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We consider a bilateral oligopoly version of the Shapley window model with large traders, represented as atoms, and small traders, represented by an atomless part. For this model, we show that, when atoms have Leontievian utility functions, any Cournot-Nash allocation is a Walras allocation and, consequently, it is Pareto optimal.

1 Introduction [START_REF] Gabszewicz | Oligopoly equilibrium in exchange economies[END_REF] introduced the so-called model of bilateral oligopoly, representing an exchange economy with two commodities where each trader is endowed with only one of them. Different strategic market games proposed in the line of research initiated by Shapley and Shubik to model different types of noncooperative strategic interaction (see [START_REF] Shubik | Commodity, money, oligopoly, credit and bankruptcy in a general equilibrium model[END_REF], [START_REF] Shapley | Noncooperative general exchange[END_REF], [START_REF] Shapley | Trade using one commodity as a means of payment[END_REF], and, for a survey of this line of research, Giraud (2003)) have also been formulated in terms of a bilateral oligopoly framework.

The model of bilateral oligopoly was analyzed, in the case of a finite number of traders, by [START_REF] Bloch | Stable trading structures in bilateral oligopolies[END_REF], [START_REF] Bloch | Trade fragmentation and coordination in strategic market games[END_REF], [START_REF] Dickson | The strategic Marshallian cross[END_REF], [START_REF] Amir | Comparative statics in a simple class of strategic market games[END_REF], among others.

In this paper, we consider the mixed version of this model introduced by [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] and further analyzed by [START_REF] Busetto | Existence and Optimality of Cournot-Nash Equilibria in a Bilateral Oligopoly with Atoms and an Atomless Part[END_REF]: a mixed exchange economy à la [START_REF] Shitovitz | Oligopoly in markets with a continuum of traders[END_REF] is studied, where large traders are represented as atoms and small traders are represented by an atomless part; noncooperative exchange is formalized as in the Shapley window model, a strategic market game with complete markets which was first proposed informally by Lloyd S. Shapley and further studied by [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF], [START_REF] Codognato | Cournot-Nash equilibria in limit exchange economies with complete markets and consistent prices[END_REF], Busetto et In this framework, [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] showed a theorem establishing that, under the assumptions that all traders' utility functions are continuous, strongly monotone, quasi-concave, and measurable, and atoms' utility functions are also differentiable, a necessary and sufficient condition for a Cournot-Nash allocation to be a Walras allocation is that all atoms demand a null amount of one of the two commodities.

Moreover, these authors showed, through some examples, that their result may not hold also when the conditions which guarantee the equivalence between the core and the set of Walras allocations in [START_REF] Shitovitz | Oligopoly in markets with a continuum of traders[END_REF], namely that atoms are of the same type, i.e., have the same endowments and preferences, are satisfied. With those examples, they rather showed that their result crucially depends on the assumptions introduced on atoms' preferences.

Here, we go deeper into the role played by these assumptions and we consider the consequences of weakening some of them. We do so studying what happens when atoms are characterized by a type of preferences classical in the economic literature: that expressed by Leontievian utility functions. This class of functions is indeed the most commonly used to represent commodities which are perfect complements. As is well known, this functional form was first extensively used in production theory within the input-output analysis developed by [START_REF] Leontief | The structure of American economy: 1919-1929[END_REF] and was later extended, by analogy, to consumer theory. More recently, a complete characterization of Leontievian preferences has been provided by Ninjbat (2010) and [START_REF] Voorneveld | From preferences to Leontief utility[END_REF], among others.

The main result of the paper is a theorem showing that, when traders in the atomless part have utility functions which satisfy the assumptions made in [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] whereas atoms have Leontievian utility functions, any Cournot-Nash allocation is a Walras allocation, and, consequently, is Pareto optimal.

Since Leontievian utility functions are neither strongly monotone nor differentiable, this theorem implies that those assumptions are not necessary for a Cournot-Nash allocation to be a Walras allocation, and consequently Pareto optimal.

Our main theorem also implies that, at a Cournot-Nash allocation, all atoms demand a strictly positive amount of both commodities. This outcome is due to perfect complementarity which implies that, at a Cournot-Nash allocation, atoms demand amounts of the two commodities in the fixed proportion determined by the positive parameters of their Leontievian utility function. These amounts must satisfy the budget constraint determined by the strictly positive prices associated with the Cournot-Nash equilibrium and they coincide with atoms' strictly positive Walras assignment at those prices. In contrast, Proposition 1 in [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] shows that, when some degree of smooth substitutability between the two commodities is allowed, a Cournot-Nash allocation cannot be a Walras allocation if atoms demand a strictly positive amount of both commodities. Indeed, if this were the case, the marginal rate at which atoms can trade off commodity 1 for commodity 2 should be equal to the ratio of the strictly positive prices associated with the Cournot-Nash equilibrium, thereby contradicting their very atomic nature. This is just the reason why, in the framework considered by [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF], atoms always obtain corner assignments at the Cournot-Nash equilibria which generate Walras allocations. It must to be stressed that, both in this paper and in [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF], atoms obtain Walras assignments by fully exercising their market power, i.e., by exploiting their capability of acting strategically combined with their weight.

