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Abstract

Most of scientists describe gravitation with two theories depending on the desired ac-
curacy: Newton’s law of gravitation and general relativity. In previous work, we found
two formulas that could give the Planck constant and the speed of light according to
fundamental constants and vacuum properties. If they are not coincidences, they suggest
that gravitation stems from a physical deformation process. We propose here the mathe-
matical description of this theory. Based on four-dimensional continuum mechanics, this
approach yields a similar law to Newton’s law of gravitation. However, this theory would
imply that the mathematical expression of gravitation might be different for high masses.
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1 Introduction

Many theories of gravitation have been built throughout history, from the ancient Greek period
to present. Among them, Newton’s law of gravitation marked a turning point in this physics
field. In Philosophiae Naturalis Principia Mathematica, he assumed that the gravitational forces
experienced by planets were reciprocally proportional to the squares of their distances. The
proportional constant was first measured by Henry Cavendish. In 1915, Newton’s theory was
then superseded by general relativity. Einstein’s theory met with strong success: the perihelion
precession of Mercury [1], [2], [3], the bending of light by the Sun [4], [5], [6], gravitational
redshift [7], gravitational waves [8], [9], etc.

In 1913, V.M. Slipher observed the universe’s expansion [10]. This will be confirmed by Hubble
in 1929 [11]. In 1998, two independent teams discovered that this expansion is accelerating
[12], [13]. Scientists explain this phenomenon with dark energy [14] but its physical nature
remains unknown. Similarly, Newton’s law of gravitation and general relativity requires the
existence of dark matter [15]. This unknown matter would explain the galaxy rotation curves
[16]. Different investigations are being carried out to observe this putative matter.

In a previous paper [17], we found two relations which seem to give the speed of light and the
Planck constant. We then developed a novel theory under the assumption that both formulas
were not coincidences. Gravitation would stem from the accelerating expansion of the universe
and the deformation of four-dimensional matter. The theoretical framework is summarized in
the first section of the present article. This section also discusses about the continuum mechan-
ics theory to choose to describe the physical deformation of the hypothetical four-dimensional
material. The second section addresses the mathematical part of the gravitation theory. In
particular, the resolution of the equations agrees with Newton’s law of gravitation. Finally, we
touch upon the dark universe issue in the framework of the theory.



2 Theory

2.1 Framework

This study relies on the previous paper [17] which presents the following relation
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where ¢q is the vacuum permittivity, e is the elementary charge, kp is the Boltzmann constant,
T is the temperature of the CMB (Cosmic Microwave Background) and p. is the critical density
of the universe. The consequences of this relation are discussed in [17] and outlined here. This

formula, which is homogeneous to \/g (usual relation for the speed of material waves), seems

to indicate that light and gravitational waves propagate in matter. The low density of vacuum
drove us to reject a simple three-dimensional propagation. Instead, we pointed out in [17] that
additional spatial dimensions did not affect relation (2.1) while being able to increase the value
of the multidimensional density. Being consistent with Einstein’s feeling, we assumed that our
living world was a 3-sphere. In the framework of the theory, the universe would thus be a
4-ball containing matter and we would live at its surface. In adhering to the strong equivalence
principle, gravitation would correspond to acceleration. Since the only acceleration that affects
the whole universe is the acceleration of the expansion, we assumed that gravitation derives
from this acceleration. In that respect, we proposed another definition of gravitation. Due to
the accelerating expansion, heavy bodies in the 3-sphere would be maintained against four-
dimensional matter and deform it. A light body in the vicinity of a heavy one would then
experience the acceleration of the expansion on a deformed three-dimensional surface. It would
therefore be ”attracted” by the heavy body from the three-dimensional point of view. The
deformation of spacetime in general relativity could then be linked to a tangible deformation
of matter. Fig. 1 presents this hypothetical behaviour.

2.2 The deformation profile

This section handles the deformation profile associated with Newton’s law of universal grav-
itation (Fig. 1b). We note f the surface equation. The z-coordinate of the light body is
z = f(r,0,¢). Due to the spherical symmetry, the equation is independent on 6 (polar angle)
and ¢ (azimuthal angle) so z = f(r). According to Newton, the acceleration experienced by
a body in the gravitational field of a heavy body is a = GTJQW outside it. Within it, under the
assumption that the high-mass body is homogenous, a = G}%T (R is the high-mass body radius).
With the notations in Fig. 1b, tan ¥ = % and stn ¥ = §.

