
HAL Id: hal-02572048
https://hal.science/hal-02572048v1

Submitted on 13 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supplier Replacement Model in a One-Level Assembly
System under Lead-Time Uncertainty

Hasan Murat Afsar, Oussama Ben-Ammar, Alexandre Dolgui, Faicel Hnaien

To cite this version:
Hasan Murat Afsar, Oussama Ben-Ammar, Alexandre Dolgui, Faicel Hnaien. Supplier Replacement
Model in a One-Level Assembly System under Lead-Time Uncertainty. Applied Sciences, 2020,
�10.3390/app10103366�. �hal-02572048�

https://hal.science/hal-02572048v1
https://hal.archives-ouvertes.fr


applied  
sciences

Article

Supplier Replacement Model in a One-Level
Assembly System under Lead-Time Uncertainty

Hasan-Murat Afsar 1, Oussama Ben-Ammar 2,* , Alexandre Dolgui 3 and Faicel Hnaien 1

1 University of Champagne, University of Technology of Troyes, CNRS, ICD/LOSI. 12 rue Marie Curie,
10010 Troyes, France; hasan_murat.afsar@utt.fr (H.-M.A.); faicel.hnaien@utt.fr (F.H.)

2 Department of Manufacturing Sciences and Logistics, Mines Saint-Étienne, Univ Clermont Auvergne,
UMR-CNRS 6158 LIMOS, CMP, 880 route de Mimet, F-13541 Gardanne, France

3 IMT Atlantique, LS2N, UMR-CNRS 6004, La Chantrerie, 4 rue Alfred Kastler, 44300 Nantes, France;
alexandre.dolgui@imt-atlatique.fr

* Correspondence: oussama.ben-ammar@emse.fr

Received: 18 March 2020; Accepted: 9 May 2020; Published: 13 May 2020
����������
�������

Abstract: Supplier selection/replacement strategies, purchasing price negotiation and optimized
replenishment policies play a key role in efficient supply chain management in today’s dynamic
market. Their importance increases even more in Industry 4.0. In this paper, we propose a joint model
of replenishment planning and purchasing price negotiation in the context of supplier replacement in
a one-level assembly system (OLAS) producing one type of finished product. The real component
lead times are stochastic. There is consequently a non-negligible risk that the assembly process
may be stopped if all components for assembly are not delivered on the due date. This incurs
inventory-related costs, holding and backlogging, which should be minimized. We consider a set of
suppliers characterized by their prices and the probability distributions of their lead-times, and we
present a model and an approach that optimize not only replenishment policy, but also purchasing
prices. For a given unit, it is possible to model several alternative suppliers with alternative pricing
and lead-time uncertainties, and evaluate their impacts on the total cost: composed of holding,
backlogging and purchasing costs for the assembly system. The findings of this study indicate that
it can be beneficial to pay suppliers an additional purchase cost in order to reduce the holding and
backlogging costs related to uncertainty. In consequence, decision makers can use the proposed
approach to negotiate prices and delivery delays or to select suppliers.

Keywords: supply chain management; assembly systems; replenishment; pricing; stochastic lead
times; holding cost; backlogging cost; purchase cost; optimization

1. Introduction

Much research has been done on efficient replenishment as a major factor in inventory control.
In fact, inappropriate replenishment policies result in stock-outs or overstocks. If customer demands are
unfulfilled, penalties are imposed. At the same time, overstocking drastically increases inventory costs.
The optimization of replenishment often leads to the search for a trade-off between the backlogging and
holding to minimize the total cost. Usually replenishment planning models are used at the operational
level when the suppliers are already selected and decision makers know the lead time distributions
for each of them. These distributions are obtained from statistics of past deliveries. The problem is to
decide the planned lead time for each supplier and component, minimizing the total cost, which is
composed of holding cost for components and backlogging cost for the finished product.

Taking into account the importance of reliability of supplier lead times, especially in assembly
systems, they should be considered not only at the operational level, but also at the strategic level,
at the selection of suppliers. In the latter case, the question is: how to evaluate the cost of supplier
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unreliability in an assembly system? Often the suppliers are selected uniquely on their proposal of
component prices. An interesting and important question is: how to integrate the purchasing price
and lead time reliability in a common model to be able to evaluate suppliers on both purchasing price
and lead time reliability. Such a model would be useful not only for supplier selection but also for
purchasing price negotiation as a function of reliability of lead times.

In the modern market, companies need to take every opportunity to reduce their costs and
uncertainties to satisfy their customers. This makes negotiation of purchasing prices and conditions of
delivery with suppliers, supplier selection and replacement if needed, key strategic considerations.
Dynamic markets lead to the necessity to select suppliers dynamically by favoring those who are
able to follow changes in company requirements [1]. Poor supply condition negotiation and supplier
selection during a single period can have substantial negative impacts on a firm’s long-term financial
results [2]. Finding a suitable set of suppliers, definition of prices and effective replenishment rules are
crucial issues.

In this article, a one-level assembly system (OLAS) is considered. The assembled product is
composed of n distinct components which are replenished from external suppliers with uncertain
lead-times described by lead time probability distributions. Lead-time uncertainty is a crucial element
in production systems and logistics. There are numerous factors causing lead time randomness: limited
capacity of suppliers under random demand of their clients, substandard quality, worker absenteeism,
machine failure, transport postponement and randomness, etc.

The motivation for this study is based on our work experience with industrial partners from two
different sectors. The first one was ZF, a gearbox producer for the automotive industry. Many of ZF’s
suppliers are from different countries and their lead times are often subject to random deviations. This
creates problems for the assembly plant in Saint Etienne (France). To reduce the negative consequences,
ZF calculates the reliability of their suppliers based on past statistics. Coefficients of reliability (greater
or equal to 1) were used to calculate planned lead times for each supplier by multiplying the contractual
lead time by the corresponding reliability coefficient. Nevertheless, these calculations were done for
each supplier separately, thus the results were not optimal. In addition, this approach was only used to
parameterize their Material Requirement Planning (MRP) system, i.e., only for replenishment planning
at the operational level. The aims of ZF were to find a more efficient approach which took into account
the costs, and considers all suppliers together in the same model. It was also interesting to have the
possibility of using such an approach to analyze their policy of supplier selection and negotiation of
purchasing prices. The second example was from retail industry, Casino Group, one of biggest retailer
networks in France. Once a year the Casino Group negotiates the prices with their suppliers. There
are many warehouses of the group in different regions of France, some local, some regional. Many
suppliers compete to deliver the same (or similar) type of product. The lead time depends on supplier
and warehouse. The Casino Group searched for models to evaluate the logistic costs of different
configurations. The objective was to obtain a decision aid model to decide which suppliers deliver
which product, for which warehouse and with which price per product. The Casino Group agrees to
increase the purchasing price if the corresponding supplier agrees to reduce the random deviations of
lead times by agreeing to deliver to a specific warehouse.