In this paper, we also study the relationship between the mixed bilateral oligopoly versions of the Shapley window model and of another prototypical strategic market game in the Shapley and Shubik line of research that is proposed by [START_REF] Amir | A strategic market game with complete markets[END_REF]. This model can in turn be interpreted as another generalization to a complete market context of the well-known strategic market game with commodity money proposed by [START_REF] Dubey | The noncooperative equilibria of a closed trading economy with market supply and bidding strategies[END_REF].

In this regard, [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] already proved that, in their mixed bilateral oligopoly model, the set of Cournot-Nash allocations of the Shapley window model coincides with the set of the Cournot-Nash allocations of both the model of [START_REF] Dubey | The noncooperative equilibria of a closed trading economy with market supply and bidding strategies[END_REF] and its generalization proposed by [START_REF] Amir | A strategic market game with complete markets[END_REF]. This result is crucially based on the assump-tion that atoms' utility functions are strongly monotone and consequently it cannot be extended to our Leontievian framework.

We then provide a new proof that the Cournot-Nash allocations of those three models coincide also when atoms' preferences are of the Leontievian type, thereby showing that our main theorems extend to all of them.

The paper is organized as follows. In Section 2, we introduce the mathematical model. In section 3, we prove our main theorem. In Section 4, we discuss the model. In Section 5, we compare the market game we used with the other prototypical strategic market games proposed in the literature. In Section 6, we draw some conclusions and we sketch some further lines of research.

The mathematical model

We consider a pure exchange economy with large traders, represented as atoms, and small traders, represented by an atomless part. The space of traders is denoted by the measure space (T, T , µ), where T is the set of traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real valued, non-negative, countably additive measure defined on T . We assume that (T, T , µ) is finite, i.e., µ(T ) < ∞. This implies that the measure space (T, T , µ) contains at most countably many atoms. Let T 1 denote the set of atoms and T 0 the atomless part of T . We assume that µ(T 1 ) > 0 and µ(T 0 ) > 0.1 A null set of traders is a set of measure 0. Null sets of traders are systematically ignored throughout the paper. Thus, a statement asserted for "each" trader in a certain set is to be understood to hold for all such traders except possibly for a null set of traders. A coalition is a nonnull element of T . The word "integrable" is to be understood in the sense of Lebesgue.

In the exchange economy, there are two different commodities. A commodity bundle is a point in R2 

+ . An assignment (of commodity bundles to traders) is an integrable function x: T → R 2 + . There is a fixed initial assignment w, satisfying the following assumption.

Assumption 1. There is a coalition S such that w 1 (t) > 0, w 2 (t) = 0, for each t ∈ S, w 1 (t) = 0, w 2 (t) > 0, for each t ∈ S c . Moreover, card(S ∩ T 1 ) ≥ 2, whenever µ(S ∩ T 0 ) = 0, and card(S c ∩ T 1 ) ≥ 2, whenever µ(S c ∩ T 0 ) = 0. 2 An allocation is an assignment x such that T x(t) dµ = T w(t) dµ. The preferences of each trader t ∈ T are described by a utility function u t : R 2 + → R, satisfying the following assumptions. Assumption 2. u t : R 2 + → R is continuous, strongly monotone, and quasiconcave, for each t ∈ T 0 , and u t (x 1 , x 2 ) = min{a t1 x 1 , a t2 x 2 }, with a t1 > 0 and a t2 > 0, for each t ∈ T 1 .

Let B denote the Borel σ-algebra of R 2 + . Moreover, let T B denote the σ-algebra generated by the sets E × F such that E ∈ T and F ∈ B.

Assumption 3. u : T × R 2 + → R, given by u(t, x) = u t (x), for each t ∈ T and for each x ∈ R 2 + , is T B-measurable.
A price vector is a nonnull vector p ∈ R 2 + . A Walras equilibrium is a pair (p, x), consisting of a price vector p and an allocation x such that px(t) = pw(t) and u t (x(t)) ≥ u t (y), for all y ∈ {x ∈ R 2 + : px = pw(t)}, for each t ∈ T . A Walras allocation is an allocation x * for which there exists a price vector p * such that the pair (p * , x * ) is a Walras equilibrium.