Both relations yield

% _ tan ( arcsin Gg%”)) ifr<R 2.2)
dr tan | arcsin %)) ifr >R
By assuming that GTM < 1,
dz GMr ifr <R 03
ar T\ <Y ifr>R (23)

GMi> _SCM ifp <R
The deformation profile would then be given by z ~ _29&?4 2 gk $ = R
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Figure 1: a. The universe would correspond to a 4-ball in expansion (its acceleration is noted
g). b. Cutaway view of the three-dimensional profile (in green) which is deformed because
of a high-mass body (grey disk). According to Newton’s law of gravitation, the acceleration
a experienced by a light body (red star) is equal to GT—ZQW g is the radial acceleration of the

universe and R is the support reaction.

2.3 Which material properties?

This section focuses on the choice of the most suitable theory to describe the hypothetical
deformation process. First, Newton’s law of universal gravitation states that gravitation forces
are proportional to the mass of bodies. Then, the force experienced by a light body in the grav-
itational field of two heavy bodies corresponds to the sum of both. The theory of deformation
must thus be linear. Second, no gravitational field has been observed without matter. So the
deformation due to bodies disappears when they move away. The deformation must then be
elastic. Third, the gravitational attraction due to a body does not depend on its radius. There-
fore, the hypothetical deformation of four-dimensional matter cannot derive from the surface
tension phenomenon of a fluid. The deformation of a fluid by this process indeed depends on
the load surface. For a solid, the deformation does not always depend on the load surface. For
instance, the deformation of thin plates or beams depends only on the applied force magnitude
(with the material and geometrical properties). Thus, for the deformation to be independent
on the body radius, it seems that the hypothetical four-dimensional material must be thin in
the fourth dimension. Given the previous considerations, continuum mechanics with Hooke’s
law will be the adopted theory. We thus consider a linear elastic thin four-dimensional solid
material in the paper.

3 Results

3.1 The set of equations

The static equations of continuum mechanics correspond to V.o = 0 with o the Cauchy stress
tensor. Due to the spherical symmetry of gravitation, the spherindrical coordinates (equivalent
to the cylindrical coordinates in four dimensions) lend themselves to this problem (Fig. A.1).



The tensor analysis in spherindrical coordinates is presented in the appendix.

The Cauchy stress tensor is calculated from Hooke’s law
o = 2ue + Mr(e)l (3.1)
where A and p are the Lamé coefficients and € = 3 (*Vu + Vu) with u the displacement.

Due to the symmetries, we assume that u = w,.(r, z)e,+u,(r, 2)e,. Relation (A.5) then provides
the gradient of the displacement and the strain tensor

Orty 0 0 %(aruz + 0,u,)
0 0 0
€= 0 0 0 (3.2)
$(Ou. +0.u,) 00 T

Considering the symmetries, the strain tensor expression and Hooke’s law, relation (A.15) leads
to

0pOrp + 0,0, + T 200 TroTee 0
Vo-— 0 _ |9 (3.3)
o= 0 =1 ¢ :
ararz + 8zazz + %O_rz 0
3.2 Resolution
3.2.1 General solution
The low thickness hypothesis yields 0,u, = 0. The second equation of (3.3) becomes
2 Uy
i [ar (O, + D) + = (0,0, + azur)] V) <8Tur n 27) —0 (3.4)
2 2 2 2
=(p+A) | 0,u, + ;@ur +p | Oiu, + ;&uz =0 (3.5)
X=>742(,u +A) (r*02,u, + 2rd.u,) + p (r*0u, + 2ro,u.) =0
=1+ N0, (r*d.u,) + pd, (r*dyu.) =0
=(p + \)0,u, + poyu, = @ (3.8)
with ¢ an unknown function which only depends on z. We deduce
¢(2) p
rz — ar z az r) — ar z - ar z 3.9
o p (Opu, + 0,uy) u(u+<u+)\)r2 M+)\u (3.9)
po ¢'(2)
0,0,, = ———= 3.10
e w+ A r? (3.10)

since O,u, = 0.