The proposed model is an extension of the model in [3] but with completely new and challenging
settings, specifically we are adding purchasing cost depending on the supplier reliability. This opens
the possibility of finding solutions to as yet unsolved problems. In particular, whether to outsource or
not. If yes, which suppliers and countries to use and also to negotiate purchase prices vs. lead time
decisions, etc. The new settings led to a completely new model, involved reworking the approach,
revising cost formulations, proving the properties of the model, developing new algorithms and,
which is the most important, to have new managerial insights and application perspectives. The study
presents a model that takes into account not only optimal assignment of component order release
dates but also replacement of a critical supplier. For a given unit, the study models several alternative
suppliers with alternative pricing and lead-time uncertainties, which evaluate the impact on the total
assembly system. The results show that the joint pricing and replenishment optimization can increase
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system efficiency, and the approach and model can be used not only for replenishment planning and
MRP parameterization but also for supplier selection and purchasing price negotiation.

Here, to be closer to real-world industrial planning methods, we consider a discrete temporal
environment and integer decision variables. We consider the case of discrete lead-time distributions,
as real-world industrial planning methods generally utilize the discrete temporal environment.

The rest of this paper is organized as follows. Section 2 reviews previous research on replenishment
planning under random lead times with a specific focus on assembly systems. Section 3 outlines a
formulation of the supplier selection/replacement and replenishment optimization model for the
considered OLAS. Section 4 presents the optimization approach for the case where several suppliers
may be replaced. Section 5 reports the computational results. Section 6 provides managerial insights.
Theoretical contributions and limitations of our research are discussed in Section 7. Section 8 gives
concluding remarks.

2. Related Work

The literature includes several papers that study supply planning under uncertainty: most
focus on demand uncertainty, and there has been little attempt to address the question of lead-time
uncertainty. Here, we do not claim to provide an exhaustive review of the literature but a broad
overview of important existing approaches in the field of supply planning under lead-time uncertainty.
This first analysis of the literature confirms that most existing work focuses on one-customer demand
planning and one-period planning with specific structures.

Weeks [4] was one of the first authors to investigate one-demand replenishment planning for
one-level production under lead-time uncertainty. He proved that the problem of planned lead-time
calculation can be easily resolved by using the well-known Newsvendor model. Yano in [5] generalized
the approach to the case of multi-stage linear systems, and Gong et al. in [6] proved that the problem
for serial inventory systems is equivalent to the one that calculates the best base-stock levels. Elhafsi
in [7] also dealt with multi-stage systems but with backlogging costs in intermediate stages. The author
proposed a recursive procedure to calculate the expected total cost and then optimize planned lead
times based on the convexity of the cost function.

The literature covering assembly systems under lead-time uncertainty includes several studies that
consider one-customer demand planning. Yano [8] was among the first authors to study replenishment
planning for one-level assembly systems (OLAS) under lead time uncertainty. In that paper, an
assembly system for a finished product was considered. The finished product was assembled from
two components. The lead time followed a stochastic Poisson distribution for the first component and
a negative binomial distribution for the second component. Like Yano in [8], Kumar in [9] developed
a model to study OLAS under a known demand and uncertain lead times, but for several types of
components. The objective was to minimize the expected total cost composed of holding cost and
backlogging cost. An exact method was proposed to obtain optimal order release dates. The main
limitation of this method is that it is only valid for certain types of lead-time distributions (exponential,
uniform or normal). Several other works have set out to demonstrate the convexity of the objective
function for the case of OLAS [10] or to optimize it using Newsboy formulae with specific assumptions
on lead-time probability distributions [11,12]. For the case of a single stochastic demand, [13] studied
an assembly system with one finished product and two components, each purchased from its own
supplier. The distributions of probabilities were of a specific type on two periods: an order is delivered
at the time t with probability p otherwise it is delivered at the time t + 1. The authors optimized the
ordered quantity purchased from each supplier.

In [14], the authors developed a mathematical model to calculate the expected total cost, which is
the sum of the inventory holding costs for components and sub-assemblies as well as the backlogging
cost for the finished product, for two-level assembly systems. The components of the second level of
the bill of materials (BOM) are necessary to assemble sub-assemblies. Then the sub-assemblies of the
second level are used to assemble the finished product at the first level. The lead times for components
and sub-assemblies are discrete random variables. The authors assumed that the finished product is
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assembled, at the earliest, on due date (Just-In-Time policy). The problem is more complex than for
one-level assembly systems because of the necessity to calculate convolutions of probabilities for both
level 1 and 2. A GA was proposed to minimize the expected total cost by searching for appropriate
(if possible optimal) order release dates for the components at the second level. In [15–17], the authors
use the same mathematical model with the same assumptions but in a multi-objective context.

Later, in the article by Ben-Ammar and Dolgui [18], the model was extended to authorize the
assembly of the finished product before the due date if all the components at level 1 are available.
A Branch-and-Bound procedure (B&B) was developed to optimize the planned lead times. Based on
this approach, a joint model for replenishment and equipment maintenance planning that considered
system deterioration was proposed in [19,20]. For assembly systems with three levels in the BOM,
Axsäter proposed in [21] a continuous model based on an approximate decomposition technique to
optimize inventory and backlogging costs. The main limitation of these studies is that they are limited
to assembly systems with less than three levels in the BOM.

The past few years have seen a huge research effort to propose more general models. To the
best of our knowledge, only two studies have proposed mathematical formulations to model
one-known-demand planning for multi-level assembly systems: Ben-Ammar and Dolgui in [22] for the
assemble-to-order and Jansen et al. [23] for the configure-to-order environments. Even though these
two studies model the dependency between levels and offer the potential to analyze replenishment
planning for assembly systems with more than two levels in the nomenclature, there are still a number
of unanswered questions for the case of multi-period planning where there is dependency between
inventory levels at different periods.

Multi-period planning models in a stochastic environment with random lead times were
investigated in many studies. Most models are limited to single-item replenishment with the assumption
that there is no order crossover. The order crossover is a very well-known effect when the same type
of order released at period t is delivered after the order released at the period t + 1. Despite it being a
very real phenomenon in real-world replenishment planning and inventory control, in the literature,
the models proposed often make the assumption that there is no crossover, because of the difficulty in
calculating the probabilities of different states for a crossover effect (see [4,24–27] and their related work
for well-known models, and [28–31] for real examples).

