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Atomic Leontievian Cournotian Traders Are

Always Walrasian∗

Francesca Busetto†, Giulio Codognato‡, Ludovic Julien§

Abstract

We consider a bilateral oligopoly version of the Shapley window
model with large traders, represented as atoms, and small traders,
represented by an atomless part. For this model, we show that, when
atoms have Leontievian utility functions, any Cournot-Nash allocation
is a Walras allocation and, consequently, it is Pareto optimal.
Journal of Economic Literature Classification Numbers: C72, D43,
D51.

1 Introduction

Gabszewicz and Michel (1997) introduced the so-called model of bilateral
oligopoly, representing an exchange economy with two commodities where
each trader is endowed with only one of them. Different strategic market
games proposed in the line of research initiated by Shapley and Shubik to
model different types of noncooperative strategic interaction (see Shubik
(1973), Shapley (1976), Shapley and Shubik (1977), and, for a survey of
this line of research, Giraud (2003)) have also been formulated in terms of
a bilateral oligopoly framework.
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The model of bilateral oligopoly was analyzed, in the case of a finite
number of traders, by Bloch and Ghosal (1997), Bloch and Ferrer (2001),
Dickson and Hartley (2008), Amir and Bloch (2009), among others.

In this paper, we consider the mixed version of this model introduced
by Codognato et al. (2015) and further analyzed by Busetto et al. (2018b):
a mixed exchange economy à la Shitovitz (1973) is studied, where large
traders are represented as atoms and small traders are represented by an
atomless part; noncooperative exchange is formalized as in the Shapley win-
dow model, a strategic market game with complete markets which was first
proposed informally by Lloyd S. Shapley and further studied by Sahi and
Yao (1989), Codognato and Ghosal (2000), Busetto et al. (2011), Busetto
et al. (2018a), among others.

In this framework, Codognato et al. (2015) showed a theorem estab-
lishing that, under the assumptions that all traders’ utility functions are
continuous, strongly monotone, quasi-concave, and measurable, and atoms’
utility functions are also differentiable, a necessary and sufficient condition
for a Cournot-Nash allocation to be a Walras allocation is that all atoms
demand a null amount of one of the two commodities.

Moreover, these authors showed, through some examples, that their re-
sult may not hold also when the conditions which guarantee the equiva-
lence between the core and the set of Walras allocations in Shitovitz (1973),
namely that atoms are of the same type, i.e., have the same endowments
and preferences, are satisfied. With those examples, they rather showed
that their result crucially depends on the assumptions introduced on atoms’
preferences.

Here, we go deeper into the role played by these assumptions and we
consider the consequences of weakening some of them. We do so study-
ing what happens when atoms are characterized by a type of preferences
classical in the economic literature: that expressed by Leontievian utility
functions. This class of functions is indeed the most commonly used to rep-
resent commodities which are perfect complements. As is well known, this
functional form was first extensively used in production theory within the
input-output analysis developed by Leontief (1941) and was later extended,
by analogy, to consumer theory. More recently, a complete characteriza-
tion of Leontievian preferences has been provided by Ninjbat (2010) and
Voorneveld (2014), among others.

The main result of the paper is a theorem showing that, when traders in
the atomless part have utility functions which satisfy the assumptions made
in Codognato et al. (2015) whereas atoms have Leontievian utility functions,
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any Cournot-Nash allocation is a Walras allocation, and, consequently, is
Pareto optimal.

Since Leontievian utility functions are neither strongly monotone nor
differentiable, this theorem implies that those assumptions are not necessary
for a Cournot-Nash allocation to be a Walras allocation, and consequently
Pareto optimal.

Our main theorem also implies that, at a Cournot-Nash allocation, all
atoms demand a strictly positive amount of both commodities. This out-
come is due to perfect complementarity which implies that, at a Cournot-
Nash allocation, atoms demand amounts of the two commodities in the fixed
proportion determined by the positive parameters of their Leontievian util-
ity function. These amounts must satisfy the budget constraint determined
by the strictly positive prices associated with the Cournot-Nash equilibrium
and they coincide with atoms’ strictly positive Walras assignment at those
prices. In contrast, Proposition 1 in Codognato et al. (2015) shows that,
when some degree of smooth substitutability between the two commodities
is allowed, a Cournot-Nash allocation cannot be a Walras allocation if atoms
demand a strictly positive amount of both commodities. Indeed, if this were
the case, the marginal rate at which atoms can trade off commodity 1 for
commodity 2 should be equal to the ratio of the strictly positive prices asso-
ciated with the Cournot-Nash equilibrium, thereby contradicting their very
atomic nature. This is just the reason why, in the framework considered
by Codognato et al. (2015), atoms always obtain corner assignments at the
Cournot-Nash equilibria which generate Walras allocations. It must to be
stressed that, both in this paper and in Codognato et al. (2015), atoms
obtain Walras assignments by fully exercising their market power, i.e., by
exploiting their capability of acting strategically combined with their weight.