Borrowing 

→ P(R 4 + ) such that, for each t ∈ T , B(t) = {(b ij ) ∈ R 4 + : 2 j=1 b ij ≤ w i (t), i = 1, 2}
. With some abuse of notation, we denote by b(t) ∈ B(t) a strategy of trader t, where b ij (t), i, j = 1, 2, represents the amount of commodity i that trader t offers in exchange for commodity j. Consider the following two further definitions (see [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF]).

Definition 1. A nonnegative square matrix D is said to be irreducible if, for every pair (i, j), with i = j, there is a positive integer k such that d

(k) ij > 0, where d (k) ij denotes the ij-th entry of the k-th power D k of D.
Definition 2. Given a strategy selection b, a price vector p is said to be market clearing if

p ∈ R 2 ++ , 2 i=1 p i bij = p j ( 2 i=1 bji ), j = 1, 2. (1) 
By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar multiple, price vector p satisfying (1) if and only if B is irreducible. Then, we denote by p(b) a function which associates with each strategy selection b the unique, up to a scalar multiple, price vector p satisfying (1), if B is irreducible, and is equal to 0 otherwise.

Given a strategy selection b and a price vector p, consider the assignment determined as follows: 

x j (t, b(t), p) = w j (t) - 2 i=1 b ji (t) + 2 i=1 b ij (t) p i p j , if p ∈ R 2 ++ , x j (t, b(t), p) = w j (t), otherwise, j = 1,
u t (x(t, b(t), p( b))) ≥ u t (x(t, b(t), p( b \ b(t)))),
for each b(t) ∈ B(t) and for each t ∈ T .

A Cournot-Nash allocation is an allocation x such that x(t) = x(t, b(t), p( b)), for each t ∈ T , where b is a Cournot-Nash equilibrium.

Cournot-Nash allocations are always Walras allocations

We state and prove now our main result which establishes that, in the bilateral oligopoly model described in the previous section, any Cournot-Nash allocation is a Walras allocation. 

(t) = x(t, b(t), p( b)), for each t ∈ T . We show that a t1 x1 (t) = a t2 x2 (t), for each t ∈ T 1 . Suppose that a τ 1 x1 (τ ) = a τ 2 x2 (τ )
, for some τ ∈ T 1 . Moreover, suppose, without loss of generality, that w 1 (τ ) = 0 and w 2 (τ ) > 0. Let b (τ ) be a strategy of trader τ such that b 21 (τ ) is the positive solution to the equation

a τ 1 b 21 (τ ) b12 b21 -b21 (τ )µ(τ ) + b 21 (τ )µ(τ ) = a τ 2 (w 2 (τ ) -b 21 (τ )),
which can be rewritten as

αb 2 21 (τ ) + βb 21 (τ ) -γ = 0, where α = a τ 2 µ(τ ), β = a τ 1 b12 -a τ 2 w 2 (τ )µ(τ ) + a τ 2 ( b21 -b21 (τ )µ(τ )),
and γ = a τ 2 w 2 (τ )( b21 -b21 (τ )µ(τ )).

Then, we have that

b 21 (τ ) = -β + β 2 + 4αγ 2α .
Suppose that a τ 1 x1 (τ ) > a τ 2 x2 (τ ). Then, we have that

a τ 1 b21 (τ ) b12 b21 -b21 (τ )µ(τ ) + b21 (τ )µ(τ ) > a τ 2 (w 2 (τ ) -b21 (τ )).
But then, it must be that

α b2 21 (τ ) + β b21 (τ ) -γ > 0,
and this implies that b21 (τ ) > b 21 (τ ). Then, it is straightforward to verify that

x 2 (τ, b (τ ), p( b\b (τ ))) = w 2 (τ )-b 21 (τ ) > w 2 (τ )-b21 (τ ) = x 2 (τ, b(τ ), p( b)).
But then, it follows that

u τ (x(τ, b (τ ), p( b \ b (τ )))) = a τ 2 (w 2 (τ ) -b 21 (τ )) > a τ 2 (w 2 (τ ) -b21 (τ )) = u τ (x(τ, b(τ ), p( b))), a contradiction. Suppose that a τ 1 x1 (τ ) < a τ 2 x2 (τ )
. Then, we have that

a τ 1 b21 (τ ) b12 b21 -b21 (τ )µ(τ ) + b21 (τ )µ(τ ) < a τ 2 (w 2 (τ ) -b21 (τ )).
But then, it must be that

