Gravitation as the deformation of four-dimensional matter

F Salmon

To cite this version:

F Salmon. Gravitation as the deformation of four-dimensional matter. 2020. hal-02572062v1

HAL Id: hal-02572062
 https://hal.science/hal-02572062v1

Preprint submitted on 13 May 2020 (v1), last revised 24 Apr 2021 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Gravitation as the deformation of four-dimensional matter

F. Salmon
Institut Pprime, CNRS - University of Poitiers, ISAE-ENSMA, France
Salmon.Fabien@yahoo.com

Abstract

Most of scientists describe gravitation with two theories depending on the desired accuracy: Newton's law of gravitation and general relativity. In previous work, we found two formulas that could give the Planck constant and the speed of light according to fundamental constants and vacuum properties. If they are not coincidences, they suggest that gravitation stems from a physical deformation process. We propose here the mathematical description of this theory. Based on four-dimensional continuum mechanics, this approach yields a similar law to Newton's law of gravitation. However, this theory implies that the mathematical expression of gravitational force might be different for high masses.

Keywords: Gravitation, Newton's law, deformation, four-dimensional, dark universe

1 Introduction

Many theories of gravitation have been built throughout history, from the ancient Greek period to present. Among them, Newton's law of gravitation marked a turning point in this physics field. In Philosophiae Naturalis Principia Mathematica, he assumed that the gravitational forces experienced by planets were reciprocally proportional to the squares of their distances. The proportional constant was first measured by Henry Cavendish. In 1915, Newton's theory was then superseded by general relativity. Einstein's theory met with strong success: the perihelion precession of Mercury [1], [2], [3], the bending of light by the Sun [4], [5], [6], gravitational redshift [7], gravitational waves [8], [9], etc.

In 1913, V.M. Slipher observed the universe's expansion [10]. This will be confirmed by Hubble in 1929 [11]. In 1998, two independent teams discovered that this expansion is accelerating [12], [13]. Scientists explain this phenomenon with dark energy [14] but its physical nature remains unknown. Similarly, Newton's law of gravitation and general relativity requires the existence of dark matter [15]. This unknown matter would explain the galaxy rotation curves [16]. Different investigations are being carried out to observe this putative matter.

In a previous paper [17], we found two relations which seem to give the speed of light and the Planck constant. We then developed a novel theory under the assumption that both formulas were not coincidences. Gravitation would stem from the accelerating expansion of the universe and the deformation of four-dimensional matter. The theoretical framework is summarized in the first section of the present article. This section also discusses about the continuum mechanics theory to choose to describe the physical deformation of the hypothetical four-dimensional material. The second section addresses the mathematical part of the gravitation theory. In particular, the resolution of the equations agrees with Newton's law of gravitation. Finally, we touch upon the dark universe issue in the framework of the theory.

2 Theory

2.1 Framework

This study relies on the previous paper [17] which presents the following relation

$$
\begin{equation*}
c=\sqrt{10 \frac{\left(\varepsilon_{0} e^{-2}\right)^{3}\left(k_{B} T\right)^{4}}{\rho_{c}}} \sim 3 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} \tag{2.1}
\end{equation*}
$$

where c is the speed of light, ε_{0} is the vacuum permittivity, e is the elementary charge, k_{B} is the Boltzmann constant, T is the temperature of the CMB (Cosmic Microwave Background) and ρ_{c} is the critical density of the universe. The consequences of this relation are discussed in $[17]$ and outlined here. This formula, which is homogeneous to $\sqrt{\frac{P}{\rho}}$ (usual relation for the speed of waves in a material), seems to indicate that light and gravitational waves propagate in matter. The low density of vacuum drove us to reject a simple three-dimensional propagation. Instead, we pointed out in [17] that additional spatial dimensions did not affect relation (2.1) while being able to increase the value of the multidimensional density. Being consistent with Einstein's feeling, we assumed that our living world was a 3 -sphere. In the framework of the theory, the universe would thus be a 4 -ball containing matter and we would live at its surface. In adhering to the strong equivalence principle, gravitation would correspond to acceleration. Since the only acceleration that affects the whole universe is the acceleration of the expansion, we assumed that gravitation derives from this acceleration. In that respect, we proposed another definition of gravitation. Due to the accelerating expansion, heavy bodies in the 3sphere would be maintained against four-dimensional matter and deform it. A light body in the vicinity of a heavy one would then experience the acceleration of the expansion on a deformed three-dimensional surface. It would therefore be "attracted" by the heavy body from the threedimensional point of view. The deformation of spacetime in general relativity could then be linked to a tangible deformation of matter. Fig. 1 presents this hypothetical behaviour.

2.2 The deformation profile

This section handles the deformation profile associated with Newton's law of universal gravitation (Fig. 1b). We note f the surface equation. The z-coordinate of the light body is $z=f(r, \theta, \phi)$. Due to the spherical symmetry, the equation is independent on θ (polar angle) and ϕ (azimuthal angle) so $z=f(r)$. According to Newton, the acceleration experienced by a body in a gravitational field is $a=\frac{G M}{r^{2}}$. With the notations in Fig. $1 \mathrm{~b}, \tan \Psi=\frac{\mathrm{d} z}{\mathrm{~d} r}$ and $\sin \Psi=\frac{a}{g}$.
Both relations yield

$$
\begin{equation*}
\frac{\mathrm{d} z}{\mathrm{~d} r}=\tan \left(\arcsin \left(\frac{G M}{g r^{2}}\right)\right) \tag{2.2}
\end{equation*}
$$

By assuming that $\frac{G M}{g r^{2}} \ll 1$,

$$
\begin{equation*}
\frac{\mathrm{d} z}{\mathrm{~d} r} \sim \frac{G M}{g r^{2}} \tag{2.3}
\end{equation*}
$$

The deformation profile would then be given by $z \sim-\frac{G M}{g r}$.