The first equation thus yields

2P, + A0, (B, + 2%) + M%QS;(QZ) + 47“ (0 - %) —0 (3.11)
= (21 + \)d, (arur + 2“7) u% ¢;(j) —0 (3.12)
=, + 2% = G A/;(u oy ¢/£Z) + 3a(z) (3.13)
The solution of this equation is u, = a(z)r+ @ + mqﬁ’ (z) with @ and 8 two unknown
functions. The equation (3.8) gives the vertical displacement
O, = ¢(22) B A, (3.14)
r f
Lo, = 28 - (Z; NE'(z) n : A () Q(ZJZ(j)A) (3.15)
. (1 + A)ﬁ/;(:) —d(z) “;;Ao/(z)r? B 2(5,/;(?»7" oy (3.16)

with v a constant since 0,u, = 0.

3.2.2 Determination of the unknown functions

We segregate two cases, inside and oustide the high-mass body.

1. Outside
. a=20
o Mim u(r)=0= { & =0
o =0
o lim u,(r)=0=¢ ¢"=0
r——+00
7=0

The boundary conditions on the displacement when r — oo lead to

Uy = &QZ)

. — N =0(2) (3.17)
z r
e g.e, =0 for 2 =0 and z = —[ (I is the material thickness). This leads to o,, =0
and 0,, =0 for z =0 and z = —1.
- 0. =0 Ju, = —0.u, & ¢ — (,U + )\)ﬁ/(Z') = —Mﬂ/(Z) This ylelds
iy Ay @

FO)=p5(=0) =+ (3.18)

— 0., = 0% Jyu, + 2% = 0: always true



In addition, the profile of the horizontal displacement along the thickness of a thin material
is well known. The profile is linear and the displacement is negative at the top and positive

at the bottom. Then, we assume u,(r, z) = — (21—2 + 1) U maz ()| With |t maez | the absolute
value of the maximum displacement when z = 0, —[. This means that 8(z) = —a (% + 1)
with a a constant. Then, ¢ = —2%. The displacements are thus given by
(2 1
A (3.19)
? Ir
2. Inside
=0
3 ur(rzo,z):0:>{ g,_o
- /
e O,u, =0 for r = 0. This involves { Z,,__<g + B

The boundary conditions on the displacement when r» — oo lead to

{ Z: :oz(#;A W (3.20)

For the same reason as outside the high-mass body, a(z) = —b (22 + 1) with b a constant.

In addition, o.e, = —%J‘fésez for z = 0 leads to o0,, = M]g3 = a(0) = 4WR3/\ Then,
b= 1 R3)\ and
_ M 2z
{ Ur = __ég\rR%)\ ( l + 1) r (321)
Uz = /fx_u47rR3r +7
3.r=R
M 2 2 M
ur(R,2) = — s (F+1) R=— (2 +1) @ =a=1}
A M —2a _ pAA
o u.(R) = h@r}gd Rty=3F= 27rRl)\ == 47rRl,\ (2 + )
Eventually, the solution is
— 2 (Z4+1)r ifr<R
up(r, 2) = N . 3.22
(r:2) {—% Z41)% ifr>R (3.22)
ptA Mg r2  3ptA Mg
us(r) = { S (3:23)
2T ifr >R
The solution can be compared with Newton’s law of gravitation
GM” _8CM ifr <R
o) 2gr% " 2g4r UTS 24
us(r) { — M if r >R (3.24)

The law outside the high-mass body requires G = 3%5;. This definition avoids having the

same law inside the body, except if u > A. The assumptlon > A is equivalent to a very

weak Poisson ratio. In this case, ’%\)‘ ~ l and 3’”)‘ ~ 2 Which leads exactly to Newton’s law



of gravitation.

Note that there is no proof that Newton’s law of gravitation is accurate inside bodies. The
assumption about Poisson’s ratio to fit with Newton’s law could thus be unreliable.

4 Dark matter

In that respect, Newton’s law of gravitation would rely on the linear elastic assumption. For low
masses, this law agrees with observations. However, for black holes or galaxies, the deformation
of the space could be different from the profile provided in the paper. In this theory, gravitation
could be given by other equations since the linear elastic assumption could become unreliable.
Then, the equations from general relativity that are based on Newton’s law could also fail to
describe correctly gravitation for high mass bodies. Therefore, the assessment of dark matter
quantities based on the current theories of gravitation might be impossible according to the
present theory. The very existence of dark matter might also be questioned.