α b2 21 (τ ) + β b21 (τ ) -γ < 0,
and this implies that b21 (τ ) < b 21 (τ ). Then, it is straightforward to verify that

x 1 (τ, b (τ ), p( b \ b (τ ))) = b 21 (τ ) b12 b21 -b21 (τ )µ(τ ) + b 21 (τ )µ(τ ) > b21 (τ ) b12 b21 = x 1 (τ, b(τ ), p( b)).
But then, it follows that

u τ (x(τ, b (τ ), p( b \ b (τ )))) = a τ 1 b 21 (τ ) b12 b21 -b21 (τ )µ(τ ) + b 21 (τ )µ(τ ) > a τ 1 b21 (τ ) b12 b21 = u τ (x(τ, b(τ ), p( b))), a contradiction. Therefore, we can conclude that a t1 x1 (t) = a t2 x2 (t), for each t ∈ T 1 . This implies that u t (x(t)) ≥ u t (y) for all y ∈ {x ∈ R 2 + : px = pw(t)}, as u t (x 1 , x 2 ) = min{a t1 x 1 , a t2 x 2 }, a t1 x1 (t) = a t2 x2 (t)
, and px(t) = pw(t), for each t ∈ T 1 . Moreover, it is straightforward to show (see, for instance, Proposition 3 in Busetto et al. ( 2013)) that u t (x(t)) ≥ u t (y) for all y ∈ {x ∈ R 2 + : px = pw(t)}, for each t ∈ T 0 . Hence, the pair (p, x) is a Walras equilibrium. This result can be intuitively explained by the fact that the optimal strategies of atoms at a Cournot-Nash equilibrium determine an assigment at which the ratio of the amounts of the two commodities demanded by each atom is equal to the ratio of the parameters of his Leontievian utility function; at the same time, these amounts must satisfy his budget constraint determined by the strictly positive prices associated with the Cournot-Nash equilibrium. As is well known, this is a Walras assignment. Atoms contribute to achieve this equilibrium solution by manipulating prices through their strategies, whereas traders belonging to the atomless part find themselves at a Walrasian outcome precisely as they cannot influence prices through their strategies.

Theorem 1 has a straightforward implication concerning the Pareto optimality properties of a Cournot-Nash allocation. It is established by the following corollary. Proof. Let b be a Cournot-Nash equilibrium and let x(t) = x(t, b(t), p( b)), for each t ∈ T . Then, x is a Walras allocation, by Theorem 1. But then, it is Pareto optimal, by the first fundamental theorem of welfare economics. Hence, a Cournot-Nash allocation x is Pareto optimal.

The following example shows that Theorem 1 holds non-vacuously.

Example. Consider the following specification of the exchange economy satisfying Assumptions 1, 2, and 3.

T 0 = [0, 1], T 1 = {2, 3}, T 0 is taken with Lebesgue measure, µ(2) = µ(3) = 1, w(t) = (4, 0), u t (x) = √ x 1 + √ x 2 , for each t ∈ T 0 , w(2) = w(3) = (0, 4), u 2 (x) = u 3 (x) = min{x 1 , x 2 }.
Then, there is a unique Walras allocation, which is also the unique Cournot-Nash allocation.

Proof. The unique Walras equilibrium is the pair (p * , x * ), where (p * 1 , p * 2 ) = (2, 1), (x * 1 (t), x * 2 (t)) = ( 43 , 16 3 ), for each t ∈ T 0 , (x * 1 (2), 4 Discussion of the model shows that, under Assumptions 1, 2 , 3, and 4, a necessary and sufficient condition for a Cournot-Nash allocation to be a Walras allocation is that all atoms demand a null amount of one of the two commodities. Moreover, their Example 6 shows that their Theorem 4 holds non-vacuously.

x * 2 (2)) = (x * 1 (3), x * 2 (3)) = ( 4 3 , 4 
On the other hand, our Theorem 1 shows that neither Assumption 2 nor Assumption 4 are necessary conditions for a Cournot-Nash allocation to be Walrasian, since it establishes that, when atoms' utility functions are Leontievian, as imposed by our Assumption 2, and consequently neither strongly monotone nor differentiable, a Cournot-Nash allocation is always Walrasian.

We state and prove now a proposition which characterizes atoms' assignments at a Cournot-Nash allocation when their utility functions are Leontievian. Indeed, this proposition establishes that, under Assumptions 1, 2, and 3, at a Cournot-Nash allocation, which is always a Walras allocation by Theorem 1, all atoms demand a strictly positive amount of the two commodities, in the proportion determined by the parameters of their Leontievian utility function.

Proposition 1. Under Assumptions 1, 2, and 3, let b be a Cournot-Nash equilibrium and let p = p( b) and x(t) = x(t, b(t), p( b)), for each t ∈ T . Then, x is such that x(t) 0, for each t ∈ T 1 .

