level. This technique leads to the loaded GLRT [13] or

he loaded AMF [14] whose performance is very close to that

f the matched filter even in low sample support, especially if

he matrix R is close to a low-rank matrix plus a scaled identity

atrix. The second approach consists in dimensionality reduction,

lso referred to as partially adaptive processing [1,15] . The basic

dea is to use a data transformation x → T H x , z t → T H z t where T

s a M × R matrix with R < M and to operate in an R -dimensional

ubspace. These techniques can be classified either as reduced-

imension methods (in this case T is fixed, see e.g., [16,17] ) or

ank-reducing methods where T depends on the data. Usually,

he matrix T is constructed from the principal eigenvectors of the

CM, see e.g. [18–20] for the most well-known methods using this
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Fig. 1. Structure of the proposed random reduced-dimension generalized likelihood 

ratio test. 
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principle. For detection purposes, this results in a low-rank AMF

where the inverse of the SCM is replaced by the projector onto

the subspace orthogonal to the principal eigenvectors. 

In [21,22] , Marzetta proposed a beautiful and original idea

where dimensionality reduction is achieved through an ensemble

of K isotropically random unitary matrices. More precisely, a

column of T is aligned with v (which guarantees that the signal

of interest goes through the data transformation), while the other

columns are drawn at random in the subspace orthogonal to v .

Processing is then done in the reduced-dimension space and the

outputs are subsequently combined (averaged). Marzetta provided

a theoretical analysis of such technique, provided insightful re-

sults about its relation with shrinkage of the SCM eigenvalues,

and applied it successfully to direction of arrival estimation and

covariance matrix estimation. In this communication, we propose

to use and to adapt this idea in the framework of detection, in

order to solve (1) when T < M . 

2. Randomly reduced dimension GLRT 

Let us assume with no loss of generality that v is unit-norm and

let V ⊥ be a M × (M − 1 ) semi-unitary matrix ( V 

H 
⊥ V ⊥ = I M−1 ) whose

columns are orthogonal to v , i.e., V 

H 
⊥ v = 0 . Let �k ( k = 1 , . . . , K) be

a (M − 1) × N matrix uniformly distributed on the Stiefel manifold

[23] : such a matrix can be generated from a complex Gaussian

distributed matrix N k as [21,23] 

�k = N k 

(
N 

H 
k N k 

)−H/ 2 
(2)

where N k 
d = CN ( 0 , I M−1 , I N ) . Let us consider the M × (N + 1)

matrix Q k = 

[
V ⊥ �k v 

]
and the transformed data ˜ x k = Q 

H 
k x and

˜ Z k = Q 

H 
k Z where Z = 

[
z 1 . . . z T 

]
. The first N components of

the transformed data ˜ x k , ̃  Z k correspond to �k times the coor-

dinates of x , Z in the subspace orthogonal to v while the last

component corresponds to the output of a conventional beam-

former steered towards v , a structure which is reminiscent of a

sidelobe canceler structure. Now, from (1) one has 

H 0 : ˜ x k 
d = CN 

(
0 , ̃  R k 

)
, ˜ Z k 

d = CN 

(
0 , ̃  R k , I T 

)
H 1 : ˜ x k 

d = CN 

(
αe N+1 , ̃  R k 

)
, ˜ Z k 

d = CN 

(
0 , ̃  R k , I T 

)
(3)

where e N+1 = 

[
0 . . . 0 1 

]T 
and 

˜ R k = Q 

H 
k R Q k . Therefore

the GLRT for the composite hypothesis problem (3) amounts to

comparing 

 

(
˜ x k , ̃  Z k 

)
= 

∣∣∣e H N+1 
˜ S 
−1 

k ˜ x k 

∣∣∣(
1 + ̃

 x 
H 
k ̃

 S 
−1 

k ˜ x k 

)(
e H 

N+1 
˜ S 
−1 

k e N+1 

) (4)

to a threshold, with 

˜ S k = 

˜ Z k ̃
 Z 

H 
k . Similarly to what was done in

[21,22] the next step is to combine these K test statistics. For the

application considered herein, we need to construct a single test

statistics to be compared against a threshold in order to decide

between H 0 and H 1 . A natural and intuitively appealing approach

is to use the median value of the t k = t 
(

˜ x k , ̃  Z k 

)
as the final test

statistic. Note that the average value could also be investigated. It

turns out that the two approaches yield approximately the same

performance in terms of detection. However, since we are dealing

with ratios, the median seems more appropriate. The proposed

random reduced-dimension GLR test is thus displayed in Fig. 1 . 