In this paper, we also study the relationship between the mixed bilateral
oligopoly versions of the Shapley window model and of another prototypical
strategic market game in the Shapley and Shubik line of research that is
proposed by Amir et al. (1990). This model can in turn be interpreted
as another generalization to a complete market context of the well-known
strategic market game with commodity money proposed by Dubey and Shu-
bik (1978).

In this regard, Codognato et al. (2015) already proved that, in their
mixed bilateral oligopoly model, the set of Cournot-Nash allocations of the
Shapley window model coincides with the set of the Cournot-Nash alloca-
tions of both the model of Dubey and Shubik (1978) and its generalization
proposed by Amir et al. (1990). This result is crucially based on the assump-
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tion that atoms’ utility functions are strongly monotone and consequently
it cannot be extended to our Leontievian framework.

We then provide a new proof that the Cournot-Nash allocations of those
three models coincide also when atoms’ preferences are of the Leontievian
type, thereby showing that our main theorems extend to all of them.

The paper is organized as follows. In Section 2, we introduce the math-
ematical model. In section 3, we prove our main theorem. In Section 4, we
discuss the model. In Section 5, we compare the market game we used with
the other prototypical strategic market games proposed in the literature. In
Section 6, we draw some conclusions and we sketch some further lines of
research.

2 The mathematical model

We consider a pure exchange economy with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) <∞. This implies that the measure space
(T, T , µ) contains at most countably many atoms. Let T1 denote the set
of atoms and T0 the atomless part of T . We assume that µ(T1) > 0 and
µ(T0) > 0.1 A null set of traders is a set of measure 0. Null sets of traders are
systematically ignored throughout the paper. Thus, a statement asserted for
“each” trader in a certain set is to be understood to hold for all such traders
except possibly for a null set of traders. A coalition is a nonnull element of
T . The word “integrable” is to be understood in the sense of Lebesgue.

In the exchange economy, there are two different commodities. A com-
modity bundle is a point in R2

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → R2

+. There is a fixed initial
assignment w, satisfying the following assumption.

Assumption 1. There is a coalition S such that w1(t) > 0, w2(t) = 0, for
each t ∈ S, w1(t) = 0, w2(t) > 0, for each t ∈ Sc. Moreover, card(S ∩T1) ≥
2, whenever µ(S∩T0) = 0, and card(Sc∩T1) ≥ 2, whenever µ(Sc∩T0) = 0.2

1The symbol 0 denotes the origin of R2
+ as well as the real number zero: no confusion

will result.
2card(A) denotes the cardinality of a set A.
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An allocation is an assignment x such that
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R2

+ → R, satisfying the following assumptions.

Assumption 2. ut : R2
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T0, and ut(x
1, x2) = min{at1x1, at2x

2}, with at1 > 0
and at2 > 0, for each t ∈ T1.

Let B denote the Borel σ-algebra of R2
+. Moreover, let T

⊗
B denote

the σ-algebra generated by the sets E × F such that E ∈ T and F ∈ B.

Assumption 3. u : T × R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T

and for each x ∈ R2
+, is T

⊗
B-measurable.

A price vector is a nonnull vector p ∈ R2
+. A Walras equilibrium is

a pair (p,x), consisting of a price vector p and an allocation x such that
px(t) = pw(t) and ut(x(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : px = pw(t)}, for
each t ∈ T . A Walras allocation is an allocation x∗ for which there exists a
price vector p∗ such that the pair (p∗,x∗) is a Walras equilibrium.

Borrowing from Codognato et al. (2015) and Busetto et al. (2018b),
we introduce now the two-commodity version of the Shapley window model.
A strategy correspondence is a correspondence B : T → P(R4

+) such that,

for each t ∈ T , B(t) = {(bij) ∈ R4
+ :

∑2
j=1 bij ≤ wi(t), i = 1, 2}. With

some abuse of notation, we denote by b(t) ∈ B(t) a strategy of trader t,
where bij(t), i, j = 1, 2, represents the amount of commodity i that trader
t offers in exchange for commodity j. A strategy selection is an integrable
function b : T → R4

+, such that, for each t ∈ T , b(t) ∈ B(t). Given
a strategy selection b, we call aggregate matrix the matrix B̄ such that
b̄ij = (

∫
T bij(t) dµ), i, j = 1, 2. Moreover, we denote by b \ b(t) the strategy

selection obtained from b by replacing b(t) with b(t) ∈ B(t) and by B̄ \ b(t)
the corresponding aggregate matrix.