2.3 Which continuum mechanics theory?

This section focuses on the choice of the most suitable theory to describe the hypothetical deformation process. First, Newton's law of universal gravitation states that gravitation forces

Figure 1: a. The universe would correspond to a 4-ball in expansion (its acceleration is noted g). b. Cutaway view of the three-dimensional profile (in green) which is deformed because of a high-mass body (grey disk). According to Newton's law of gravitation, the acceleration a experienced by a light body (red star) is equal to $\frac{G M}{r^{2}} . g$ is the radial acceleration of the universe and R is the support reaction.
are proportional to the mass of bodies. Then, the force experienced by a light body in the gravitational field of two heavy bodies corresponds to the sum of both. The theory of deformation must thus be linear. Second, no gravitational field has been observed without matter. So the deformation due to bodies disappears when they move away. The deformation must then be elastic. Third, the gravitational attraction due to a body does not depend on its radius. Therefore, the hypothetical deformation of four-dimensional matter cannot derive from the surface tension phenomenon of a fluid. The deformation of a fluid by this process indeed depends on the load surface. For a solid, the deformation does not always depend on the load surface. For instance, the deformation of thin plates or beams depends only on the applied force magnitude far enough from the load surface (with the material and geometrical properties). Thus, for the deformation to be independent on the body radius, it seems that the hypothetical four-dimensional material must be thin in the fourth dimension. Given the previous considerations, continuum mechanics with Hooke's law will be the adopted theory. Finally, we observe that the speed of light is approximately $3 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}$. This high value seems to require the four-dimensional material to be almost incompressible. We then consider a linear elastic incompressible thin four-dimensional solid material in the paper.

3 Results

3.1 The set of equations

The static equations of continuum mechanics correspond to $\boldsymbol{\nabla} . \boldsymbol{\sigma}=\mathbf{0}$ with $\boldsymbol{\sigma}$ the Cauchy stress tensor. Due to the spherical symmetry of gravitation, the spherindrical coordinates (equivalent to the cylindrical coordinates in three dimensions) lend themselves to this problem (Fig. A.1). The tensor analysis in spherindrical coordinates is presented in the appendix.

The Cauchy stress tensor is calculated from Hooke's law

$$
\begin{equation*}
\boldsymbol{\sigma}=2 \mu \boldsymbol{\varepsilon}+\lambda \operatorname{tr}(\boldsymbol{\varepsilon}) \mathbf{I} \tag{3.1}
\end{equation*}
$$

where λ and μ are the Lamé coefficients and $\boldsymbol{\varepsilon}=\frac{1}{2}\left({ }^{t} \nabla \mathbf{u}+\boldsymbol{\nabla} \mathbf{u}\right)$ with \mathbf{u} the displacement.
Due to the symmetries, we assume that $\mathbf{u}=u_{r}(r, z) \mathbf{e}_{\mathbf{r}}+u_{z}(r, z) \mathbf{e}_{\mathbf{z}}$. Relation (A.5) then provides the gradient of the displacement and the strain tensor

$$
\varepsilon=\left(\begin{array}{cccc}
\partial_{r} u_{r} & 0 & 0 & \frac{1}{2}\left(\partial_{r} u_{z}+\partial_{z} u_{r}\right) \tag{3.2}\\
0 & \frac{u_{r}}{r} & 0 & 0 \\
0 & 0 & \frac{u_{r}}{r} & 0 \\
\frac{1}{2}\left(\partial_{r} u_{z}+\partial_{z} u_{r}\right) & 0 & 0 & \partial_{z} u_{z}
\end{array}\right)
$$

Considering the symmetries, the strain tensor expression and Hooke's law, relation (A.15) leads to

$$
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}=\left(\begin{array}{c}
\partial_{r} \sigma_{r r}+\partial_{z} \sigma_{r z}+\frac{\sigma_{r r}-\sigma_{\theta \theta}}{r}+\frac{\sigma_{r r}-\sigma_{\varphi \varphi}}{r} \tag{3.3}\\
0 \\
0 \\
\partial_{r} \sigma_{r z}+\partial_{z} \sigma_{z z}+\frac{2}{r} \sigma_{r z}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

3.2 Resolution

We only solve the equations outside the body. The low thickness hypothesis yields $\partial_{z} u_{z}=0$ and $\partial_{z} \sigma_{z z}=0$. The second equation of (3.3) becomes

$$
\begin{equation*}
\partial_{r} \sigma_{r z}+\frac{2}{r} \sigma_{r z}=0 \tag{3.4}
\end{equation*}
$$

Therefore, $\sigma_{r z}=\frac{\phi(z)}{r^{2}}$ with ϕ an unknown function. The first equation yields

$$
\begin{equation*}
\partial_{r}\left(\partial_{r} u_{r}+2 \frac{u_{r}}{r}\right)+\frac{\phi^{\prime}(z)}{\lambda+2 \mu} \frac{1}{r^{2}}=0 \tag{3.5}
\end{equation*}
$$