Some comments are in order regarding this detector. First, it is

amenable to parallel implementation as suggested by the structure

in Fig. 1 . Next, we observe that 
 k = 

[
V ⊥ �k v 

]
= 

[ 
V ⊥ N k 

(
N 

H 
k N k 

)−H/ 2 
v 
] 

= 

[
V ⊥ N k v 

][(
N 

H 
k N k 

)−H/ 2 
0 

0 1 

]

= Q̄ k A k (5)

It follows that ˜ x k = A 

H 
k Q̄ 

H 
k x and 

˜ Z k = A 

H 
k Q̄ 

H 
k Z so that 

 

H 
N+1 ̃

 S 
−1 

k ˜ x k = e H N+1 

[ 
A 

H 
k Q̄ 

H 

k Z Z 

H Q̄ k A k 

] −1 

A 

H 
k Q̄ 

H 

k x 

= e H N+1 A 

−1 
k 

[ 
Q̄ 

H 

k Z Z 

H Q̄ k 

] −1 

Q̄ 

H 

k x 

= e H N+1 

[ 
Q̄ 

H 

k Z Z 

H Q̄ k 

] −1 

Q̄ 

H 

k x (6)

ince 

 

−H 
k e N+1 = 

[(
N 

H 
k N k 

)1 / 2 
0 

0 1 

][
0 

1 

]

= e N+1 (7)

Similarly, 

 

H 
N+1 ̃

 S 
−1 

k e N+1 = e H N+1 

[ 
A 

H 
k Q̄ 

H 

k Z Z 

H Q̄ k A k 

] −1 

e N+1 

= e H N+1 A 

−1 
k 

[ 
Q̄ 

H 

k Z Z 

H Q̄ k 

] −1 

A 

−H 
k e N+1 

= e H N+1 

[ 
Q̄ 

H 

k Z Z 

H Q̄ k 

] −1 

e N+1 (8)

nd 

˜ 
 

H 
k ̃

 S 
−1 

k ˜ x k = 

˜ x 
H 
k Q̄ k A k 

[ 
A 

H 
k Q̄ 

H 

k Z Z 

H Q̄ k A k 

] −1 

A 

H 
k Q̄ 

H 

k x 

= 

˜ x 
H 
k Q̄ k 

[ 
Q̄ 

H 

k Z Z 

H Q̄ k 

] −1 

Q̄ 

H 

k x (9)

Therefore, the test statistic is left unchanged if Q k =
V ⊥ �k v 

]
is replaced by Q̄ k = 

[
V ⊥ N k v 

]
or equivalently

f �k is replaced by N k . This means that it is not necessary to

rthonormalize the columns of N k and one just needs to generate

atrices with i.i.d. complex Gaussian entries CN ( 0 , 1 ) . This fact,

ogether with the possible parallelization and the fact that one

eals with matrices of reduced dimensions makes this detector

ather simple from a computational point of view. 

A final remark concerns the distribution of the test statistic

nder H 0 . Despite the fact that the marginal distributions of all

 k do not depend on R under H 0 , this does not necessarily imply

hat the joint distribution of (t 1 , . . . , t K ) is independent of R , and

herefore the proposed detector does not possess the constant

alse alarm rate property. However, this is also not the case of the

iagonally loaded or the low-rank adaptive matched filters. 



Fig. 2. Spectrum of R for the two cases considered. The vertical lines show the 

frequency of the signal of interest. 
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Fig. 3. Probability of detection in case 1. P fa = 10 −3 , f s = 0 . 02 , σ f = 0 . 02 , N = 11 

and T = 22 . 