Consider the following two further definitions (see Sahi and Yao (1989)).

Definition 1. A nonnegative square matrix D is said to be irreducible if, for

every pair (i, j), with i 6= j, there is a positive integer k such that d
(k)
ij > 0,

where d
(k)
ij denotes the ij-th entry of the k-th power Dk of D.

Definition 2. Given a strategy selection b, a price vector p is said to be
market clearing if

p ∈ R2
++,

2∑
i=1

pib̄ij = pj(

2∑
i=1

b̄ji), j = 1, 2. (1)
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By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Then,
we denote by p(b) a function which associates with each strategy selection
b the unique, up to a scalar multiple, price vector p satisfying (1), if B̄ is
irreducible, and is equal to 0 otherwise.

Given a strategy selection b and a price vector p, consider the assignment
determined as follows:

xj(t,b(t), p) = wj(t)−
2∑
i=1

bji(t) +
2∑
i=1

bij(t)
pi

pj
, if p ∈ R2

++,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T .
Given a strategy selection b and the function p(b), traders’ final holdings

are determined according to this rule and consequently expressed by the
assignment

x(t) = x(t,b(t), p(b)),

for each t ∈ T .3 It is straightforward to show that this assignment is an
allocation satisfying the budget constraint p(b)x(t,b(t), p(b)) = p(b)w(t),
for each t ∈ T .

We are now able to define the notion of a Cournot-Nash equilibrium for
this reformulation of the Shapley window model (see Codognato and Ghosal
(2000) and Busetto et al. (2011)).

Definition 3. A strategy selection b̂ such that
¯̂
B is irreducible is a Cournot-

Nash equilibrium if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .

A Cournot-Nash allocation is an allocation x̂ such that x̂(t) = x(t, b̂(t),
p(b̂)), for each t ∈ T , where b̂ is a Cournot-Nash equilibrium.

3 Cournot-Nash allocations are always Walras al-
locations

We state and prove now our main result which establishes that, in the bi-
lateral oligopoly model described in the previous section, any Cournot-Nash

3In order to save in notation, with some abuse we denote by x both the function x(t)
and the function x(t,b(t), p(b)).
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allocation is a Walras allocation.

Theorem 1. Under Assumptions 1, 2, and 3, let b̂ be a Cournot-Nash
equilibrium and let p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T .
Then, the pair (p̂, x̂) is a Walras equilibrium.

Proof. Let b̂ be a Cournot-Nash equilibrium and let p̂ = p(b̂) and x̂(t) =
x(t, b̂(t), p(b̂)), for each t ∈ T . We show that at1x̂

1(t) = at2x̂
2(t), for each

t ∈ T1. Suppose that aτ1x̂
1(τ) 6= aτ2x̂

2(τ), for some τ ∈ T1. Moreover,
suppose, without loss of generality, that w1(τ) = 0 and w2(τ) > 0. Let
b′(τ) be a strategy of trader τ such that b′21(τ) is the positive solution to the
equation

aτ1b
′
21(τ)

¯̂
b12

¯̂
b21 − b̂21(τ)µ(τ) + b′21(τ)µ(τ)

= aτ2(w2(τ)− b′21(τ)),

which can be rewritten as

αb′221(τ) + βb′21(τ)− γ = 0,

where
α = aτ2µ(τ),

β = aτ1
¯̂
b12 − aτ2w

2(τ)µ(τ) + aτ2(
¯̂
b21 − b̂21(τ)µ(τ)),

and
γ = aτ2w

2(τ)(
¯̂
b21 − b̂21(τ)µ(τ)).

Then, we have that

b′21(τ) =
−β +

√
β2 + 4αγ

2α
.

Suppose that aτ1x̂
1(τ) > aτ2x̂

2(τ). Then, we have that

aτ1b̂21(τ)
¯̂
b12

¯̂
b21 − b̂21(τ)µ(τ) + b̂21(τ)µ(τ)

> aτ2(w2(τ)− b̂21(τ)).

But then, it must be that

αb̂2
21(τ) + βb̂21(τ)− γ > 0,
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and this implies that b̂21(τ) > b′21(τ). Then, it is straightforward to verify
that

x2(τ, b′(τ), p(b̂\b′(τ))) = w2(τ)−b′21(τ) > w2(τ)−b̂21(τ) = x2(τ, b̂(τ), p(b̂)).