The multi-period models take into account the dependency between periods: at some point in
time the backlog is covered by stocks of previous periods and vice versa [32]. For assembly systems
with stochastic lead times and multi-period replenishment planning, the research was often done
for the case of a known constant rather than a dynamic demand [33]. This can be explained by the
fact that the order crossover is very hard to model for dynamic demand [28]. The choice of a known
constant demand allows the crossover phenomenon to be neglected because the orders are of the same
size, equal the demand, thus it does not matter which order is delivered on each period. A number of
studies were built on this assumption to propose a one-period planning approach that is equivalent to
multi-period planning with a known constant demand and stochastic lead times.

Liberatore in the work [34] was one of the first authors who proposed an economic order quantity
(EOQ) approach for an OLAS under lead time uncertainty, but with only a two-period planning
model. Fujiwara et al. [35] has formulated the inter-dependency between the inventories of different
components in assembly systems and developed an optimal (Q, r) policy for an OLAS. They assumed
that: (i) the finished product is composed of several types of components; (ii) the assembly capacity is
unlimited; (iii) the demand is constant and (iv) the probability distribution of procurement lead time
for each component is given. Their proposed continuous model determines the optimal (Q, r) policy
and minimize the average total cost, which represents the sum of average inventory, backlogging and
setup costs.

A few years later, new and more efficient models were developed for multi-period planning with
known and constant demand. Generalized models were provided, but they were limited to OLAS.
For example, in [10,36], the authors have considered the MRP parameterization problem by optimizing
planned lead times with a view to minimizing the expected total cost including the backlogging cost
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for finished products as well as the holding cost for components. In [37,38], the authors optimized
the same expected total cost and gave the optimal safety stock and optimal safety times. However,
serious weaknesses in the approach were that it is only valid if all component procurement lead times
follow the same probability distribution and if all components have the same unit inventory holding
cost. The optimization approach was generalized in [3] to consider procurement lead times that are
independent, but not necessarily identically distributed in order to minimize the expected total cost.
In continuation of this work, various approaches [36,39–42] have attempted to extend this model to
study other replenishment policies (L4L, POQ, EOQ, etc.) and to include setup cost.

For the case of multi-period planning under uncertainty of both demand and lead times,
Molinder [43] studied OLAS to develop a simulation model coupled with a hybrid algorithm. The
algorithm is based on simulated annealing to optimize order quantities and planned lead times. In [44],
the authors proposed a stochastic linear programming model to study a multi-product problem with
several OLAS under both demand and lead-time uncertainty. Both these models are very interesting,
but the quality of the optimal solutions depends on the number of scenarios that increases very quickly.

As can be seen in Table 1, all the papers concentrate on ordering policies by optimizing order
quantities, order release dates and planned lead times [33]. To the best of our knowledge, in the field
of OLAS with multi-period planning no papers have attempted to co-optimize purchasing policies and
pricing strategies even though both are crucial to successful supply chain management. Most of the
literature on supplier diversification and responsive pricing has focused on the single-item purchasing
case. Interested readers can refer to the-state-of-the-art surveys of [45–48] to obtain more details on
existing pricing models, and to the recent review paper [49] which provides an excellent overview of
contributions to this issue.

In the field of inventory control for assembly systems in an uncertain environment, the issue of
supplier diversification and supplier selection/replacement strategies has not been sufficiently studied.
As aforementioned, Gurnani et al. in [13] studied an assembly system with one product stochastic
demand. The finished product was assembled from two components. The authors extended the model
introduced in [50] to consider delivery of the required components by a joint supplier or by two different
suppliers. They demonstrated the optimality of base-stock when one supplier is selected. A few years
later, the same authors [51] replaced lead-time uncertainty by yield uncertainty and came up with
propositions under which it can be economically beneficial for the company to multi-source rather than
use a single supplier. Pan and So in [52] considered an ATO environment to study random yields and
price-dependent demand in single-period planning. They modeled the assembly of a finished product
from n components and analyzed the effects of uncertainty on the optimal solution, defined by the
production quantities–product pricing dyad.

In this paper, we extend the model proposed in [3] in order to investigate an OLAS under
lead-time uncertainty and to examine the benefit of paying suppliers an additional purchase cost
(APC) in order to reduce the costs of component lead-time uncertainty. In [3], a one-level assembly
system was considered with several suppliers and random supplier lead times. The authors optimized
planned lead-times for a fixed set of selected suppliers, taking into account the statistics on the real
lead times. There was no possibility of changing suppliers nor of modifying the planned lead time
distributions. The objective function was to minimize the total holding and backlogging cost. That
model was a model of production planning under lead time uncertainties. Such models are often
used for MRP parameterization. In this paper, the motivation is different. We will try to show that
the selection of suppliers does not depend only on purchasing prices, but also on the supplier lead
times (reliability). The goal is to develop a model allowing supplier selection and price negotiation.
The question is: what is the cost saving related to better reliability (reduction of the scope of the
distributions of probabilities of lead times) taking into account holding and backlogging costs (as in the
model [3]), but also purchasing costs which can be modified depending on the lead time distributions
offered. To reach our objective, we will examine the benefit of paying suppliers an APC in order to
reduce the lead time uncertainty.



Appl. Sci. 2020, 10, 3366 6 of 21

Table 1. Literature on assembly systems under uncertainty of lead times.

System Characteristics
Authors Number

of Levels
Number of

Components
Number

of Periods
Purchasing

Policy

Comments

[4] 1 1 1 Newsvendor model.
[8] 1 2 1 Non linear programming, safety stock.
[9] 1 n 1 Valid for certain types of lead-time distributions (exponential, uniform or normal).
[10] 1 n 1 Continuous distribution, iterative algorithm.
[13] 1 2 1

√
Specific assumptions on lead-time probability distributions.