Proof. Let b be a Cournot-Nash equilibrium and let p = p( b) and x(t) = x(t, b(t), p( b)), for each t ∈ T . Then, x is a Walras allocation, by Theorem 1.

We have that p 0 as the matrix B is irreducible, by Lemma 1 in Sahi and Yao (1989). Consider an atom τ ∈ T 1 and suppose, without loss of generality, that w 1 (τ ) = 0 and w 2 (τ ) > 0. We have that x1 (τ ) = a τ 2 p2 w 2 (τ ) a τ 2 p1 +a τ 1 p2 > 0 and x2 (τ ) = a τ 1 p2 w 2 (τ ) a τ 2 p1 +a τ 1 p2 > 0 as x is a Walras allocation. Hence, x is such that x(t) 0, for each t ∈ T 1 .

This result is explained by the fact that atoms' marginal rate of substitution is not defined when they demand an amount of the two commodities in the fixed proportion determined by the parameters of their Leontievian utility function, and is either infinite or null, otherwise. As a consequence, under Assumptions 1, 2, and 3, a Cournot-Nash equilibrium cannot occur at a point where atoms' marginal rate of substitution is infinite or null.

Our Proposition 1 can be compared with a result obtained by Codognato et al. ( 2015) -their Proposition 1 -of which we state the contrapositive statement as follows.

Proposition 2. Under Assumptions 1, 2 , 3, and 4, if x is a Cournot-Nash allocation such that x(τ ) 0, for an atom τ ∈ T 1 , then it is not a Walras allocation.

Proposition 2 shows that, under Assumptions 1, 2 , 3, and 4, a Cournot-Nash allocation cannot be at a point where atoms' assignments are strictly positive.

To better understand the two propositions and their relationships, it is useful to contrast them in analytical terms. In order to do so, it is worth considering the following argument, used by [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] in its proof: take an atom τ ∈ T 1 and assume, without loss of generality, that w 1 (τ ) = 0 and w 2 (τ ) > 0. Let b be a Cournot-Nash equilibrium and let p = p( b) and x(t) = x(t, b(t), p( b)), for each t ∈ T . If u τ (•) is differentiable and x(τ ) 0, then, for atom τ , the marginal rate of substitution must be equal to his marginal price, i.e., the marginal rate at which he can trade off commodity 1 for commodity 2 (see [START_REF] Okuno | Oligopoly and competition in large markets[END_REF]). Moreover, if x(τ ) is a Walras assignment, the marginal rate of substitution must be equal to the relative price of commodity 1 in terms of commodity 2. These two conditions are expressed by the following equations:

M RS(x 1 (τ ), x2 (τ )) = p1 p2 b21 b21 -b21 (τ )µ(τ ) = p1 p2 . (2) 
Under Assumptions 1, 2, and 3, x(τ ) 0, with a τ 1 x1 (τ ) = a τ 2 x2 (τ ), by our Theorem 1 and Proposition 1.

This result is explained by the fact that the first equation in ( 2) is vacuously satisfied at x(τ ) as M RS(x 1 (τ ), x2 (τ )) is not defined but it is not satisfied when

a τ 1 x1 (τ ) > a τ 2 x2 (τ ) or a τ 1 x1 (τ ) < a τ 2 x2 (τ ), as M RS(x 1 (τ ), x2 (τ ) 
) would be, respectively, infinite or null and it could never be equal to the marginal price. As a consequence, under Assumptions 1, 2, and 3, a Cournot-Nash equilibrium can only occur at the point where atoms' marginal rate of substitution is not defined and this provides a deeper explanation of why the result established by our Proposition 1 emerges.

In contrast, under Assumptions 1, 2 , 3, and 4, when it occurs that x(τ ) 0, the first equation in ( 2) is satisfied as M RS(x 1 (τ ), x2 (τ )) is defined, finite, and nonnull but x(τ ) cannot be a Walras assignment as the second equation in ( 2) is not satisfied. Therefore, when x(τ ) is a Walras assignment, it must be that x1 (τ ) = 0 or x2 (τ ) = 0 and this better explains the result established by Proposition 2.

From the previous analysis, we can infer that atoms with Leontievian utility functions achieve an interior Walras assignment as perfect complementarity prevents them from smoothly substituting the two commodities whereas atoms with strongly monotone and smooth utility functions, as in the case studied by [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF], may only obtain corner Walras assignments at a Cournot-Nash equilibrium just because of the smooth substitutability between the two commodities.

Discussion of the literature

As already stressed, both our analysis and that developed by [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] is crucially based on the mixed bilateral oligopoly version of the Shapley window model introduced in Section 2.

The Shapley window model is one of the two prototypical market games belonging to the Shapley and Shubik line of research in which markets are complete, i.e., each commodity can be directly exchanged for all the others.