But then, it follows that

uτ (x(τ, b′(τ), p(b̂ \ b′(τ)))) = aτ2(w2(τ)− b′21(τ))

> aτ2(w2(τ)− b̂21(τ)) = uτ (x(τ, b̂(τ), p(b̂))),

a contradiction. Suppose that aτ1x̂
1(τ) < aτ2x̂

2(τ). Then, we have that

aτ1b̂21(τ)
¯̂
b12

¯̂
b21 − b̂21(τ)µ(τ) + b̂21(τ)µ(τ)

< aτ2(w2(τ)− b̂21(τ)).

But then, it must be that

αb̂2
21(τ) + βb̂21(τ)− γ < 0,

and this implies that b̂21(τ) < b′21(τ). Then, it is straightforward to verify
that

x1(τ, b′(τ), p(b̂ \ b′(τ))) = b′21(τ)
¯̂
b12

¯̂
b21 − b̂21(τ)µ(τ) + b′21(τ)µ(τ)

> b̂21(τ)
¯̂
b12

¯̂
b21

= x1(τ, b̂(τ), p(b̂)).

But then, it follows that

uτ (x(τ, b′(τ), p(b̂ \ b′(τ)))) = aτ1b
′
21(τ)

¯̂
b12

¯̂
b21 − b̂21(τ)µ(τ) + b′21(τ)µ(τ)

> aτ1b̂21(τ)
¯̂
b12

¯̂
b21

= uτ (x(τ, b̂(τ), p(b̂))),

a contradiction. Therefore, we can conclude that at1x̂
1(t) = at2x̂

2(t), for
each t ∈ T1. This implies that ut(x̂(t)) ≥ ut(y) for all y ∈ {x ∈ R2

+ :
p̂x = p̂w(t)}, as ut(x

1, x2) = min{at1x1, at2x
2}, at1x̂1(t) = at2x̂

2(t), and
p̂x̂(t) = p̂w(t), for each t ∈ T1. Moreover, it is straightforward to show (see,
for instance, Proposition 3 in Busetto et al. (2013)) that ut(x̂(t)) ≥ ut(y)
for all y ∈ {x ∈ R2

+ : p̂x = p̂w(t)}, for each t ∈ T0. Hence, the pair (p̂, x̂) is
a Walras equilibrium.
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This result can be intuitively explained by the fact that the optimal
strategies of atoms at a Cournot-Nash equilibrium determine an assigment
at which the ratio of the amounts of the two commodities demanded by
each atom is equal to the ratio of the parameters of his Leontievian utility
function; at the same time, these amounts must satisfy his budget constraint
determined by the strictly positive prices associated with the Cournot-Nash
equilibrium. As is well known, this is a Walras assignment. Atoms con-
tribute to achieve this equilibrium solution by manipulating prices through
their strategies, whereas traders belonging to the atomless part find them-
selves at a Walrasian outcome precisely as they cannot influence prices
through their strategies.

Theorem 1 has a straightforward implication concerning the Pareto op-
timality properties of a Cournot-Nash allocation. It is established by the
following corollary.

Corollary 1. Under Assumptions 1, 2, and 3, let b̂ be a Cournot-Nash
equilibrium and let x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T . Then, x̂ is Pareto
optimal.

Proof. Let b̂ be a Cournot-Nash equilibrium and let x̂(t) = x(t, b̂(t), p(b̂)),
for each t ∈ T . Then, x̂ is a Walras allocation, by Theorem 1. But then,
it is Pareto optimal, by the first fundamental theorem of welfare economics.
Hence, a Cournot-Nash allocation x̂ is Pareto optimal.

The following example shows that Theorem 1 holds non-vacuously.

Example. Consider the following specification of the exchange economy
satisfying Assumptions 1, 2, and 3. T0 = [0, 1], T1 = {2, 3}, T0 is taken with
Lebesgue measure, µ(2) = µ(3) = 1, w(t) = (4, 0), ut(x) =

√
x1 +

√
x2, for

each t ∈ T0, w(2) = w(3) = (0, 4), u2(x) = u3(x) = min{x1, x2}. Then,
there is a unique Walras allocation, which is also the unique Cournot-Nash
allocation.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where (p∗1, p∗2) =
(2, 1), (x∗1(t),x∗2(t)) = (4