The solution of this equation is $u_{r}=\alpha(z) r+\frac{\beta(z)}{r^{2}}+\frac{\phi^{\prime}(z)}{2(\lambda+2 \mu)}$ with α and β two unknown functions. Since $\sigma_{r z}=\mu\left(\partial_{r} u_{z}+\partial_{z} u_{r}\right)$, the vertical displacement is given by

$$
\begin{equation*}
u_{z}=\frac{\beta^{\prime}(z)-\frac{\phi(z)}{\mu}}{r}-\frac{\alpha^{\prime}(z) r^{2}}{2}-\frac{\phi^{\prime \prime}(z)}{2(\lambda+2 \mu)} r+\gamma \tag{3.6}
\end{equation*}
$$

with γ a constant.
The incompressible hypothesis requires

$$
\begin{equation*}
\operatorname{tr}(\varepsilon)=0 \Rightarrow \partial_{r} u_{r}+2 \frac{u_{r}}{r}=0 \Rightarrow u_{r}=\frac{\beta(z)}{r^{2}} \tag{3.7}
\end{equation*}
$$

We then get $u_{z}=\frac{\beta^{\prime}(z)-\frac{\phi(z)}{\mu}}{r}+\gamma$. Since u_{z} must be equal to 0 when $r \rightarrow \infty, \gamma=0$. Moreover, $\partial_{z} u_{z}=0$ so $\beta^{\prime}(z)-\frac{\phi(z)}{\mu}=C$ with C a constant. Thus $u_{z}=\frac{C}{r}$. This corresponds to the expected result with $C=-\frac{G M}{g}$.

Inside bodies, the solution would still be given by the same set of equations (3.3) but without the hypothesis $\partial_{z} \sigma_{z z}=0$ because of the boundary conditions. Another law without singularity at the center is expected. Near radii and outside surface loads, the hypothesis $\partial_{z} \sigma_{z z}=0$ often does not hold. However, we assume here the incompressibility of the hypothetical material, which might enforce $\partial_{z} \sigma_{z z}=0$ also close to the radius of bodies.

4 Dark energy and dark matter

With this universe structure, dark energy could be expected to stem from inside the fourdimensional ball. In this framework, this energy might result from interactions between particles. However, to find back Newton's law of gravitation, we assumed that the four-dimensional material was thin. This could explain the independence of the law on the radius of bodies. Therefore, interactions between particles would seem not to happen everywhere in the 4 -ball. So the accelerating expansion could originate from another process than interactions. Another possibility would be to consider that there are more matter near the three-dimensional surface than deeper in the 4-ball. Then, the deformation behaviour would correspond to a load on a thin 4D hypervolume, but there will be enough interactions within the 4-ball to make it expand.

In that respect, Newton's law of gravitation would rely on the linear elastic assumption. For low masses, this law agrees with observations. However, can we ensure that this law holds for black holes or galaxies for instance? In this theory, gravitation could be given by other equations since the linear elastic assumption could become unreliable. Then, general relativity could also fail to describe correctly gravitation for high mass bodies since it is based on Newton's law. Therefore, the assessment of dark matter quantities based on the current theories of gravitation might be impossible according to the present theory. The very existence of dark matter might also be questioned.

5 Conclusion

In prior work [17], based on two formulas giving the speed of light and the Planck constant, we developed a qualitative theory of gravitation. We assumed that gravitational acceleration derived from the acceleration of the universe's expansion and the deformation of four-dimensional matter. In that respect, Newton's law of gravitation would result from these processes. We developed here the mathematical part of this theory in order to find back Newton's theory. To fit with physical evidence, we considered the deformation of a linear elastic incompressible thin four-dimensional solid material. Continuum mechanics with Hooke's law was then selected to describe the deformation process.

Under these hypotheses, the deformation profile outside a high-mass body is proportional to the reciprocal function. Then, in a four-dimensional space experiencing an accelerating expansion, a light body in the vicinity of a high-mass body at the three-dimensional surface could be described by Newton's law of gravitation. Therefore, this theory agrees with Newton's one outside bodies. Within them, another law would take place and no singularity would occur at the center.

According to this theory, Newton's law describes the linear elastic deformation of four-dimensional matter. When the mass of a body is high enough, the process could become non-linear. Then, Newton's law of gravitation could become unreliable for heavy bodies or galaxies for instance. Since the Newton theory needs dark matter to explain observations about galaxies, dark matter models might also be inaccurate.

A Appendix

Let us note $\left(\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}, \mathbf{e}_{\mathbf{4}}\right)$ the natural basis of \mathbb{R}^{4} and $\left(\mathbf{e}_{\mathbf{r}}, \mathbf{e}_{\theta}, \mathbf{e}_{\varphi}, \mathbf{e}_{\mathbf{z}}\right)$ the spherindrical basis (Fig. A.1).

Figure A.1: Spherindrical coordinates.