The other prototypical strategic market game with complete markets is that introduced by Amir et al. (1990). In this model, there are a market and a price for each pair of commodities, and the price in each market is determined as the ratio of the total amount of bids in each of the two commodities exchanged in that market.

In general, with more than two commodities, the sets of Cournot-Nash allocations of the two models differ as, in the Shapley window model, a price is determined for each commodity whereas, in the model introduced by Amir et al. (1990), a price is determined for the market of each pair of commodities and there may be inconsistency between prices corresponding to pairs of markets in which a same commodity is exchanged.

It is straightforward to show that, in a bilateral oligopoly, another wellknown market game, that introduced by Dubey and [START_REF] Dubey | The noncooperative equilibria of a closed trading economy with market supply and bidding strategies[END_REF], in which one commodity plays the role of money, can be reduced to the model proposed by [START_REF] Amir | A strategic market game with complete markets[END_REF], once that, in this latter, one of the two commodities is labeled as money.

Hereafter in this section, we will refer to the mixed bilateral oligopoly version of the Shapley window model as Model 1, and to the mixed bilateral oligopoly version of the model introduced by Amir et al. (1990) as Model 2.

In their Theorem 5, Codognato et al. (2015) showed that, under Assumptions 1, 2 , and 3, the sets of Cournot-Nash allocations of Model 1 and Model 2 coincide and that this equivalence extends, mutatis mutandis, to the model introduced by [START_REF] Dubey | The noncooperative equilibria of a closed trading economy with market supply and bidding strategies[END_REF]. Both Model 1 and Model 2 can then be seen as its possible generalizations.

Since the proof of Theorem 5 in Codognato et al. ( 2015) is crucially based on the assumption that atoms' utility functions are strongly monotone, it cannot be applied to our Leontievian framework.

We address here the question whether an equivalence result like that obtained by [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] can be established also in the case where atoms have Leontievian utility functions. If this is possible, the main results obtained in this paper for Model 1 can be extended also to Model 2.

Borrowing from [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF], we introduce now Model 2 formally. We start with the following definition. Definition 4. Given a strategy selection b, the 2 × 2 matrix P is said to be the price matrix generated by b if

p ij = bij bji if bji = 0, 0 if bji = 0, i, j = 1, 2.
We denote by P (b) a function which associates with each strategy selection b the price matrix P generated by b.

Given a strategy selection b and a price matrix P , consider the assignment determined as follows:

x j (t, b(t), P ) = w j (t) - for each t ∈ T . 5 It is straightforward to show that this assignment is an allocation.

Then, a Cournot-Nash equilibrium for Model 2 can be defined as follows.

Definition 5. A strategy selection b such that B is irreducible is a Cournot- Nash equilibrium if u t (x(t, b(t), P ( b))) ≥ u t (x(t, b \ b(t), P ( b \ b(t)))),
for each b(t) ∈ B(t) and for each t ∈ T . 6A Cournot-Nash allocation of Model 2 is an allocation x such that x(t) = x(t, b(t), P ( b)), for each t ∈ T , where b is a Cournot-Nash equilibrium of Model 2.

The following lemma establishes a relation between prices and hence traders' final holdings of the two models for strategy selections whose aggregate matrices are irreducible (it was proved by [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] in their Appendix).

Lemma. If b is a strategy selection such that B is irreducible, then p i (b) p j (b) = p ji (b), i, j = 1, 2, and x(t, b(t), p(b)) = x(t, b(t), P (b)), for each t ∈ T .
We are now able to prove the following theorem, which establishes an equivalence between the sets of Cournot-Nash allocations of Model 1 and Model 2 when atoms have Leontievian utility functions. Finally, let us stress that, for the reasons exposed above, our Theorem 1 also extends, mutatis mutandis, to the model proposed by [START_REF] Dubey | The noncooperative equilibria of a closed trading economy with market supply and bidding strategies[END_REF].

Conclusion

In this paper, we have proved that, in the framework of a mixed bilateral oligopoly, when atoms have Leontievian utility functions, Cournot-Nash allocations are always Walras allocations. Moreover, we have shown that atoms achieve an interior Walras assignment at a Cournot-Nash equilibrium as a consequence of perfect complementarity between the two commodities. We have then contrasted this result with that obtained by [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] which shows that atoms demand a null amount of one of the two commodities when they achieve a Walras assignment at a Cournot-Nash equilibrium. We have argued that this outcome is due to the fact that, when atoms have continuous and differentiable utility functions, they can smoothly substitute the two commodities between each other and, as a consequence, they are pushed to the boundary of their consumption set.

