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Distribution and Polynomial Interpolation of the
Dodis-Yampolskiy Pseudo-Random Function
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Abstract. We give some theoretical support to the security of the cryp-
tographic pseudo-random function proposed by Dodis and Yampolskiy
in 2005. We study the distribution of the function values over general
finite fields and over elliptic curves defined over prime finite fields. We
also prove lower bounds on the degree of polynomials interpolating the
values of these functions in these two settings.
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1 Introduction

A cryptographic pseudo-random function family is a collection of functions
that can be evaluated in polynomial-time using a secret key but for which no
polynomial-time algorithm can distinguish (with significant advantage) between
a function chosen randomly from the family and a truly random function (i.e.
whose outputs are sampled uniformly and independently at random). In 2005,
Dodis and Yampolskiy [DY05] proposed an efficient pseudo-random function
family which takes inputs in {1, . . . , d} (for some parameter d ∈ N) and outputs
an element in a group G (multiplicatively written) of prime order t with gen-
erator g. The secret key is a scalar x ∈ Z∗t and the pseudo-random function is
defined by:

Vx : {1, . . . , d} −→ G
m 7−→ Vx(m) = g

1
x+m if x+m 6= 0 mod t and 1G otherwise.

The Dodis-Yampolskiy pseudo-random function family has found numerous
applications in cryptography (e.g., for compact e-cash [CHL05] or anonymous
authentication [CHK+06]). Dodis and Yampolskiy showed that their construc-
tion has some very attractive security properties, provided that some assumption
about the hardness of breaking the so-called Decision Diffie-Hellman Inversion
problem holds in G [DY05]. This assumption is non-standard and Cheon [Che10]
proved that it is stronger than the classical discrete logarithm assumption in G.

In practice, two interesting choices for the group G are a subgroup of the
multiplicative group of any finite field (in particular, for the so-called verifiable
Dodis-Yampolskiy pseudo-random function in groups equipped with a bilinear



map [DY05]) or a subgroup of points of an elliptic curve defined over a prime
finite field. Very few results supporting the Decision Diffie-Hellman Inversion as-
sumption hardness were proven in these settings (contrary to the Naor-Reingold
pseudo-random function family [NR04] for which numerous results are known,
e.g. distribution [LSW14], linear complexity [GGI11] and non-linear complex-
ity [BGLS00]). This paper deals with the distribution of the Dodis-Yampolskiy
pseudo-random function over finite fields and over elliptic curves and proves
lower bounds on the degree of polynomials which interpolate these functions.

Contributions of the paper. As a first contribution, we prove that for al-
most all values of parameters, the Dodis-Yampolskiy pseudo-random function
produces a uniformly distributed sequence. This simple result is based on some
recent bounds on character sums with exponential functions. Shparlinski [Shp11]
has obtained in 2011 an explicit bound for exponential sums with consecutive
modular roots over a prime finite field. Ostafe and Shparlinski [OS11] obtained
an analoguous result for exponential sums over multiples of a point on an elliptic
curve defined over a prime finite field. Following the method from [Shp11], we
obtain readily a bound for such sums over any extension of a prime finite field
(Proposition 1). This new bound allows us to give results on the distribution
of the Dodis-Yampolskiy pseudo-random functions over finite fields (Theorem
1). We use the bounds from [OS11] to give results on the distribution of the
Dodis-Yampolskiy pseudo-random functions over elliptic curves (Theorem 2).

In order to break the security of the Dodis-Yampolskiy pseudo-random func-
tion, it would be sufficient to have a polynomial over a finite field of low degree
which reveals information on the function values. From the known lower bounds
on the polynomial interpolation on the discrete logarithm in finite fields and
elliptic curves (e.g. [CS00,LW02,KW06])), one can prove that a low-degree uni-
variate polynomial cannot reveal the secret key x when evaluated at Vx(m) (for
some integer m ∈ {1, . . . , d}) for all x. However, the security of the Dodis-
Yampolskiy pseudo-random function would also be broken if such low-degree
polynomial revealing a value Vx(m′) were proved to exist (for some integer
m′ ∈ {1, . . . , d} \ {m} and many different keys x). Our main contribution is
to prove lower bounds on the degree of polynomials interpolating the values of
these functions over finite fields (Theorem 3) and elliptic curves (Theorem 4 and
Theorem 5). These results can be regarded as first complexity lower bounds on
the pseudo-randomness of the Dodis-Yampolskiy function families.

Both contributions are motivated by earlier results of the same flavour on
the Naor-Reingold pseudo-random function family.

2 Auxiliary Results

In this section, we collect some statements about finite fields, exponential sums
over finite fields and elliptic curves. We provide explicit upper-bounds for expo-
nential sums with consecutive modular roots over a finite field and for analogous
exponential sums over elliptic curves [Shp11,OS11]. The bound for exponential
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sums with consecutive modular roots over a general finite field is easily derived
from [Shp11] and may be of independent interest.