3 ,
16
3 ), for each t ∈ T0, (x∗1(2),x∗2(2)) = (x∗1(3),

x∗2(3)) = (4
3 ,

4
3). The strategy selection b∗ such that b∗12(t) = 8

3 , for
each t ∈ T0, b∗21(2) = b∗21(3) = 8

3 , is a Cournot-Nash equilibrium and
x∗(t) = x(t,b∗(t), p(b∗)), for each t ∈ T . Suppose that b∗ is not the
unique Cournot-Nash equilibrium. Then, there is a strategy selection b∗∗

such that b∗∗(t) 6= b∗(t), for each t ∈ V , where V ∈ T0 is a coalition, or
b∗∗(2) 6= b∗(2), or b∗∗(3) 6= b∗(3). Then, the allocation x∗∗ such that
x∗∗(t) = x(t,b∗∗(t), p(b∗∗)), for each t ∈ T , is a Walras allocation, by
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Theorem 1, and x∗∗(t) 6= x∗(t), for each t ∈ V , or x∗∗(2) 6= x∗(2), or
x∗∗(3) 6= x∗(3), a contradiction. Hence, there is a unique Walras allocation
which is also the unique Cournot-Nash allocation.

4 Discussion of the model

Codognato et al. (2015) analyzed the relationship between Cournot-Nash
and Walras equilibria in the same bilateral oligopoly framework used in
this paper, under Assumptions 1, 3, and two further assumptions on atoms’
utility functions, which can be formalized as follows.

Assumption 2′. ut : R2
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T .

Assumption 4. ut : R2
+ → R is differentiable, for each t ∈ T1.4

Let us notice that Assumption 2′ differs from Assumption 2 in that it
imposes that atoms’ utility functions are strongly monotone whereas Leon-
tievian utility functions introduced in Assumption 2 are only monotone.

Theorem 4 in Codognato et al. (2015) shows that, under Assumptions
1, 2′, 3, and 4, a necessary and sufficient condition for a Cournot-Nash
allocation to be a Walras allocation is that all atoms demand a null amount
of one of the two commodities. Moreover, their Example 6 shows that their
Theorem 4 holds non-vacuously.

On the other hand, our Theorem 1 shows that neither Assumption 2′

nor Assumption 4 are necessary conditions for a Cournot-Nash allocation
to be Walrasian, since it establishes that, when atoms’ utility functions are
Leontievian, as imposed by our Assumption 2, and consequently neither
strongly monotone nor differentiable, a Cournot-Nash allocation is always
Walrasian.

We state and prove now a proposition which characterizes atoms’ as-
signments at a Cournot-Nash allocation when their utility functions are
Leontievian. Indeed, this proposition establishes that, under Assumptions
1, 2, and 3, at a Cournot-Nash allocation, which is always a Walras allo-
cation by Theorem 1, all atoms demand a strictly positive amount of the
two commodities, in the proportion determined by the parameters of their
Leontievian utility function.

4In this assumption, differentiability means continuous differentiability and is to be
understood as including the case of infinite partial derivatives along the boundary of the
consumption set (for a discussion of this case, see, for instance, Kreps (2012), p. 58).
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Proposition 1. Under Assumptions 1, 2, and 3, let b̂ be a Cournot-Nash
equilibrium and let p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T .
Then, x̂ is such that x̂(t)� 0, for each t ∈ T1.

Proof. Let b̂ be a Cournot-Nash equilibrium and let p̂ = p(b̂) and x̂(t) =
x(t, b̂(t), p(b̂)), for each t ∈ T . Then, x̂ is a Walras allocation, by Theorem 1.

We have that p̂� 0 as the matrix
¯̂
B is irreducible, by Lemma 1 in Sahi and

Yao (1989). Consider an atom τ ∈ T1 and suppose, without loss of generality,

that w1(τ) = 0 and w2(τ) > 0. We have that x̂1(τ) = aτ2p̂2w2(τ)
aτ2p̂1+aτ1p̂2

> 0 and

x̂2(τ) = aτ1p̂2w2(τ)
aτ2p̂1+aτ1p̂2

> 0 as x̂ is a Walras allocation. Hence, x̂ is such that

x̂(t)� 0, for each t ∈ T1.

This result is explained by the fact that atoms’ marginal rate of substi-
tution is not defined when they demand an amount of the two commodities
in the fixed proportion determined by the parameters of their Leontievian
utility function, and is either infinite or null, otherwise. As a consequence,
under Assumptions 1, 2, and 3, a Cournot-Nash equilibrium cannot occur
at a point where atoms’ marginal rate of substitution is infinite or null.

Our Proposition 1 can be compared with a result obtained by Codognato
et al. (2015) - their Proposition 1 - of which we state the contrapositive
statement as follows.

Proposition 2. Under Assumptions 1, 2′, 3, and 4, if x̂ is a Cournot-Nash
allocation such that x̂(τ) � 0, for an atom τ ∈ T1, then it is not a Walras
allocation.