In a further step of our research, we propose to complete our analysis studying whether an equivalence between the set of Cournot-Nash and Walras allocations can be obtained in the same framework. We could then address some further issues including the possibility of extending our analysis to more than two commodities and the computational problems considered for finite exchange economies with Leontievian traders by [START_REF] Ye | Exchange market equilibria with Leontief's utility: freedom of pricing leads to rationality[END_REF] and [START_REF] Codenotti | The complexity of equilibria: hardness results for economies via a correspondence game[END_REF], among others, in a framework related to operations research. This might also open the way for an investigation of economies with production where firms have Leontievian technologies. Finally, we remind that the equivalence theorem between the core and the set of Walras allocations proved by [START_REF] Shitovitz | Oligopoly in markets with a continuum of traders[END_REF] rests on the assumptions that atoms' preferences are strongly monotone. Here, we have proved that the set of Cournot-Nash allocations is a subset of the set of Walras allocations, a result which holds when atoms' preferences are monotone but not necessarily strongly monotone. Our results should stimulate a further investigation on the validity of the core equivalence theorems when the strong monotonicity assumption is relaxed.

  al. (2011), Busetto et al. (2018a), among others.

  from Codognato et al. (2015) and Busetto et al. (2018b), we introduce now the two-commodity version of the Shapley window model. A strategy correspondence is a correspondence B : T

  A strategy selection is an integrable function b : T → R 4 + , such that, for each t ∈ T , b(t) ∈ B(t). Given a strategy selection b, we call aggregate matrix the matrix B such that bij = ( T b ij (t) dµ), i, j = 1, 2. Moreover, we denote by b \ b(t) the strategy selection obtained from b by replacing b(t) with b(t) ∈ B(t) and by B \ b(t) the corresponding aggregate matrix.

  2, for each t ∈ T . Given a strategy selection b and the function p(b), traders' final holdings are determined according to this rule and consequently expressed by the assignment x(t) = x(t, b(t), p(b)), for each t ∈ T . 3 It is straightforward to show that this assignment is an allocation satisfying the budget constraint p(b)x(t, b(t), p(b)) = p(b)w(t), for each t ∈ T . We are now able to define the notion of a Cournot-Nash equilibrium for this reformulation of the Shapley window model (see Codognato and Ghosal (2000) and Busetto et al. (2011)). Definition 3. A strategy selection b such that B is irreducible is a Cournot-Nash equilibrium if

Theorem 1 .

 1 Under Assumptions 1, 2, and 3, let b be a Cournot-Nash equilibrium and let p = p( b) and x(t) = x(t, b(t), p( b)), for each t ∈ T . Then, the pair (p, x) is a Walras equilibrium. Proof. Let b be a Cournot-Nash equilibrium and let p = p( b) and x

Corollary 1 .

 1 Under Assumptions 1, 2, and 3, let b be a Cournot-Nash equilibrium and let x(t) = x(t, b(t), p( b)), for each t ∈ T . Then, x is Pareto optimal.

3 ).

 3 The strategy selection b * such that b * 12 (t) =8 3 , for eacht ∈ T 0 , b * 21 (2) = b * 21 (3) = 8 3 , is a Cournot-Nash equilibrium and x * (t) = x(t, b * (t), p(b * )), for each t ∈ T . Suppose that b * is not the unique Cournot-Nash equilibrium. Then, there is a strategy selection b * * such that b * * (t) = b * (t), for each t ∈ V , where V ∈ T 0 is a coalition, or b * * (2) = b * (2), or b * * (3) = b * (3). Then, the allocation x * * such that x * * (t) = x(t, b * * (t), p(b * * )), for each t ∈ T , is a Walras allocation, by Theorem 1, and x * * (t) = x * (t), for each t ∈ V , or x * * (2) = x * (2), or x * * (3) = x * (3), a contradiction. Hence, there is a unique Walras allocation which is also the unique Cournot-Nash allocation.

2 i=1b

 2 ji (t) +

2 i=1b

 2 ij (t)p ji, j = 1, 2, for each t ∈ T . Given a strategy selection b and the function P (b), the traders' final holdings are determined according to this rule and consequently expressed by the assignment x(t) = x(t, b(t), P (b)),

Theorem 2 .Corollary 2 .