We consider the spherindrical coordinates (r, θ, φ, z) such as $x_{1}=r \sin \theta \sin \varphi, x_{2}=r \sin \theta \cos \varphi$, $x_{3}=r \cos \theta$ and $x_{4}=z$. The spherindrical basis vectors can be expressed in the natural basis such as:

$$
\begin{align*}
& \mathbf{e}_{\mathbf{r}}=\sin \theta \sin \varphi \mathbf{e}_{\mathbf{1}}+\sin \theta \cos \varphi \mathbf{e}_{\mathbf{2}}+\cos \theta \mathbf{e}_{\mathbf{3}} \\
& \mathbf{e}_{\theta}=\cos \theta \sin \varphi \mathbf{e}_{\mathbf{1}}+\cos \theta \cos \varphi \mathbf{e}_{\mathbf{2}}-\sin \theta \mathbf{e}_{\mathbf{3}} \tag{A.1}\\
& \mathbf{e}_{\varphi}=\cos \varphi \mathbf{e}_{\mathbf{1}}-\sin \varphi \mathbf{e}_{\mathbf{2}} \\
& \mathbf{e}_{\mathbf{z}}=\mathbf{e}_{\mathbf{4}}
\end{align*}
$$

The nabla operator is given by $\boldsymbol{\nabla}=\mathbf{e}_{\mathbf{r}} \partial_{r}+\mathbf{e}_{\theta} \frac{1}{r} \partial_{\theta}+\mathbf{e}_{\varphi} \frac{1}{r \sin \theta} \partial_{\varphi}+\mathbf{e}_{\mathbf{z}} \partial_{z}$. The symbol ∂_{α} denotes the partial derivative with respect to the variable α.
Let us calculate the partial derivatives of the spherindrical basis vectors.

$$
\begin{align*}
& \partial_{r} \mathbf{e}_{\alpha}=\mathbf{0}, \forall \alpha \in[r, \theta, \varphi, z] \\
& \partial_{\theta} \mathbf{e}_{\mathbf{r}}=\mathbf{e}_{\theta}, \partial_{\theta} \mathbf{e}_{\theta}=-\mathbf{e}_{\mathbf{r}}, \partial_{\theta} \mathbf{e}_{\varphi}=\partial_{\theta} \mathbf{e}_{\mathbf{z}}=\mathbf{0} \tag{A.2}\\
& \partial_{\varphi} \mathbf{e}_{\mathbf{r}}=\sin \theta \mathbf{e}_{\varphi}, \partial_{\varphi} \mathbf{e}_{\theta}=\cos \theta \mathbf{e}_{\varphi}, \partial_{\varphi} \mathbf{e}_{\varphi}=-\sin \theta \mathbf{e}_{\mathbf{r}}-\cos \theta \mathbf{e}_{\theta}, \partial_{\varphi} \mathbf{e}_{\mathbf{z}}=\mathbf{0} \\
& \partial_{z} \mathbf{e}_{\alpha}=\mathbf{0}, \forall \alpha \in[r, \theta, \varphi, z]
\end{align*}
$$

Let us consider a vector $\mathbf{v}=v_{r} \mathbf{e}_{\mathbf{r}}+v_{\theta} \mathbf{e}_{\theta}+v_{\varphi} \mathbf{e}_{\varphi}+v_{z} \mathbf{e}_{\mathbf{z}}$ and calculate the gradient of this vector $\mathbf{G}=\nabla \mathbf{v}=\frac{\partial \mathbf{v}}{\partial \alpha} \otimes \mathbf{e}_{\alpha}$. Then,

$$
\begin{equation*}
\mathbf{G} . \mathbf{e}_{\mathbf{r}}=\frac{\partial \mathbf{v}}{\partial r}=\frac{\partial}{\partial r}\left(v_{r} \mathbf{e}_{\mathbf{r}}+v_{\theta} \mathbf{e}_{\theta}+v_{\varphi} \mathbf{e}_{\varphi}+v_{z} \mathbf{e}_{\mathbf{z}}\right)=\partial_{r} v_{r} \mathbf{e}_{\mathbf{r}}+\partial_{r} v_{\theta} \mathbf{e}_{\theta}+\partial_{r} v_{\varphi} \mathbf{e}_{\varphi}+\partial_{r} v_{z} \mathbf{e}_{\mathbf{z}} \tag{A.3}
\end{equation*}
$$

because $\partial_{r} \mathbf{e}_{\alpha}=\mathbf{0}, \forall \alpha \in[r, \theta, \varphi, z]$ according to relation (A.2). Then,

$$
\begin{align*}
& \text { G. } \mathbf{e}_{\theta}=\frac{1}{r} \frac{\partial \mathbf{v}}{\partial \theta}=\frac{1}{r}\left[\left(\partial_{\theta} v_{r}-v_{\theta}\right) \mathbf{e}_{\mathbf{r}}+\left(v_{r}+\partial_{\theta} v_{\theta}\right) \mathbf{e}_{\theta}+\partial_{\theta} v_{\varphi} \mathbf{e}_{\varphi}+\partial_{\theta} v_{z} \mathbf{e}_{\mathbf{z}}\right] \\
& \text { G.e. } e_{\varphi}=\frac{1}{r \sin \theta} \frac{\partial \mathbf{v}}{\partial \varphi}=\frac{1}{r \sin \theta}\left(\left[\partial_{\varphi} v_{r}-\sin \theta v_{\varphi}\right) \mathbf{e}_{\mathbf{r}}+\left(\partial_{\varphi} v_{\theta}-\cos \theta v_{\varphi}\right) \mathbf{e}_{\theta}+\right. \tag{A.4}\\
& \left.\left(\partial_{\varphi} v_{\varphi}+\sin \theta v_{r}+\cos \theta v_{\theta}\right) \mathbf{e}_{\varphi}+\partial_{\varphi} v_{z} \mathbf{e}_{\mathbf{z}}\right] \\
& \mathbf{G .} . \mathbf{e}_{\mathbf{z}}=\frac{\partial \mathbf{v}}{\partial z}=\partial_{z} v_{r} \mathbf{e}_{\mathbf{r}}+\partial_{z} v_{\theta} \mathbf{e}_{\theta}+\partial_{z} v_{\varphi} \mathbf{e}_{\varphi}+\partial_{z} v_{z} \mathbf{e}_{\mathbf{z}}
\end{align*}
$$