Fig. 4. Probability of detection in case 1. P fa = 10 −3 , f s = 0 . 04 , σ f = 0 . 02 , N = 11 

and T = 22 . 
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. Performance analysis 

In this section we investigate the performance of the proposed

etector and compare it with state of the art detectors. We

onsider a scenario where M = 128 . The disturbance covariance

atrix is of the form R = R c + I M 

which corresponds to a colored

lutter plus thermal noise model. Two cases will be considered.

n the first case the ( k , � ) element is R c (k, � ) = Pe −0 . 5(2 πσ f | k −� | ) 2 

ith σ f = 0 . 02 , while in the second case R c (k, � ) = P ρ| k −� | 
ith ρ = 0 . 98 . The clutter to noise ratio CNR = 10 log 10 P is

et to CNR = 30 dB. The signal of interest is v = e ( f s ) where

 ( f ) = 1 / 
√ 

M 

[
1 e 2 iπ f . . . e 2 iπ(M−1) f 

]T 
. We consider low

requencies f s = 0 . 02 or f s = 0 . 04 so that the signal of interest is

trongly buried in noise. For illustration purposes, Fig. 2 shows the

pectrum of R , that is e H ( f ) Re ( f ). 

The proposed detector, which is referred to as rrdGLR in the

gures below, is compared to benchmark competitors, namely the

oaded AMF and the low-rank AMF 

AMF = 

| v H ( ̂  R + νI M 

) −1 x | 2 
v H ( ̂  R + νI M 

) −1 v 
(10) 

RAMF = 

| v H P ⊥ x | 2 
v H P ⊥ v 

(11) 

here P 

⊥ stands for the projector onto the subspace orthogo-

al to the N principal eigenvectors of ˆ R . For LAMF the diago-

al loading level was fixed at 15dB above the white noise level.

ote that we also tested the loaded GLRT but its performance

s identical to that of LAMF, so we only plot the results of the

atter. For both rrdGLR and LRAMF, N is chosen as the “effec-

ive rank” of R c which is defined as the lowest integer for which
 N 
m =1 λk ( R c ) ≥ 0 . 95 

∑ M 

m =1 λk ( R c ) where λk ( R c ) are the eigenval-

es of R c . In other words, at least 95% of the energy in R c is

ontained in the first N eigenvectors. For both cases described

bove, this results in N = 11 . The number of training samples is

et to T = 2 N and the probability of false alarm is P fa = 10 −3 .

hrough preliminary simulations, we investigated the influence of

 on the probability of detection of rrdGLR, varying from K =
0 to K = 80 . It turned out that there is almost no improve-
ent for larger K so, to decrease computational load, we fix

 = 20 . 

In Figs. 3–6 we plot the probability of detection versus

ignal to noise ratio, which is defined as SNR = | α| 2 v H R 

−1 v .
s can be noticed from these figures, the rrdGLRT performs

ery well and is shown to outperform both the LAMF and the

RAMF, especially when the frequency f s is small which in radar

ould correspond to slowly moving targets. The improvement

s more pronounced in case 1 than in case 2. In simulations

ot reported here, we observed that the improvement is less

mportant when σ f decreases or when ρ increases, i.e., when

oise is more lowpass and the effective rank of R decreases.

owever, it is remarkable that such technique performs so

ell. 



Fig. 5. Probability of detection in case 2. P fa = 10 −3 , f s = 0 . 02 , ρ = 0 . 98 , N = 11 and 

T = 22 . 

Fig. 6. Probability of detection in case 2. P fa = 10 −3 , f s = 0 . 04 , ρ = 0 . 98 , N = 11 and 

T = 22 . 
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4. Conclusions 

In this communication, we considered detection in Gaussian

noise with unknown statistics when the number of target-free

training samples is smaller than the size of the observation space.

We adapted an idea originally developed by Marzetta which relies

on a set of random semi-unitary matrices to achieve dimension-

ality reduction, processing in reduced dimension and recombina-

tion. For our detection problem, we proposed to use the median
alue of the reduced dimension generalized likelihood ratios. This

echnique avoids eigenvalue decomposition, is easily amenable to

arallel implementation and we showed that one does not need to

enerate semi-unitary matrices but only independent and identi-

ally distributed Gaussian random matrices. The new detector was

hown to perform very well, compared to state of the art detectors.
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