[14–18] 2 n 1 Mathematical models, GA, B&B.
[19,20] 2 n 1 Replenishment and equipment maintenance planning.
[21] 3 n 1 Continuous model, approximate decomposition technique.
[22] m n 1 ATO environment, mathematical model, B&B.
[23] m∗ n 1 CTO environments, mathematical model, assembly process fed by a multi-stage parallel process.
[34] 1 n 2 Constant demand, EOQ policy.
[35] 1 n p Constant demand, (Q, r) policy.
[37,38] 1 n p Constant demand, the same probability distribution and the same inventory cost for all components.
[3,36,39–42] 1 n p Constant demand, several probability distribution, L4L, POQ and EOQ policies.
Current paper 1 n p

√
Constant demand, supplier replacement model, HGA.

m∗: assembly process fed by a multi-stage parallel process, m: multi-level, n: multi-components, p: multi-period.
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3. Problem Description

The problem of replenishment in assembly systems under component lead time uncertainties is
complex. This is due to the fact that it is necessary to have all the components to start the assembly
process. If delivery of a component is delayed, the entire process is stopped and it is necessary to pay
additional holding costs for the components which are already in stock, and backlogging costs for the
finished product. Thus, the randomness of component delivery times should be reduced and, if this is
impossible, it should be taken into account in production planning at all decision levels. A supplier is
considered as more reliable if there is less randomness in its lead times.

In this paper, an assembly system is considered to assemble a given product. The demand in
finished product is known and fixed, i.e., we know how many finished products it is necessary to
assemble by the end of each period (fixed demand). To assemble one product, n different components
are necessary. The components are ordered from external independent suppliers. The lead times (the
time between order release and component delivery to assembly system) of suppliers are independent
random discrete variables with known distributions of probabilities. There is no assumption about the
form of distributions of probabilities. Any discrete distributions can be used, but these distributions
are known before optimization. They are obtained from statistics on the past deliveries of similar
components from the same suppliers. The assembly capacity is considered as infinite. We know the
unit holding cost per component and per period and the unit backlogging cost per period for the
finished product. The orders for components are given at the beginning of each period. The ordered
components are delivered at the end of a period. We also know the unit purchasing cost of each
component from the selected supplier. The purchasing cost can be increased if the supplier agrees
to reduce the randomness of its lead time. The objective is to find the planned lead time and unit
purchasing cost, minimizing the total cost.

This is a problem of both replenishment and pricing in assembly systems with stochastic component
lead times. It appears at the contracting stage when the planned lead times and prices are negotiated
with suppliers. The model developed can also be used for supplier selection and replacement.

In our previous work, we have already studied the replenishment part of the problem.
The developed approach was based on modeling the possible states of the system (orders in progress)
with Markov chains, analysis of the convergence and steady state probabilities and finally obtaining
steady state expressions of expected cost composed of expected holding cost for components and
backlogging cost for finished products [37]. The obtained cost functions were nonlinear with discrete
decision variables (planned lead times). To optimize them, a B&B and genetic algorithms were
developed and tested [3]. In addition, their efficiency is demonstrated.

In this paper, we will use our previous results and extend the models to the case of optimization
of both replenishment and pricing. First of all, we will present this extended problem, the cost function
for the steady state (mathematical expectation of the cost composed of holding cost for components,
purchasing cost for components and backlogging cost for finished products), an optimization approach
to determine the best decision variables (prices and planned lead times) and finally numerical tests
and managerial insights.

In an OLAS with n different components replenished from n independent suppliers, the uncertainty
of component replenishment lead times causes a high component inventory level and a backlog for
the finished product. In this context, the producer may be ready to pay an additional purchasing cost
(APC) if the supplier can decrease the uncertainty of their lead times. In this paper, we consider a
purchasing and replenishment optimization model for such systems. It was developed to measure the
effects of such a policy and to optimize the total cost composed of purchasing, holding and backlogging
costs. Our model is based on existing models for replenishment planning under lead-time uncertainties.
It assumes that assembly system capacity is infinite and that demand for the finished product is known.
For each component, the lead time may take several values with given corresponding probabilities.
Models of this type have already been formulated in [36,40] for one-level multi-period problems and
in [15,22] for multi-level one-period assembly systems with random lead times.
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We will introduce additional decision variables and cost dealing with purchasing policies. Instead
of optimizing only planned lead times, we will also optimize the choice of purchasing policy. Every
purchasing policy j for a given supplier i has a purchasing cost (PCj

i ).
This paper uses the following notations (see Table 2):

Table 2. Notation.

Parameters

i supplier index,
j purchase price index,
hi unit stock cost of the product purchased from supplier i,
b unit backlog cost for one finished product,
H = b + ∑n

i=1 hi global holding and backlog cost for one finished product,
Lj

i random lead time for supplier i under purchasing price j,
uj

i maximum lead time i under purchase price j; i.e., 1 ≤ Lj
i ≤ uj

i .

Variables

xj
i planned lead time for supplier i with purchase price j,

(planned lead time is equal to order release date if due date is equal to zero),
yj

i binary variable taking the value 1 if using purchase price j for supplier i.

Functions

PCj
i purchase cost under the purchase price j for supplier i,

E(Lj
i) expected lead-time value for supplier i under purchase price j,

Fj
i (xj

i) cumulative distribution function of lead time for supplier i under purchase price j,
pj

i(k) probability of having a lead time equal to k for supplier i under purchase price j.

As the basic model, i.e., without taking into account PC, we will use the model proposed in [3]
which consists of minimizing the expected cost composed of the sum of the component holding cost
and backlogging cost of the finished product:

min EC(X) =
n

∑
i=1

hi (xi − E(Li)) + H ∑
k≥0

(
1−

n

∏
i=1

Fi(xi + k)

)
(1)

s.t.
1 ≤ xi ≤ ui ∀i = 1, ..., n
xi ∈ N ∀i = 1, ..., n

(2)

where:
X = (x1, x2, ..., xi, ..., xn) (3)

Remark 1. In this paper, we extend the model developed in [3] and treat the problem differently. Nevertheless,
the techniques calculating component holding (HC(X, Y)) and backlogging (BC(X, Y)) costs are unchanged.
These cost functions are explained in detail with mathematical proofs in [3,53].