5 Conclusion

In prior work [17], based on two formulas giving the speed of light and the Planck constant, we
developed a qualitative theory of gravitation. We assumed that gravitational acceleration de-
rived from the acceleration of the universe’s expansion and the deformation of four-dimensional
matter. In that respect, Newton’s law of gravitation would result from these processes. We
have developed here the mathematical part of this theory in order to find back Newton’s
theory. To fit with physical evidence, we considered the deformation of a linear elastic thin
four-dimensional solid material. Continuum mechanics with Hooke’s law was then selected to
describe the deformation process.

Under these hypotheses, the deformation profile outside a high-mass body is proportional to
the reciprocal function and is parabolic inside it. Then, in a four-dimensional space expe-
riencing an accelerating expansion, a light body in the vicinity of a high-mass body at the
three-dimensional surface could be described by Newton’s law of gravitation. Therefore, this
theory agrees with Newton’s one with the appropriate definition of the gravitational constant.

According to this theory, Newton’s law describes the linear elastic deformation of four-dimensional
matter. When the mass of a body is high enough, the process could become non-linear. Then,
Newton’s law of gravitation could become unreliable for heavy bodies or galaxies. In that sense,
dark matter models might also be inaccurate.



A Appendix

Let us note (ey, ez, e3,€4) the natural basis of R* and (e,, ey, e,,e,) the spherindrical basis
(Fig. A.1).

Figure A.1: Spherindrical coordinates.

We consider the spherindrical coordinates (r, 0, ¢, z) such as x; = rsinfsin ¢, xs = rsinf cos @,
x3 = rcosf and x4, = z. The spherindrical basis vectors can be expressed in the natural basis

such as:
e, =sinfsinp e; +sinfcosy ez + cosb eg

ey = cosfsinp ey + cosf cosy ex —sinb e
e, =Ccosp e; —siny ey
€, = €4

(A.1)

The nabla operator is given by V = e,0, + e9%89 + ewm&p + e,0,. The symbol J, denotes
the partial derivative with respect to the variable .
Let us calculate the partial derivatives of the spherindrical basis vectors.

Oreq =0, Vaerb pz

09er = €y, 89 €y = —€, 8ge¢, = 89ez =0

O,ey = sinb ey, 0,e9 = cost e,, 0., = —sint e, —cosl ey, e, =0
0. =0, YVaerb pz

(A.2)



Let us consider a vector v = v, e, 4+ vy €y + v, €, + v, e, and calculate the gradient of this
vector G = Vv = g—; ® e,. Then,

0 0
G.e = 8—V = 8_(UT e, +vg €9 + v, €, + v, €,) = 0,0, € + 0,0 €9 + 0,0, €, + 0,0, €, (A.3)
r r
because d,e, =0, ¥V a € [r, 0, ¢, z] according to relation (A.2). Then,
G.89 = %g— = [(&gvr — U@) e, + (’UT + 891)9) eg + &nge‘p + agvzez]
Ge, = rsilnegw = —— [(0,v, — sinOv,,) e, + (9,09 — cos Ov,,) eg+ (A)
(0,0, + sin Qu, + cos Qug) e, + 0,v.€,]
G.e, = g—‘z' = 0.0, e, + 0,9 €9 + 0,0, e, + 0,0, €,
Then, the gradient of v can be written
0,0, —&gi}r e mn@a v — =2 0,0,
| O ;891}9 + &= o 98 Vg — cot9 0,vp
Vv = v, Lo, =0, Ve, + £ + cot 9”9 0,0, (A.5)
0,0, %39112 — 98 U, 0,0,
The divergence of the vector v is given by
1., 1 , 1
Vv=tr(Vv)= ﬁ&n(r vy) + Tsmeﬁg(sm Ovg) + Te@,v@ + 0.v, (A.6)

Now, let us consider a symmetric second-order tensor field o and calculate its divergence. With
“” denoting the double dot product and I = e, ® e, + ey ¥ ey + e, ® e, + e, ® e, the second
order identity tensor, V.o = Vo : I. With A a third-order tensor field and b and ¢ two
vectors, we have A : (b ® c) = (A.b).c. The divergence of o can then be expressed as