 22 Under Assumptions 1, 2, and 3, the sets of Cournot-Nash allocations of Model 1 and Model 2 coincide.Proof. Let x be a Cournot-Nash allocation of Model 1. Then, there is a strategy selection b which is a Cournot-Nash equilibrium of Model 1 and is such that x(t) = x(t, b(t), p( b)), for each t ∈ T . Suppose that x is not a Cournot-Nash allocation of Model 2. Then, there exists a trader τ ∈ T and a strategy b(τ ) ∈ B(τ ) such thatu τ (x(τ, b \ b(τ ), P ( b \ b(τ )))) > u τ (x(τ, b(τ ), P ( b))).We have that x(τ, b(τ ), p( b)) = x(τ, b(τ ), P ( b)), by the Lemma, as B is irreducible. Suppose that the matrix B \ b(τ) is irreducible. Then, x(τ, b \ b(τ ), p( b \ b(τ ))) = x(τ, b \ b(τ ), P ( b \ b(τ ))), by the Lemma. But then, u τ (x(τ, b \ b(τ ), p( b \ b(τ )))) > u τ (x(τ, b(τ ), p( b))), a contradiction. Suppose that the matrix B \ b(τ ) is not irreducible. Then, we must have that τ ∈ T 1 as B \ b(t) = B,for each t ∈ T 0 . Assume, without loss of generality, that w 1 (τ ) = 0 and w 2 (τ ) > 0. Then, we must have that b21 (τ ) = b21 as the matrix B \ b(τ ) is not irreducible. But then, we have that x(τ, b(τ ), p( b)) = ( b12 , w 2 (τ ) -b21 (τ )) and x(τ, b \ b(τ ), p( b \ b(τ )) = (0, w 2 (τ )). This implies that u τ (x(τ, b \ b(τ ), p( b \ b(τ )))) = 0 > u τ (x(τ, b(τ ), p( b))) > 0, a contradiction. Therefore, x is a Cournot-Nash allocation of Model 2. Let x be a Cournot-Nash allocation of Model 2. Then, there is a strategy selection b which is a Cournot-Nash equilibrium of Model 2 and is such that x(t) = x(t, b(t), P ( b)), for each t ∈ T . We have that x(t, b(τ ), P ( b)) = x(t, b(t), p( b)), for each t ∈ T , by the Lemma, as B is irreducible. But then, we must have that a t1 x1 (t) = a t2 x2 (t), for each t ∈ T 1 , by the same argument used in the proof of Theorem 1. Suppose that x is not a Cournot-Nash allocation of Model 1. Then, the previous argument leads, mutatis mutandis, to the same kind of contradictions. Therefore, x is a Cournot-Nash allocation of Model 1. Hence, the sets of Cournot-Nash allocations of Model 1 and Model 2 coincide. Theorem 2 has the following corollary, showing that our Theorem 1 extends, mutatis mutandis, to Model 2. Under Assumptions 1, 2, 3, let b be a Cournot-Nash equilibrium of Model 2 and let p = ( b21 , b12 ) and x(t) = x(t, b(t), P ( b)), for each t ∈ T . Then, the pair (p, x) is a Walras equilibrium. Proof. Let b be a Cournot-Nash equilibrium of Model 2 and let p = ( b21 , b12 ) and x(t) = x(t, b(t), P ( b)), for each t ∈ T . b is a Cournot-Nash equilibrium of Model 1, by Theorem 2, and p = ( b21 , b12 ) = (p 1 ( b), p 2 ( b)), by Definition 2. Hence, the pair (p, x) is a Walras equilibrium, by Theorem 1.

  [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] analyzed the relationship between Cournot-Nash and Walras equilibria in the same bilateral oligopoly framework used in this paper, under Assumptions 1, 3, and two further assumptions on atoms' utility functions, which can be formalized as follows.Assumption 2 . u t : R 2 + → R is continuous, strongly monotone, and quasiconcave, for each t ∈ T . Let us notice that Assumption 2 differs from Assumption 2 in that it imposes that atoms' utility functions are strongly monotone whereas Leontievian utility functions introduced in Assumption 2 are only monotone.

	Assumption 4. u

t : R 2 + → R is differentiable, for each t ∈ T 1 . 4 Theorem 4 in

[START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] 

The symbol 0 denotes the origin of R

+ as well as the real number zero: no confusion will result.2 card(A) denotes the cardinality of a set A.

In order to save in notation, with some abuse we denote by x both the function x(t) and the function x(t, b(t), p(b)).

In this assumption, differentiability means continuous differentiability and is to be understood as including the case of infinite partial derivatives along the boundary of the consumption set (for a discussion of this case, see, for instance, Kreps (2012), p.

58).

In order to save in notation, with some abuse we denote by x both the function x(t) and the function x(t, b(t), P (b)).

According to[START_REF] Amir | A strategic market game with complete markets[END_REF], the market for commodities 1 and 2 is active if b12 > 0 and b21 > 0 and then if and only if B is irreducible. Therefore, as this definition of a Cournot-Nash equilibrium explicitly refers to irreducible matrices, it applies only to Cournot-Nash equilibria at which the market for commodities 1 and 2 is active.