Then, the gradient of \mathbf{v} can be written

$$
\nabla \mathbf{v}=\left(\begin{array}{cccc}
\partial_{r} v_{r} & \frac{1}{r} \partial_{\theta} v_{r}-\frac{v_{\theta}}{r} & \frac{1}{r \sin \theta} \partial_{\varphi} v_{r}-\frac{v_{\varphi}}{r} & \partial_{z} v_{r} \tag{A.5}\\
\partial_{r} v_{\theta} & \frac{1}{r} \partial_{\theta} v_{\theta}+\frac{v_{r}}{r} & \frac{1}{r \sin \theta} \partial_{\varphi} v_{\theta}-\cot \theta \frac{v_{\varphi}}{r} & \partial_{z} v_{\theta} \\
\partial_{r} v_{\varphi} & \frac{1}{r} \partial_{\theta} v_{\varphi} & \frac{1}{r \sin \theta} \partial_{\varphi} v_{\varphi}+\frac{v_{r}}{r}+\cot \theta \frac{v_{\theta}}{r} & \partial_{z} v_{\varphi} \\
\partial_{r} v_{z} & \frac{1}{r} \partial_{\theta} v_{z} & \frac{1}{r \sin \theta} \partial_{\varphi} v_{z} & \partial_{z} v_{z}
\end{array}\right)
$$

The divergence of the vector \mathbf{v} is given by

$$
\begin{equation*}
\boldsymbol{\nabla} . \mathbf{v}=\operatorname{tr}(\boldsymbol{\nabla} \mathbf{v})=\frac{1}{r^{2}} \partial_{r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \partial_{\theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \partial_{\varphi} v_{\varphi}+\partial_{z} v_{z} \tag{A.6}
\end{equation*}
$$

Now, let us consider a symmetric second-order tensor field $\boldsymbol{\sigma}$ and calculate its divergence. With ":" denoting the double dot product and $\mathbf{I}=\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\mathbf{r}}+\mathbf{e}_{\theta} \otimes \mathbf{e}_{\theta}+\mathbf{e}_{\varphi} \otimes \mathbf{e}_{\varphi}+\mathbf{e}_{\mathbf{z}} \otimes \mathbf{e}_{\mathbf{z}}$ the second order identity tensor, $\boldsymbol{\nabla} . \boldsymbol{\sigma}=\boldsymbol{\nabla} \boldsymbol{\sigma}: \mathbf{I}$. With \mathbf{A} a third-order tensor field and \mathbf{b} and \mathbf{c} two vectors, we have $\mathbf{A}:(\mathbf{b} \otimes \mathbf{c})=(\mathbf{A . b}) . c$. The divergence of $\boldsymbol{\sigma}$ can then be expressed as

$$
\begin{align*}
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} & =\left(\boldsymbol{\nabla} \boldsymbol{\sigma} \cdot \mathbf{e}_{\mathbf{r}}\right) \cdot \mathbf{e}_{\mathbf{r}}+\left(\boldsymbol{\nabla} \boldsymbol{\sigma} \cdot \mathbf{e}_{\theta}\right) \cdot \mathbf{e}_{\theta}+\left(\boldsymbol{\nabla} \boldsymbol{\sigma} \cdot \mathbf{e}_{\varphi}\right) \cdot \mathbf{e}_{\varphi}+\left(\boldsymbol{\nabla} \boldsymbol{\sigma} \cdot \mathbf{e}_{\mathbf{z}}\right) \cdot \mathbf{e}_{\mathbf{z}} \\
& =\left(\partial_{r} \boldsymbol{\sigma}\right) \cdot \mathbf{e}_{\mathbf{r}}+\frac{1}{r}\left(\partial_{\theta} \boldsymbol{\sigma}\right) \cdot \mathbf{e}_{\theta}+\frac{1}{r \sin \theta}\left(\partial_{\varphi} \boldsymbol{\sigma}\right) \cdot \mathbf{e}_{\varphi}+\left(\partial_{z} \boldsymbol{\sigma}\right) \cdot \mathbf{e}_{\mathbf{z}} \tag{A.7}
\end{align*}
$$

The calculation of $\partial_{\gamma} \boldsymbol{\sigma}$ can be divided into two parts:

$$
\begin{align*}
\partial_{\gamma} \boldsymbol{\sigma} & =\partial_{\gamma} \sum_{\alpha=r, \theta, \varphi, z} \sum_{\beta=r, \theta, \varphi, z} \sigma_{\alpha \beta} \mathbf{e}_{\alpha} \otimes \mathbf{e}_{\beta} \tag{A.8}\\
& =\sum_{\alpha=r, \theta, \varphi, z} \sum_{\beta=r, \theta, \varphi, z}\left(\partial_{\gamma} \sigma_{\alpha \beta}\right) \mathbf{e}_{\alpha} \otimes \mathbf{e}_{\beta}+\sum_{\alpha=r, \theta, \varphi, z} \sum_{\beta=r, \theta, \varphi, z} \sigma_{\alpha \beta}\left[\left(\partial_{\gamma} \mathbf{e}_{\alpha}\right) \otimes \mathbf{e}_{\beta}+\mathbf{e}_{\alpha} \otimes\left(\partial_{\gamma} \mathbf{e}_{\beta}\right)\right]
\end{align*}
$$