To solve this non-linear optimization problem in Equations (1)–(3), a B&B was developed in [3].
We will extend this model by including the APC explained above. In other words, we integrate

prices (purchase costs) as additional decision variables into this model. Our model with the new
objective function in Equation (4) is expressed as follows:
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min EC(X, Y) =
n

∑
i=1

u0
i −1

∑
j=0

PCj
i · y

j
i +

n

∑
i=1

u0
i −1

∑
j=0

yj
i · hi

(
xj

i − E(Lj
i)
)

+ H · ∑
k≥0

1−
n

∏
i=1

u0
i −1

∑
j=0

yj
i · F

j
i (xj

i + k)

 (4)

s.t.

u0
i −1

∑
j=0

yj
i = 1 ∀i = 1, ..., n (5)

xj
i ≤ (u0

i − j) · yj
i ∀i = 1, ..., n, ∀j = 0, ..., u0

i − 1 (6)

xj
i ∈ N ∀i = 1, ..., n ∀j = 0, ..., u0

i − 1 (7)

yj
i ∈ {0, 1} ∀i = 1, ..., n ∀j = 0, ..., u0

i − 1 (8)

The objective function in Equation (4) represents the mathematical expectation of the total cost
composed of purchase cost (noted PC(Y)), backlogging cost (noted EBC(X, Y)) and holding component
costs (noted EHC(X, Y)):

PC(Y) =
n

∑
i=1

u0
i −1

∑
j=0

PCj
i · y

j
i (9)

EBC(X, Y) = b · ∑
k≥0

1−
n

∏
i=1

u0
i −1

∑
j=0

yj
i · F

j
i (xj

i + k)

 (10)

EHC(X, Y) =
n

∑
i=1

u0
i −1

∑
j=0

(
yj

i · hi

(
xj

i − E(Lj
i)
))

+
n

∑
i=1

(hi) · ∑
k≥0

1−
n

∏
i=1

u0
i −1

∑
j=0

yj
i · F

j
i (xj

i + k)

 (11)

Without taking into account the APC, the backlogging cost is equal to b · max
i=1,...,n

(Li − xi). We

know that Li is a positive random discrete variable with a finite number of possible values and Fi(.)
is its cumulative distribution function. Thus, the expected value of the backlogging cost is equal to
b · ∑k≥0 (1−∏n

i=1 Fi(xi + k)) where Fi(xi + k) = P(Li ≤ xi + k). If we integrate purchase prices as
additional decision variables, we can easily deduce EBC(X, Y) expressed in Equation (10). In the same
way, we can calculate EHC(X, Y) expressed in Equation (11).

Constraints in Equation (5) express the fact that only one purchasing policy (j = 0, ..., u0
i − 1) is

selected for each supplier (i = 1, ..., n). Constraints in Equation (6) ensure that each planned lead time
xj

i is limited by an upper bound. This upper bound for the purchasing policy (j = 0) is equal to u0
i .

The goal is to minimize Equation (4) subject to Equations (5)–(8). This minimization is fairly
difficult because the objective function is not linear and because decision variables X = (xj

i ; i =

1, ..., n; j = 0, ..., u0
i − 1) are integer and Y = (yj

i ; i = 1, ..., n; j = 0, ..., u0
i − 1) are binary. We note

that the B&B algorithm proposed in [3], cannot be used for this new problem, because the bounds
and properties are no longer valid. Moreover, the problem is more complex, thus we will develop
an optimization approach for it based on a genetic algorithm (GA) and two bounds to verify the
usefulness of our approach.

4. Optimization Approach

In order to verify the pertinence of the replacement of critical suppliers and thus validate our
approach, a GA, and lower and upper bounds are developed. These bounds will also allow us to
assess the efficiency of GA. The first bound is a lower bound of our model. The objective is to verify
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that our GA gives solutions very close to this bound. The second bound which is an upper bound will
allow us to judge the usefulness of our approach. This will enable us to answer the following question:
does a solution based on our approach really dominate the best solution without APC?

4.1. Genetic Algorithm

For the general case where the costs and distributions are different, problem complexity makes it
impossible to find an exact method. Thus, we will develop a genetic algorithm somewhat inspired
from the one in [14] but with a new cost function (new fitness) integrating different purchasing policies
and other improvements. We will exploit the results obtained for a particular case in [54] to propose a
heuristic algorithm for initial population generation and to reduce the search space.

Genetic algorithms are inspired by a process of natural selection [55,56]. A group of individuals
(population of solutions) go through a reproduction phase during which the good solutions pass their
genetic material to generations further down. Genetic diversity by operations such as mutations avoids
a premature convergence to a local optimum (see Algorithm 1).

Algorithm 1: General structure of a GA.

pop0 ← initial_population() ;
for gen≤ Nbmax do

popgen ← popgen−1 ;
parents← reproduction_selection(popgen) ;
o f f spring← crossover(parents) ;
poptemp ← replacement_selection(o f f spring + parents) ;
popgen ← mutation(poptemp);
if rapide_convergence(popgen) then

popgen ← perturbation(popgen);
end

end

The following sub-sections present key elements of the genetic algorithm such as crossover and
mutation operators along with the representation of the solution (or chromosome).

4.1.1. Chromosome Representation of a Solution

The chromosome representation must contain all the information necessary for a solution. If the
representation fails to encode a possible solution, the genetic algorithm will naturally fail to find it.

In our algorithm, a chromosome has two chromatids that correspond to the two types of decision
variables: purchasing policy (or price) j from supplier i, and order release date (xj

i) (see Figure 1).
The purchase release date depends on the purchasing policy.

0 2 1 3 2 5 1 3 1 2

Purchase order datesPurchase policies

Chromosome length: 2 x n

 

Figure 1. Chromosome representation.

4.1.2. Initial Population

An initial population of sizepop should have an equilibrium between randomly-generated
solutions designed to increase diversity and potentially good solutions needed to lead the algorithm
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towards better results. For that reason, our approach features two types of individuals in the initial
population: 90% of the individuals are generated randomly, while the rest are obtained using a heuristic
approach (see Algorithm 2):

• Randomly-generated solutions: a purchasing policy is chosen for each supplier following a
uniform distribution. Once a purchasing policy is determined, order date is generated randomly
according to the purchasing policy (order date should be less than or equal to uj

i).
• Heuristic solutions take one of the suppliers (i) as the seed and all the others as clones of the seed

to obtain an instance of the particular case explained in [54], (MIPi). The corresponding linear
model is solved with a commercial solver (CPLEX 12.6) to obtain soli which is added into the
solution pool sol_pool.

• Finally, the solution pool is sorted according to the total cost and first sizepop × 10% is included in
the initial population.

Algorithm 2: Heuristic approach for initial population.

foreach supplier i do
foreach supplier i’ such that i 6= i′ do

APCi′ = APCi;
hi′ = hi;

end
soli ← MIPi;
add(soli, sol_pool);
Reinstore_values(APCi′ , hi′);

end
Sort(sol_pool);
Choose first sizepop × 10% solutions

After the crossover, the offspring is added to the population, and so the population size increases
by sizepop × pco on average, because for each couple, two offspring are generated with a probability pco.
The best sizepop solutions from this larger population are then kept. With this procedure, the offspring
are not only in competition with their parents but also with other parents and offspring. The new set
of sizepop individuals is then subject to a mutation phase, before becoming the next generation.