V.o =(Vo.e,)e + (Vo.e)e + (Voe,)e, + (Vo.e,).e,

(@) ex + 2 (@0) 0 + —— (0,0).0, + (2:0) D
= (0,0).e, + —(0po).€ ——(0,0).e .0).e,
Y O rsing ¥ ©
The calculation of 0,0 can be divided into two parts:
870':87 Z Z Oap ea®e5
a=r,0,p,z B=r,0,p,2z (AS)
Yo D> (Dowslea®est Y > oapl(Dyen) ® s+ eq ® (0e5)]
a=r0,p,z B=r,0,p,z a=r,0,p,z B=r,0,p,2

The calculation of the derivatives of the basis vectors are provided by relations (A.2).

Since d,e, =0, Y a € [r,0,p, 2|, vy =1 yields 0,0 = > > (0r0ap)€n @ €g.
S a=r0,p,z B=r,0,p,z
O’

(0,0).e, = Z (0r0,8)es = (0o, )er + (0r0rg)eg + (0r0rp)e, + (0,0,,)e, (A.9)

B=r,0,p0,z
When v =6,
Z Z O’ag[(agea) & €s + e, X ((9985)] =

a=r,0,p,z B=r,0,p,2
or(eg@ert+e®ey) +oglegRe)—e Qe —e Qe+ ey ey (A.10)
+op(ep®@e, +e,Rep) +0,.(egRe,+e, ey —oger ey + ey X e;)

—opo(er e, +e,®e) —og(er e, +e,®e;)
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We directly replaced the derivatives and used the symmetry of . Then,

(690').69 = Z (69095)85 + (Urr — Ogg)er + 20,@89 + aweso + 0,,€,
B=r,0,0,z

= (Urr — O0gg + 890T9)er + (20T9 + 89099)69 + (Urcp + aeoegp)ecp + (UTZ + 82:0-92)ez
(A.11)

When v = ¢,
Z Z 00pl(0y€0) ® €5+ €4 ® (0ye3)] =

a=r0,0,2 B=r0,p,2
orsinf(e, @ e, + e, ® €,) + o,p(cos be, ® e, + sinfe, ® eg + cosfe, ® e, + sinfey @ e,,)

+ 0,,(2sinfe, ® e, — 2sinfe, ® e, — cosf(e, X ey + ey e;)) + 0,.sinb(e, Ve, +e, Ve,)
+ oggcosb(eg @ e, + e, ®eg) + og,(2cosbe, ®e, —2cosley @ ey —sinbf(eg @ e, + €, ® ey))
+ 0g.cosf(e, ®e, +e,Re,) —oy(sinfle, ®e, +e, ®e,) +cosbe, Deg+eyRey,))

— 0y, (sinf(e, @e, +e,®e,) +cosbeg e, +e,Rep))
(A.12)

Then,

(0,0).e, = Z (0,008)es + (sinfo,, + cosbfo,g — sinfo,,)e,
B=r0,0,z
+ (sinfo,g + cos Bogg — cosbo,,)eq + (2sinbo,, + 2 cosbog,)e, + (sinbo,. + cos b0y, )e,
= (sinfo,, + cosfo,g — sinbo,, + 0,0, )€r + (sinbo,g + cos fogg — cos B0, + 0,00,)€s

+ (2sinf0,, 4+ 2 cos 0o, + 0,04,)e, + (sinfo,, + cosbog, + 0,0,.)e,
(A.13)
When v = z,
(0,0).€, = (0,0,.)er + (0,00 )eg + (0:04:)e, + (0:02.)e, (A.14)

Finally, the divergence of o given in the spherindrical basis is

Oy 0y + 1090, + 50,0, + 0.0, + =000 4 TrOee y bl
8TUT9 + %090-99 + 7 si nga 0'930 + a 200z + 30.79 + cot 9099 Tew (A 15)
67'0-7‘g0 + %800-990 T51n98 Oy + azo-gpz + SU'W) + 200:0 O ’

ararz + %890-92 aapo-apz + 8 0.+ 20” CO:OO-GZ

rsmG

V.o=

rsin @
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