The calculation of the derivatives of the basis vectors are provided by relations (A.2).
Since $\partial_{r} \mathbf{e}_{\alpha}=\mathbf{0}, \forall \alpha \in[r, \theta, \varphi, z], \gamma=r$ yields $\partial_{r} \boldsymbol{\sigma}=\sum_{\alpha=r, \theta, \varphi, z} \sum_{\beta=r, \theta, \varphi, z}\left(\partial_{r} \sigma_{\alpha \beta}\right) \mathbf{e}_{\alpha} \otimes \mathbf{e}_{\beta}$. So,

$$
\begin{equation*}
\left(\partial_{r} \boldsymbol{\sigma}\right) \cdot \mathbf{e}_{\mathbf{r}}=\sum_{\beta=r, \theta, \varphi, z}\left(\partial_{r} \sigma_{r \beta}\right) \mathbf{e}_{\beta}=\left(\partial_{r} \sigma_{r r}\right) \mathbf{e}_{\mathbf{r}}+\left(\partial_{r} \sigma_{r \theta}\right) \mathbf{e}_{\theta}+\left(\partial_{r} \sigma_{r \varphi}\right) \mathbf{e}_{\varphi}+\left(\partial_{r} \sigma_{r z}\right) \mathbf{e}_{\mathbf{z}} \tag{A.9}
\end{equation*}
$$

When $\gamma=\theta$,

$$
\begin{align*}
& \quad \sum_{\alpha=r, \theta, \varphi, z} \sum_{\beta=r, \theta, \varphi, z} \sigma_{\alpha \beta}\left[\left(\partial_{\theta} \mathbf{e}_{\alpha}\right) \otimes \mathbf{e}_{\beta}+\mathbf{e}_{\alpha} \otimes\left(\partial_{\theta} \mathbf{e}_{\beta}\right)\right]= \\
& \sigma_{r r}\left(\mathbf{e}_{\theta} \otimes \mathbf{e}_{\mathbf{r}}+\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\theta}\right)+\sigma_{r \theta}\left(\mathbf{e}_{\theta} \otimes \mathbf{e}_{\theta}-\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\mathbf{r}}-\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\mathbf{r}}+\mathbf{e}_{\theta} \otimes \mathbf{e}_{\theta}\right) \tag{A.10}\\
& +\sigma_{r \varphi}\left(\mathbf{e}_{\theta} \otimes \mathbf{e}_{\varphi}+\mathbf{e}_{\varphi} \otimes \mathbf{e}_{\theta}\right)+\sigma_{r z}\left(\mathbf{e}_{\theta} \otimes \mathbf{e}_{\mathbf{z}}+\mathbf{e}_{\mathbf{z}} \otimes \mathbf{e}_{\theta}\right)-\sigma_{\theta \theta}\left(\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\theta}+\mathbf{e}_{\theta} \otimes \mathbf{e}_{\mathbf{r}}\right) \\
& -\sigma_{\theta \varphi}\left(\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\varphi}+\mathbf{e}_{\varphi} \otimes \mathbf{e}_{\mathbf{r}}\right)-\sigma_{\theta z}\left(\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\mathbf{z}}+\mathbf{e}_{\mathbf{z}} \otimes \mathbf{e}_{\mathbf{r}}\right)
\end{align*}
$$

We directly replaced the derivatives and used the symmetry of $\boldsymbol{\sigma}$. Then,

$$
\begin{align*}
\left(\partial_{\theta} \boldsymbol{\sigma}\right) \cdot \mathbf{e}_{\theta} & =\sum_{\beta=r, \theta, \varphi, z}\left(\partial_{\theta} \sigma_{\theta \beta}\right) \mathbf{e}_{\beta}+\left(\sigma_{r r}-\sigma_{\theta \theta}\right) \mathbf{e}_{\mathbf{r}}+2 \sigma_{r \theta} \mathbf{e}_{\theta}+\sigma_{r \varphi} \mathbf{e}_{\varphi}+\sigma_{r z} \mathbf{e}_{\mathbf{z}} \\
& =\left(\sigma_{r r}-\sigma_{\theta \theta}+\partial_{\theta} \sigma_{r \theta}\right) \mathbf{e}_{\mathbf{r}}+\left(2 \sigma_{r \theta}+\partial_{\theta} \sigma_{\theta \theta}\right) \mathbf{e}_{\theta}+\left(\sigma_{r \varphi}+\partial_{\theta} \sigma_{\theta \varphi}\right) \mathbf{e}_{\varphi}+\left(\sigma_{r z}+\partial_{z} \sigma_{\theta z}\right) \mathbf{e}_{\mathbf{z}} \tag{A.11}
\end{align*}
$$