4.1.3. Reproduction selection

Our GA uses a random selection method in which the probability of selection is uniformly
distributed for each individual. This method determines sizepop

2 couples where each individual can
only appear in one couple. With a probability pco, every couple undergoes crossover.

4.1.4. Crossover operator

A special crossover operator is applied to each couple: two chromatids of the chromosome are cut
at the same position. The purchasing policy and order date information for the same supplier(s) is
transmitted to the offspring. Figure 2 gives an example of a single-point crossover on two chromatids.

4.1.5. Mutation Operators

To introduce the right amount of diversity to the population, each individual undergoes mutation
with a probability of pm. We consider three types of mutations: randomly changing a supplier’s
purchasing policy (m1), randomly changing a supplier’s order release date (m2) and permuting the
purchasing policies and order release dates of two different suppliers (m3).

For the mutation operators m1 and m2, we need to verify that the purchasing policy and order
release date are suitable. After m1 (respectively, m2), if the order date (respectively, purchasing policy)



Appl. Sci. 2020, 10, 3366 12 of 21

is unsuitable, then another date is randomly attributed to the supplier concerned. This verification
is not necessary for the third mutation operator, because the genes concerning purchase policies and
order release dates are swapped at the same time.

Each mutation can occur with the following probabilities:

pm1 = pm2 =
pm3

2
=

pm

4
(12)

If during nbIterMaxNoImprovement iterations the best solution known so far is not improved, then
the probability of mutation (pm) is updated to 50%. As soon as the best solution is improved, pm

retakes the original value.

0 2 1 3 2 5 1 3 1 2

4 1 2 3 2 1 3 2 1 2

0 2 1 1 3 5 1 3 4 2

4 1 2 1 3 1 3 2 4 2
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Figure 2. Single-point crossover on two chromatids.

4.1.6. Perturbation

If the current mutation operators are not enough to prevent a premature convergence, then a
perturbation procedure is applied. Premature convergence is declared if 80% of a population has the
same cost. The perturbation consists of destroying 90% of the solutions that have the same cost and
replacing them with completely random but feasible solutions.

4.2. Lower and Upper Bounds

4.2.1. Lower Bound

To improve the performance of the GA, we can develop a lower bound on EC(Z) from this
model by decomposing it into n sub-problems. In other words, instead of one final product with n
components, we will consider n final products, each having only one component. Therefore, for each
supplier i, we will solve:

min ECi(Zi) =
u0−1

∑
j=0

u0

∑
s=1

zs
j · APCj +

u0−1

∑
j=0

u0

∑
s=1

zs
j · s · h

−
u0−1

∑
j=0

u0

∑
s=1

h · zs
j · E(Lj) + H ∑

k≥0

(
1−

(
u0−1

∑
j=0

u0

∑
s=1

zs
j

(
Fj(s + k)

))) (13)

s.t.
u0

∑
s=1

u0−1

∑
j=0

zs
j = 1 (14)
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The total cost (EC(Z)) of the problem in Equations (4)–(8) is greater than the sum of ECi(Z∗i ).
Obviously, this solution is unfeasible, because the assembly process needs to synchronize the
component flows, which then causes an additional cost. Therefore, this sum is a lower bound for EC(Z).

4.2.2. Upper bound

We can compute the upper bound using two methods presented in [39]. However, [39] has no
decision concerning purchasing policy (there is only one purchasing policy, i.e., a fixed price) and the
authors only find the release (purchasing) dates that minimize some of the holding and backlogging
costs under lead-time uncertainty. Ref. [39] proposed an exact method (B&B) and a heuristic (beam
search), which can be used to find upper bounds for the problem considered in this paper.

5. Experimental results

The GA was coded in C++ and numerical experiments were performed on an Intel Core i5-2520M
processor at 2.50 GHz clock-speed and with 4GB of memory. The linear model in Equations (13)–(14)
is solved by a commercial solver (CPLEX 12.6).

The solution approach was tested on a randomly-generated instance set (I). We created 10 instance
families as a function of component numbers [10, 20, . . . , 100], and 100 test instances were generated for
each family. The input data for each instance was: unit component holding cost; unit finished product
backlogging cost; additional purchasing cost per component per purchasing policy; and cumulative
distribution function of lead times per component per purchasing policy.

After some preliminary tests, parameter values were assigned as follows: population size (sizepop)
to 100, maximum number of generations (Nbmax) to 1000, maximum number of iterations without
improvement (nbIterMaxNoImprovement) to 50, probability of crossover (pco) to 90% and probability of
mutation (pm) to 10%. The convergence and performance of the proposed algorithms were studied.
The results were also compared with the bounds presented in the previous section.

In Tables 3–6, the first column gives the number of components (suppliers) for each instance family,
the second column gives the average number of iterations where the best solution was found and the
third column gives the average gap between the best solution (bestsol0) in the initial population and

the best solution (bestsol1000) found by the algorithm after 1000 generations (gap =
bestsol0

−bestsol1000
bestsol1000

×
100). The next column provides the average gap between the best solution (bestsol1000) found by the
algorithm after 1000 generations and the best solution (bestsol∗) among all versions of GA (gap∗ =
bestsol1000

−bestsol∗
bestsol∗

× 100), i.e., the best known solution (BKS). Finally, the last column reports the average
time to execute the algorithm.

Table 3 reports the results of the genetic algorithm denoted as GA, i.e., without the complementary
procedures described above (a heuristic to form the initial population and the perturbation procedure).
It shows that even if there is a considerable improvement in the initial population, the gap between
the solutions obtained and the BKS is still very large. The average gap on all the instances is 87.06%.
Table 4 presents the results of the genetic algorithm noted GAP, i.e., with the perturbation procedure.
There is only a very slight improvement, as the total average gap is no less than 86.14%. Table 5
demonstrates excellent performances of the genetic algorithm noted GAH . This algorithm includes the
heuristic to design an initial population. It dramatically improves the quality of the solutions, as the
total average gap to the BKS on all instances is reduced to only 3.92%.

Finally, almost all the BKS were obtained with GAH+P (Table 6), which achieves a total average
gap of 0.67%. Tables 3–6 also show that even on the largest instances, the mean execution time of the
GAH+P is less than 1.6 seconds.
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Table 3. Results obtained by genetic algorithm (GA).