Proposition 2 shows that, under Assumptions 1, 2′, 3, and 4, a Cournot-
Nash allocation cannot be at a point where atoms’ assignments are strictly
positive.

To better understand the two propositions and their relationships, it is
useful to contrast them in analytical terms. In order to do so, it is worth
considering the following argument, used by Codognato et al. (2015) in its
proof: take an atom τ ∈ T1 and assume, without loss of generality, that
w1(τ) = 0 and w2(τ) > 0. Let b̂ be a Cournot-Nash equilibrium and let
p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T . If uτ (·) is differentiable
and x̂(τ) � 0, then, for atom τ , the marginal rate of substitution must be
equal to his marginal price, i.e., the marginal rate at which he can trade
off commodity 1 for commodity 2 (see Okuno et al. (1980)). Moreover, if
x̂(τ) is a Walras assignment, the marginal rate of substitution must be equal
to the relative price of commodity 1 in terms of commodity 2. These two
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conditions are expressed by the following equations:

MRS(x̂1(τ), x̂2(τ)) =
p̂1

p̂2

¯̂
b21

¯̂
b21 − b̂21(τ)µ(τ)

=
p̂1

p̂2
. (2)

Under Assumptions 1, 2, and 3, x̂(τ) � 0, with aτ1x̂
1(τ) = aτ2x̂

2(τ), by
our Theorem 1 and Proposition 1.

This result is explained by the fact that the first equation in (2) is vacu-
ously satisfied at x̂(τ) as MRS(x̂1(τ), x̂2(τ)) is not defined but it is not satis-
fied when aτ1x̂

1(τ) > aτ2x̂
2(τ) or aτ1x̂

1(τ) < aτ2x̂
2(τ), asMRS(x̂1(τ), x̂2(τ))

would be, respectively, infinite or null and it could never be equal to the
marginal price. As a consequence, under Assumptions 1, 2, and 3, a Cournot-
Nash equilibrium can only occur at the point where atoms’ marginal rate
of substitution is not defined and this provides a deeper explanation of why
the result established by our Proposition 1 emerges.

In contrast, under Assumptions 1, 2′, 3, and 4, when it occurs that
x̂(τ) � 0, the first equation in (2) is satisfied as MRS(x̂1(τ), x̂2(τ)) is
defined, finite, and nonnull but x̂(τ) cannot be a Walras assignment as the
second equation in (2) is not satisfied. Therefore, when x̂(τ) is a Walras
assignment, it must be that x̂1(τ) = 0 or x̂2(τ) = 0 and this better explains
the result established by Proposition 2.

From the previous analysis, we can infer that atoms with Leontievian
utility functions achieve an interior Walras assignment as perfect comple-
mentarity prevents them from smoothly substituting the two commodities
whereas atoms with strongly monotone and smooth utility functions, as in
the case studied by Codognato et al. (2015), may only obtain corner Wal-
ras assignments at a Cournot-Nash equilibrium just because of the smooth
substitutability between the two commodities.

5 Discussion of the literature

As already stressed, both our analysis and that developed by Codognato et
al. (2015) is crucially based on the mixed bilateral oligopoly version of the
Shapley window model introduced in Section 2.

The Shapley window model is one of the two prototypical market games
belonging to the Shapley and Shubik line of research in which markets are
complete, i.e., each commodity can be directly exchanged for all the others.

The other prototypical strategic market game with complete markets is
that introduced by Amir et al. (1990). In this model, there are a market
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and a price for each pair of commodities, and the price in each market
is determined as the ratio of the total amount of bids in each of the two
commodities exchanged in that market.

In general, with more than two commodities, the sets of Cournot-Nash
allocations of the two models differ as, in the Shapley window model, a
price is determined for each commodity whereas, in the model introduced
by Amir et al. (1990), a price is determined for the market of each pair of
commodities and there may be inconsistency between prices corresponding
to pairs of markets in which a same commodity is exchanged.

It is straightforward to show that, in a bilateral oligopoly, another well-
known market game, that introduced by Dubey and Shubik (1978), in which
one commodity plays the role of money, can be reduced to the model pro-
posed by Amir at al. (1990), once that, in this latter, one of the two com-
modities is labeled as money.

Hereafter in this section, we will refer to the mixed bilateral oligopoly
version of the Shapley window model as Model 1, and to the mixed bilateral
oligopoly version of the model introduced by Amir et al. (1990) as Model 2.