When $\gamma=\varphi$,

$$
\begin{align*}
& \sum_{\alpha=r, \theta, \varphi, z} \sum_{\beta=r, \theta, \varphi, z} \sigma_{\alpha \beta}\left[\left(\partial_{\varphi} \mathbf{e}_{\alpha}\right) \otimes \mathbf{e}_{\beta}+\mathbf{e}_{\alpha} \otimes\left(\partial_{\varphi} \mathbf{e}_{\beta}\right)\right]= \\
& \sigma_{r r} \sin \theta\left(\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\varphi}+\mathbf{e}_{\varphi} \otimes \mathbf{e}_{\mathbf{r}}\right)+\sigma_{r \theta}\left(\cos \theta \mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\varphi}+\sin \theta \mathbf{e}_{\varphi} \otimes \mathbf{e}_{\theta}+\cos \theta \mathbf{e}_{\varphi} \otimes \mathbf{e}_{\mathbf{r}}+\sin \theta \mathbf{e}_{\theta} \otimes \mathbf{e}_{\varphi}\right) \\
& +\sigma_{r \varphi}\left(2 \sin \theta \mathbf{e}_{\varphi} \otimes \mathbf{e}_{\varphi}-2 \sin \theta \mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\mathbf{r}}-\cos \theta\left(\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\theta}+\mathbf{e}_{\theta} \otimes \mathbf{e}_{\mathbf{r}}\right)\right)+\sigma_{r z} \sin \theta\left(\mathbf{e}_{\varphi} \otimes \mathbf{e}_{\mathbf{z}}+\mathbf{e}_{\mathbf{z}} \otimes \mathbf{e}_{\varphi}\right) \\
& +\sigma_{\theta \theta} \cos \theta\left(\mathbf{e}_{\theta} \otimes \mathbf{e}_{\varphi}+\mathbf{e}_{\varphi} \otimes \mathbf{e}_{\theta}\right)+\sigma_{\theta \varphi}\left(2 \cos \theta \mathbf{e}_{\varphi} \otimes \mathbf{e}_{\varphi}-2 \cos \theta \mathbf{e}_{\theta} \otimes \mathbf{e}_{\theta}-\sin \theta\left(\mathbf{e}_{\theta} \otimes \mathbf{e}_{\mathbf{r}}+\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\theta}\right)\right) \\
& +\sigma_{\theta z} \cos \theta\left(\mathbf{e}_{\varphi} \otimes \mathbf{e}_{\mathbf{z}}+\mathbf{e}_{\mathbf{z}} \otimes \mathbf{e}_{\varphi}\right)-\sigma_{\varphi \varphi}\left(\sin \theta\left(\mathbf{e}_{\varphi} \otimes \mathbf{e}_{\mathbf{r}}+\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\varphi}\right)+\cos \theta\left(\mathbf{e}_{\varphi} \otimes \mathbf{e}_{\theta}+\mathbf{e}_{\theta} \otimes \mathbf{e}_{\varphi}\right)\right) \\
& -\sigma_{\varphi z}\left(\sin \theta\left(\mathbf{e}_{\mathbf{r}} \otimes \mathbf{e}_{\mathbf{z}}+\mathbf{e}_{\mathbf{z}} \otimes \mathbf{e}_{\mathbf{r}}\right)+\cos \theta\left(\mathbf{e}_{\theta} \otimes \mathbf{e}_{\mathbf{z}}+\mathbf{e}_{\mathbf{z}} \otimes \mathbf{e}_{\theta}\right)\right) \tag{A.12}
\end{align*}
$$

Then,

$$
\begin{align*}
\left(\partial_{\varphi} \boldsymbol{\sigma}\right) . \mathbf{e}_{\varphi} & =\sum_{\beta=r, \theta, \varphi, z}\left(\partial_{\varphi} \sigma_{\varphi \beta}\right) \mathbf{e}_{\beta}+\left(\sin \theta \sigma_{r r}+\cos \theta \sigma_{r \theta}-\sin \theta \sigma_{\varphi \varphi}\right) \mathbf{e}_{\mathbf{r}} \\
& +\left(\sin \theta \sigma_{r \theta}+\cos \theta \sigma_{\theta \theta}-\cos \theta \sigma_{\varphi \varphi}\right) \mathbf{e}_{\theta}+\left(2 \sin \theta \sigma_{r \varphi}+2 \cos \theta \sigma_{\theta \varphi}\right) \mathbf{e}_{\varphi}+\left(\sin \theta \sigma_{r z}+\cos \theta \sigma_{\theta z}\right) \mathbf{e}_{\mathbf{z}} \\
& =\left(\sin \theta \sigma_{r r}+\cos \theta \sigma_{r \theta}-\sin \theta \sigma_{\varphi \varphi}+\partial_{\varphi} \sigma_{r \varphi}\right) \mathbf{e}_{\mathbf{r}}+\left(\sin \theta \sigma_{r \theta}+\cos \theta \sigma_{\theta \theta}-\cos \theta \sigma_{\varphi \varphi}+\partial_{\varphi} \sigma_{\theta \varphi}\right) \mathbf{e}_{\theta} \\
& +\left(2 \sin \theta \sigma_{r \varphi}+2 \cos \theta \sigma_{\theta \varphi}+\partial_{\varphi} \sigma_{\varphi \varphi}\right) \mathbf{e}_{\varphi}+\left(\sin \theta \sigma_{r z}+\cos \theta \sigma_{\theta z}+\partial_{\varphi} \sigma_{\varphi z}\right) \mathbf{e}_{\mathbf{z}} \tag{A.13}
\end{align*}
$$