Instance Average Number Mean Gap Mean Gap * CPU Time
Family of Iterations (%) from BKS (%) (s)

10 38.23 147.26 19.04 0.28
20 128.26 159.75 44.50 0.38
30 275.96 178.03 44.87 0.48
40 251.50 151.65 85.33 0.55
50 368.22 131.95 102.88 0.63
60 472.86 135.45 108.37 0.74
70 570.92 148.98 108.97 0.86
80 647.76 158.66 105.80 0.97
90 697.04 161.99 105.00 1.08
100 844.43 135.71 145.85 1.41

Table 4. Results obtained by GAP.

Instance Average Number Mean Gap Mean Gap * CPU Time
Family of Iterations (%) from BKS (%) (s)

10 148.06 162.23 11.09 0.31
20 172.08 160.86 44.01 0.46
30 306.38 178.86 44.44 0.59
40 251.00 151.65 85.33 0.65
50 385.06 132.32 102.62 0.73
60 533.07 135.62 108.24 0.88
70 593.01 148.96 108.99 0.99
80 698.12 158.73 105.74 1.11
90 728.58 161.89 105.09 1.27
100 837.98 135.69 145.88 1.59

Table 5. Results obtained by GAH .

Instance Average Number Mean Gap Mean Gap * CPU Time
Family of Iterations (%) from BKS (%) (s)

10 45.74 56.13 11.35 0.27
20 161.19 63.33 6.17 0.35
30 289.55 64.29 5.59 0.42
40 567.50 83.01 0.00 0.46
50 418.71 69.16 3.81 0.49
60 573.67 72.82 3.25 0.57
70 674.40 76.29 2.74 0.67
80 730.14 72.96 2.25 0.73
90 832.54 73.76 2.15 0.80
100 884.34 74.69 1.87 0.97

Table 6. Results obtained by GAH+P.

Instance Average Number Mean Gap Mean Gap * CPU Time
Family of Iterations (%) from BKS (%) (s)

10 115.50 66.33 3.93 0.32
20 279.74 72.60 0.06 0.43
30 422.37 72.65 0.00 0.53
40 295.50 83.01 0.00 0.60
50 609.03 75.06 0.03 0.63
60 716.57 77.94 0.10 0.73
70 781.95 80.60 0.18 0.83
80 835.20 75.93 0.44 0.92
90 892.58 76.28 0.64 1.01
100 904.72 75.70 1.28 1.19
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Figure 3 illustrates the evolution of the gap over iterations of GAH+p on an instance with 100

components (gapgen =
bestsolgen−bestsol5000

bestsol5000
· 100). In the first iteration, the gap is 86.81%, whereas at the

1000th iteration the gap is reduced to 1.31%. The gap finally reaches 0.00% at iteration 2132. Ultimately,
98.48% of the improvement is achieved during the first 1000 iterations.

Figure 3. Evolution of the gap to the best known solution (BKS) over iterations.

Another set of tests had already been done, we adapted B&B from [39] to policy 0 and applied it
directly to the instances with a small number of suppliers (up to 50). For larger instances, the adapted
B&B was used as a beam search algorithm (only the most promising nodes are explored) to reduce
the calculation time. Thus, the results were not exact but approximate. The tests show that the gap
between the beam search and the optimal solution is less than 2.5%. The quality of the beam algorithm
is very good, as the beam search found optimal solutions for 491 of the 500 tests executed. Note that
the optimal solutions found by B&B or beam search are also optimal for our problem for policy 0 and
feasible for other policies, so they can be used as upper bounds in our study.

In order to verify the pertinence of our approach and assess the efficiency of the genetic algorithm,
we compare the results of our GAH+P model with the upper and lower bounds (see Table 7). The table
lists the names of the instance families (corresponding to the number of suppliers) along with the
mean gaps from the lower and upper bounds. As each family has 100 instances, the mean gaps in
percentage format are calculated as follows:

mean GAP(GAH+P,LB) =


K

∑
k=1

GAk
H+P − LBk

LBk

K

× 100 (15)

mean GAP(GAH+P,UB) =


K

∑
k=1

UBk − GAk
H+P

GAk
H+P

K

× 100 (16)

where GAk
H+P, LBk and UBk are the result of GA, lower bound and upper bound to the problem on

instance k, respectively and K=100 (instances by family).
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Table 7. Gaps between the results of GAH+P and upper and lower bounds.

Instance Family Mean GAP (GAH+P,LB) (%) Mean GAP (GAH+P,UB) (%)

10 10.89 145.89
20 6.33 181.06
30 6.00 183.49
40 8.16 185.18
50 8.77 194.95
60 10.24 194.31
70 12.00 192.26
80 14.34 192.57
90 10.97 191.04
100 10.35 190.74

The mean gap between the lower bound and the GAH+P is less than 15%, and smaller gaps are
observed for instances with 20 to 50 suppliers.

Note: the mean gap between the upper bound and the GAH+P is very large, ranging between
145.89% and 194.95%. Thus, the solutions without the pricing policies give very poor upper bounds.
This shows the huge impact of the applied pricing policies for lead-time uncertainty reduction on the
total cost reduction. Even if there is an additional purchasing cost, the cost saving with reduction of
the lead-time uncertainty is much bigger and so the total cost is drastically reduced.

6. Managerial Insights

The proposed model has challenging new settings. In particular we add the purchasing cost
depending on supplier reliability. This could be a useful aid for decision makers because it opens
the possibility of solving very important problems not currently solved, in particular, to decide to
outsource or not, if yes, to which suppliers and countries, but also to negotiate purchase prices versus
lead time decisions.

The results depend on the behavior of the decision maker and his choices when he/she is faced
with uncertainty and risks. If the decision maker is a risk-taking manager (riskmax), he/she will be
reluctant to pay more to reduce the uncertainty, and hence will always choose APC0, which is a policy
with zero additional purchase cost but with maximum uncertainty. In this case, we have the model
proposed in [39] that we used to calculate upper bounds. On the other hand, if the decision maker is
risk-averse, he/she will be willing to pay the maximum APCu0−1 (riskmin). In this case, the uncertainty
disappears and the problem becomes deterministic. In the deterministic case, ordering just-in-time
implies zero inventory holding and backlogging costs, leaving the only cost as ∑i APCu0−1

i .
Table 8 compares our lead-time uncertainty-reducing pricing and inventory control model with

these two strategies on three groups of scenarios. In the first group (G1), we considered a low average
APC increase (0 < ∆APC ≤ H

5n ). In the second group (G2), we considered the case of an average APC
increase between 2

3
H
n and H

n . Finally, in the third group (G3), we considered the case of an average
APC increase greater than holding and backlogging costs (2 H

n ≤ ∆APC ≤ 5 H
n ).