In their Theorem 5, Codognato et al. (2015) showed that, under As-
sumptions 1, 2′, and 3, the sets of Cournot-Nash allocations of Model 1
and Model 2 coincide and that this equivalence extends, mutatis mutandis,
to the model introduced by Dubey and Shubik (1978). Both Model 1 and
Model 2 can then be seen as its possible generalizations.

Since the proof of Theorem 5 in Codognato et al. (2015) is crucially based
on the assumption that atoms’ utility functions are strongly monotone, it
cannot be applied to our Leontievian framework.

We address here the question whether an equivalence result like that
obtained by Codognato et al. (2015) can be established also in the case
where atoms have Leontievian utility functions. If this is possible, the main
results obtained in this paper for Model 1 can be extended also to Model 2.

Borrowing from Codognato et al. (2015), we introduce now Model 2
formally. We start with the following definition.

Definition 4. Given a strategy selection b, the 2 × 2 matrix P is said to
be the price matrix generated by b if

pij =

{
b̄ij
¯̄bji

if b̄ji 6= 0,

0 if b̄ji = 0,

i, j = 1, 2.
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We denote by P (b) a function which associates with each strategy se-
lection b the price matrix P generated by b.

Given a strategy selection b and a price matrix P , consider the assign-
ment determined as follows:

xj(t,b(t), P ) = wj(t)−
2∑
i=1

bji(t) +
2∑
i=1

bij(t)pji,

j = 1, 2, for each t ∈ T .
Given a strategy selection b and the function P (b), the traders’ final

holdings are determined according to this rule and consequently expressed
by the assignment

x(t) = x(t,b(t), P (b)),

for each t ∈ T .5 It is straightforward to show that this assignment is an
allocation.

Then, a Cournot-Nash equilibrium for Model 2 can be defined as follows.

Definition 5. A strategy selection b̃ such that ¯̃B is irreducible is a Cournot-
Nash equilibrium if

ut(x(t, b̃(t), P (b̃))) ≥ ut(x(t, b̃ \ b(t), P (b̃ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .6

A Cournot-Nash allocation of Model 2 is an allocation x̃ such that x̃(t) =
x(t, b̃(t), P (b̃)), for each t ∈ T , where b̃ is a Cournot-Nash equilibrium of
Model 2.

The following lemma establishes a relation between prices and hence
traders’ final holdings of the two models for strategy selections whose ag-
gregate matrices are irreducible (it was proved by Codognato et al. (2015)
in their Appendix).

Lemma. If b is a strategy selection such that B̄ is irreducible, then pi(b)
pj(b)

=

pji(b), i, j = 1, 2, and x(t,b(t), p(b)) = x(t,b(t), P (b)), for each t ∈ T .

5In order to save in notation, with some abuse we denote by x both the function x(t)
and the function x(t,b(t), P (b)).

6According to Amir et al. (1990), the market for commodities 1 and 2 is active if

b̄12 > 0 and b̄21 > 0 and then if and only if ¯̃B is irreducible. Therefore, as this definition
of a Cournot-Nash equilibrium explicitly refers to irreducible matrices, it applies only to
Cournot-Nash equilibria at which the market for commodities 1 and 2 is active.

14



We are now able to prove the following theorem, which establishes an
equivalence between the sets of Cournot-Nash allocations of Model 1 and
Model 2 when atoms have Leontievian utility functions.

Theorem 2. Under Assumptions 1, 2, and 3, the sets of Cournot-Nash
allocations of Model 1 and Model 2 coincide.

Proof. Let x̂ be a Cournot-Nash allocation of Model 1. Then, there is a
strategy selection b̂ which is a Cournot-Nash equilibrium of Model 1 and is
such that x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T . Suppose that x̂ is not a
Cournot-Nash allocation of Model 2. Then, there exists a trader τ ∈ T and
a strategy b(τ) ∈ B(τ) such that

uτ (x(τ, b̂ \ b(τ), P (b̂ \ b(τ)))) > uτ (x(τ, b̂(τ), P (b̂))).