When $\gamma=z$,

$$
\begin{equation*}
\left(\partial_{z} \boldsymbol{\sigma}\right) . \mathbf{e}_{\mathbf{z}}=\left(\partial_{z} \sigma_{r z}\right) \mathbf{e}_{\mathbf{r}}+\left(\partial_{z} \sigma_{\theta z}\right) \mathbf{e}_{\theta}+\left(\partial_{z} \sigma_{\varphi z}\right) \mathbf{e}_{\varphi}+\left(\partial_{z} \sigma_{z z}\right) \mathbf{e}_{\mathbf{z}} \tag{A.14}
\end{equation*}
$$

Finally, the divergence of $\boldsymbol{\sigma}$ given in the spherindrical basis is

$$
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}=\left(\begin{array}{l}
\partial_{r} \sigma_{r r}+\frac{1}{r} \partial_{\theta} \sigma_{r \theta}+\frac{1}{r \sin \theta} \partial_{\varphi} \sigma_{r \varphi}+\partial_{z} \sigma_{r z}+\frac{\sigma_{r r}-\sigma_{\theta \theta}}{\sigma_{r}}+\frac{\sigma_{r r}-\sigma_{\varphi \varphi}}{r}+\frac{\cot \theta}{r} \sigma_{r \theta} \tag{A.15}\\
\partial_{r} \sigma_{r \theta}+\frac{1}{r} \partial_{\theta} \sigma_{\theta \theta}+\frac{1}{r \sin \theta} \partial_{\varphi} \sigma_{\theta \varphi}+\partial_{z} \sigma_{\theta z}+3 \frac{\sigma_{r \theta}}{r}+\cot \theta \theta_{\theta \theta}-\sigma_{\varphi \varphi} \\
\partial_{r} \sigma_{r \varphi}+\frac{1}{r} \partial_{\theta} \sigma_{\theta \varphi}+\frac{1}{r \sin \theta} \partial_{\varphi} \sigma_{\varphi \varphi}+\partial_{z} \sigma_{\varphi z}+3 \frac{\sigma_{r \varphi}}{r}+2 \cot \theta \\
\partial_{r} \sigma_{r z}+\frac{1}{r} \partial_{\theta} \sigma_{\theta z}+\frac{r \operatorname{lin}}{r \sin \theta} \partial_{\varphi} \sigma_{\varphi z}+\partial_{z} \sigma_{z z}+2 \frac{\sigma_{r z}}{r}+\frac{\cot \theta}{r} \sigma_{\theta z}
\end{array}\right)
$$

References

[1] A. Einstein. The Foundation of the General Theory of Relativity. Annalen der Physik, 49(7):769-822, 1916.
[2] J.D. Anderson, J.K. Campbell, R.F. Jurgens, E.L. Lau, X.X. Newhall, M.A. Slade III, and E.M. Standish. Recent developments in solar-system tests of general relativity. Proc. Sixth Marcel Grossmann Meeting. World Scientific, Singapore, 1992.
[3] C.M. Will. The Confrontation between General Relativity and Experiment. Living Reviews in Relativity, 17(1):4, 2014.
[4] E. Fomalont, S. Kopeikin, G. Lanyi, and J. Benson. Progress in Measurements of the Gravitational Bending of Radio Waves using the VLBA. The Astrophysical Journal, 699(2):1395-1402, 2009.
[5] D.E. Lebach, B.E. Corey, I.I. Shapiro, M.I. Ratner, J.C. Webber, A.E.E. Rogers, J.L. Davisand, and T.A. Herring. Measurement of the Solar Gravitational Deflection of Radio Waves Using Very-Long-Baseline Interferometry. Physical Review Letters, 75(8):14391442, 1995.
[6] S.S. Shapiro, J.L. Davis, D.E. Lebach, and J.S. Gregory. Measurement of the Solar Gravitational Deflection of Radio Waves Using Geodetic Very-Long-Baseline Interferometry Data, 1979-1999. Physical Review Letters, 92(12):121101, 2004.
[7] J. B. Holberg. Sirius B and the Measurement of the Gravitational Redshift. Journal for the History of Astronomy, 41(1):41-64, 2010.
[8] J. M. Weisberg, J. H. Taylor, and L. A. Fowler. Gravitational Waves from an Orbiting Pulsar. Scientific American, 245(4):74-82, 1981.
[9] J. H. Taylor and J. M. Weisberg. A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16. Astrophysical Journal, 253:908-920, 1982.
[10] V. M. Slipher. The Radial Velocity of the Andromeda Nebula. Lowell Observatory Bulletin, 1:56-57, 1913.
[11] E. Hubble. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences of the United States of America, 15:168-173, 1929.
[12] S. Perlmutter et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. The Astrophysical Journal, 517:565-586, 1999.
[13] A.G. Riess et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116:1009-1038, 1998.
[14] P. J. E. Peebles and Bharat Ratra. The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75(2):559-606, 2003.
[15] V. Trimble. Existence and Nature of Dark Matter in the Universe. Annual Review of Astronomy and Astrophysics, 25:425-472, 1987.
[16] E. Corbelli and P. Salucci. The Extended Rotation Curve and the Dark Matter Halo of M33. Monthly Notices of the Royal Astronomical Society, 311(2):441-447, 2000.
[17] F. Salmon. A simple formula giving the speed of light. HAL-2433140v4, 2020.