Table 8. Decisionmaker behavior analysis.

Instance Group Mean GAP Mean GAP Mean GAP
(GAH+P,riskmin) (%) (GAH+P, riskmax) (%) (riskmin, riskmax) (%)

G1 0.57 7014.81 6993.03
G2 108.20 4.04 -49.68
G3 492.31 1.78 · 10−5 -83.17
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Mean GAPs were computed as follows:

mean GAP(GAH+P, riskmin) =


K

∑
k=1

riskk
min − GAk

H+P

GAk
H+P

K

× 100 (17)

mean GAP(GAH+P, riskmax) =


K

∑
k=1

riskk
max − GAk

H+P

GAk
H+P

K

× 100 (18)

mean GAP(riskmax, riskmin) =


K

∑
k=1

riskk
max − riskk

min

riskk
min

K

× 100 (19)

Comparison of two simple strategies found that when the average APC increase is small, a
risk-avoiding strategy is almost 7000% better on average than a risk-taking strategy. Similarly, if the
average APC increase is very big, a risk-taking strategy is 83.17% better on average than a risk-avoiding
strategy. Obviously, there is no reason to take risks when it is cheaper to pay to reduce the uncertainty.
Nevertheless, when the cost of reducing the uncertainty exceeds the inventory holding and backlogging
costs caused by the uncertainty, then the decision maker should be open to taking risks.

Our algorithm gives practically the same results with a riskmin strategy for group G1 and with a
riskmax strategy for group G3. The most interesting case is when the average APC increase is close to
the inventory holding and backlogging costs, where GAH+P gave the best total cost and the gap to the
riskmin strategy was 108.2% whereas the gap to the riskmax strategy was 4.04%. In other words, our
GAH+P adapts itself to changes in inventory holding, backlogging and additional purchase costs and
chooses the best-suited strategy with regard to risks.

7. Discussion

A key problem with much literature on replenishment policy for assembly systems under
uncertainty of lead times is that research has tended to focus on reducing the costs related to
uncertainty rather than establishing a suppliers selection strategy in order to negotiate purchase
prices and uncertainty costs. All previous research concentrates on ordering policies by optimizing
order quantities [3,34–36,39–42], order release dates and planned lead times [14–18,22,23].

This study is the first investigation that aimed at highlighting the usefulness of considering
supplier selection/replacement strategies to negotiate purchase prices and delivery delays for OLAS
and multi-period replenishment planning. It provides the basis for a new way to consider not only
the probability distributions of lead-times of suppliers but also their prices, Thus, the present findings
might help to optimize not only replenishment policy, but also purchasing policy. For a given unit, it is
now possible to model several alternative suppliers with alternative pricing and lead-time uncertainties,
and evaluate their impacts on the total cost. The proposed model has the potential to be applied
to ATO environments [19,20,22] and to CTO environments [23], for example, if components and
semi-finished products are bought abroad and shipped from various locations. The proposed approach
could possibly enable decision makers to select suppliers and plan the order release dates based on
planned lead times and purchasing policies predefined by suppliers.

In our view, these results constitute an excellent initial step toward including the selection of
suppliers in replenishment policy. Please note that with Industry 4.0 technologies the selection of
suppliers and negotiation of conditions will move from the strategic and offline approach to real time
online negotiations. Thus, the importance of such models will increase.
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Despite our research showing the importance of optimizing purchasing policies, we are aware
that it may have several limitations. The first is that the model is only valid when the demand is
known and constant. This hypothesis is considered because, at the moment, it is difficult to express the
dependence between periods and levels when the demand is completely dynamic. Research into solving
this problem is already in progress. Second, the mathematical formulation needs to be extended in order
to study complex structures such as BOMs with several levels. Our future work will concentrate on this
limitation. Techniques, that are developed in [22,57,58] in order to model multi-level structures and
in [59] in the field of project planning, will be investigated. Third, the current study has only examined
the uncertainty of lead times. Consequently, we neglected other types of uncertainty such as demand
and quality. Further work needs to be carried out to investigate more than one source of uncertainty.
The development of more complex models with several stochastic parameters to study more complex
structures will be an on-going challenge for future years.

8. Conclusions

This paper deals with a pricing and replenishment problem for one-level assembly systems under
component lead-time uncertainty. We focused on finding optimal values for the planned lead times
(or order release dates) and purchasing prices. A linear model was developed, and a decomposition
approach was proposed to calculate a lower bound, while upper bounds were calculated using a B&B
and beam search algorithms developed for a particular case with fixed purchasing prices.

For the general case, we also proposed a genetic algorithm. Solution quality was improved by a
heuristic to create initial solutions and a perturbation technique to diversify the search. The genetic
algorithm was evaluated. Its results were compared against lower and upper bounds. Test results
showed that having several policies with a higher purchasing price but lower uncertainty drastically
improves the total cost. Comparisons with risk-taking and risk-avoiding behaviors showed that the
proposed genetic algorithm adapts itself to the parameters of the supply chain and gives valuable
insights to the decision makers.

The problem is a problem of negotiation of planned lead times and purchasing costs and, in a more
general perspective, a problem of analyzing outsourcing strategies and supplier selection. As noted
in the results and discussion, the proposed model could help the decision maker faced with a set of
suppliers characterized by their prices and the probability distributions of their lead-times. Taking into
account these parameters gives the possibility of optimizing not only replenishment policy, but also
purchasing prices. Therefore, the decision maker could find a good compromise between the cost of
uncertainty and the cost of purchasing. In this way, he/she will be able to know if it is preferable to (i)
pay more to reduce uncertainty, or (ii) pay less to reduce purchasing costs. This question remains open.
Many companies are faced with this dilemma: sourcing from abroad with low prices and uncertain
lead times versus sourcing from local suppliers with higher prices and almost deterministic lead times.
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Abbreviations

This manuscript uses the following abbreviations:

APC Additional Purchase Cost
ATO Assemble-To-Order
BKS Best Known Solution
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BOM Bill Of Materials
CNRS Centre National de la Recherche Scientifique
CTO Configure-To-Order
EOQ Economic Order Quantity
GA Genetic Algorithm
ICD Institut Charles Delaunay
JIT Just-in-Time
L4L Lot-for-Lot
LOSI Laboratoire d’Optimisation des Systèmes Industriels
LS2N Laboratoire des Sciences du Numérique de Nantes
MRP Material Requirement Planning
OLAS One-Level Assembly System
PC Purchasing Cost
POQ Periodic Order Quantity
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