We have that x(τ, b̂(τ), p(b̂)) = x(τ, b̂(τ), P (b̂)), by the Lemma, as
¯̂
B is

irreducible. Suppose that the matrix
¯̂
B \ b(τ) is irreducible. Then, x(τ, b̂ \

b(τ), p(b̂ \ b(τ))) = x(τ, b̂ \ b(τ), P (b̂ \ b(τ))), by the Lemma. But then,

uτ (x(τ, b̂ \ b(τ), p(b̂ \ b(τ)))) > uτ (x(τ, b̂(τ), p(b̂))),

a contradiction. Suppose that the matrix
¯̂
B \ b(τ) is not irreducible. Then,

we must have that τ ∈ T1 as
¯̂
B \ b(t) =

¯̂
B, for each t ∈ T0. Assume, without

loss of generality, that w1(τ) = 0 and w2(τ) > 0. Then, we must have that

b̂21(τ) =
¯̂
b21 as the matrix

¯̂
B \ b(τ) is not irreducible. But then, we have

that x(τ, b̂(τ), p(b̂)) = (
¯̂
b12,w

2(τ)− b̂21(τ)) and x(τ, b̂ \ b(τ), p(b̂ \ b(τ)) =
(0,w2(τ)). This implies that

uτ (x(τ, b̂ \ b(τ), p(b̂ \ b(τ)))) = 0 > uτ (x(τ, b̂(τ), p(b̂))) > 0,

a contradiction. Therefore, x̂ is a Cournot-Nash allocation of Model 2.
Let x̃ be a Cournot-Nash allocation of Model 2. Then, there is a strategy
selection b̃ which is a Cournot-Nash equilibrium of Model 2 and is such that
x̃(t) = x(t, b̃(t), P (b̃)), for each t ∈ T . We have that x(t, b̃(τ), P (b̃)) =

x(t, b̂(t), p(b̃)), for each t ∈ T , by the Lemma, as ¯̃B is irreducible. But
then, we must have that at1x̃

1(t) = at2x̃
2(t), for each t ∈ T1, by the same

argument used in the proof of Theorem 1. Suppose that x̃ is not a Cournot-
Nash allocation of Model 1. Then, the previous argument leads, mutatis
mutandis, to the same kind of contradictions. Therefore, x̃ is a Cournot-
Nash allocation of Model 1. Hence, the sets of Cournot-Nash allocations of
Model 1 and Model 2 coincide.
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Theorem 2 has the following corollary, showing that our Theorem 1 ex-
tends, mutatis mutandis, to Model 2.

Corollary 2. Under Assumptions 1, 2, 3, let b̃ be a Cournot-Nash equilib-

rium of Model 2 and let p̃ = (
¯̃
b21,

¯̃
b12) and x̃(t) = x(t, b̃(t), P (b̃)), for each

t ∈ T . Then, the pair (p̃, x̃) is a Walras equilibrium.

Proof. Let b̃ be a Cournot-Nash equilibrium of Model 2 and let p̃ =

(
¯̃
b21,

¯̃
b12) and x̃(t) = x(t, b̃(t), P (b̃)), for each t ∈ T . b̃ is a Cournot-Nash

equilibrium of Model 1, by Theorem 2, and p̃ = (
¯̃
b21,

¯̃
b12) = (p1(b̃), p2(b̃)),

by Definition 2. Hence, the pair (p̃, x̃) is a Walras equilibrium, by Theorem
1.

Finally, let us stress that, for the reasons exposed above, our Theorem
1 also extends, mutatis mutandis, to the model proposed by Dubey and
Shubik (1978).

6 Conclusion

In this paper, we have proved that, in the framework of a mixed bilateral
oligopoly, when atoms have Leontievian utility functions, Cournot-Nash al-
locations are always Walras allocations. Moreover, we have shown that
atoms achieve an interior Walras assignment at a Cournot-Nash equilibrium
as a consequence of perfect complementarity between the two commodities.
We have then contrasted this result with that obtained by Codognato et
al. (2015) which shows that atoms demand a null amount of one of the
two commodities when they achieve a Walras assignment at a Cournot-
Nash equilibrium. We have argued that this outcome is due to the fact
that, when atoms have continuous and differentiable utility functions, they
can smoothly substitute the two commodities between each other and, as a
consequence, they are pushed to the boundary of their consumption set.

In a further step of our research, we propose to complete our analysis
studying whether an equivalence between the set of Cournot-Nash and Wal-
ras allocations can be obtained in the same framework. We could then ad-
dress some further issues including the possibility of extending our analysis
to more than two commodities and the computational problems considered
for finite exchange economies with Leontievian traders by Ye (2007) and
Codenotti et al. (2008), among others, in a framework related to operations
research. This might also open the way for an investigation of economies
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with production where firms have Leontievian technologies. Finally, we re-
mind that the equivalence theorem between the core and the set of Walras
allocations proved by Shitovitz (1973) rests on the assumptions that atoms’
preferences are strongly monotone. Here, we have proved that the set of
Cournot-Nash allocations is a subset of the set of Walras allocations, a re-
sult which holds when atoms’ preferences are monotone but not necessarily
strongly monotone. Our results should stimulate a further investigation on
the validity of the core equivalence theorems when the strong monotonicity
assumption is relaxed.
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