2.1 Finite Fields and Exponential Sums

Let p be an odd prime number. We denote Fq = Fpr the finite field with q = pr

elements (r ≥ 1). For an integer t, denote by Zt the residue ring modulo t and by
Z∗t the group of units of Zt. For an integer m > 0, we put em(z) = exp(2πiz/m).
Let g ∈ F∗pr of order t (with t | pr − 1), and ψ be a non-trivial character of Fpr .
For a ∈ F∗pr and b ∈ Zt, we define the sum:

Sa,b =
∑
n∈Z∗

t

ψ(ag1/n)et(bn).

Throughout the paper, the notation U � V is equivalent to the inequality
|U | ≤ cV with some constant c > 0. In the following lemmas, the implied
constants in the symbols ”�” may occasionally depend on the integer parameters
k, ` and are absolute otherwise.

In [BS08] Bourgain and Shparlinski proved, when r = 1, that for any ε >
0, there exists δ > 0 such that for t ≥ pε, we have the bound Sa,b � t1−δ.
Shparlinski [Shp11](Theorem 3.1) gave an explicit form of this result (again
when r = 1) for relatively large values of t; in the case t = p1+o(1), it takes the
form Sa,b � t127/128+o(1). Using Shparlinski’s methods, we generalize this bound
on Sa,b for any r ≥ 1 (see Appendix A for a proof which follows [Shp11]):

Proposition 1. For any integers k ≥ 2, ` ≥ 1 we have for t ≥ q1/2(log q)2:

Sa,b ≤ t1−αk,`qβk,`+o(1),

where αk,` = 1
2(2k+`) −

1
4k` and βk,` = 1

4(2k+`) .

2.2 Elliptic Curves and Exponential Sums

We will also consider the setting of an elliptic curve E defined over Fp (where p
is a prime number), that is a rational curve given by the following Weierstrass
equation y2 = x3+Ax+B with A,B ∈ Fp and 4A3+27B2 6= 0. The set E(Fp) of
the points of the curve defined over Fp (including the special point O at infinity)
has a group structure (denoted additively) with an appropriate composition rule
where O is the neutral element. Given P a point of the curve E with prime
order ` (with ` | |E(Fp)|), we denote [n]P the scalar multiplication, i.e. in fact
the adding of the point P to itself n times (for n ≥ 0).

Let E be an elliptic curve and G ∈ E(Fp) be a point of order t ≥ 1. For
a ∈ F∗p and b ∈ Zt, we define the sum:

Ŝa,b =
∑
n∈Z∗

t

ep

(
aX

([
1

n

]
G

))
et(bn),
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where X(P ) denotes the abscissa of a point P ∈ E(Fp).
In [OS11, Theorem 6], Ostafe and Shparlinski obtained an upper-bound on

Ŝa,b (with H(X) = X−1 following the notation from [OS11]):

Proposition 2 ([OS11],). For any integers k ≥ 2, ` ≥ 1 we have for t ≥
q1/2(log q)2:

Ŝa,b ≤ t1−αk,`pβk,`+o(1),

where αk,` = 1
2(4k+`) −

1
4k` and βk,` = 1

4(4k+`) .

2.3 Division Polynomials over Elliptic Curves

In this section, we recall some basic facts on division polynomials of elliptic curves
(see [Was08,BSS99]). The division polynomials ψm(X,Y ) ∈ Fp[X,Y ]/(Y 2−X3−
AX −B), m ≥ 0, are recursively defined by:

ψ0 = 0

ψ1 = 1

ψ2 = 2Y

ψ3 = 3X4 + 6AX2 + 12BX −A2

ψ4 = 4Y (X6 + 5AX4 + 20BX3 − 5A2X2 − 4ABX − 8B2 −A3)

ψ2m+1 = ψm + 2ψ3
m − ψm−1ψ3

m+1 , m ≥ 2

ψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ2

m+1)/ψ2 , m ≥ 3,

where ψm is an abbreviation for ψm(X,Y ). If m is odd, then ψm(X,Y ) ∈ Fp[X]
is univariate and if m is even then ψm(X,Y ) ∈ 2Y Fp[X]. Therefore, we have
ψ2
m(X,Y ) ∈ Fp[X] and ψm−1(X,Y )ψm+1(X,Y ) ∈ Fp[X]. In particular, we may

write ψ2m+1(X) and ψ2
m(X).

The division polynomials can be used to calculate multiples of a point on
the elliptic curve E. Let P = (x, y) ∈ E with P 6= O, then the abscissa of [m]P
is given by θm(x)/ψ2

m(x) where θm(X) = Xψ2
m − ψm−1ψm+1. The zeros of the

denominator ψ2
m(X) are exactly the first coordinates of the non-trivial m-torsion

points, i.e, the points Q = (x, y) ∈ Fp
2 \ {O} on E with [m]Q = O. Note, that

these points occur in pairs Q = (x, y) and −Q = (x,−y), which coincide only if
2Q = O, i.e, if x is a zero of ψ2

2(X).
We recall that the group of m-torsion points E[m], for an elliptic curve E

defined over a field of characteristic p, is isomorphic to (Z/mZ)2 if p - m and to
a proper subgroup of (Z/mZ)2 if p | m. If m is a power of p then E[m] is either
isomorphic to (Z/mZ) or to {O}. Accordingly, the degree of ψ2

m(X) is m2− 1 if
p - m and strictly less than m2 − 1 otherwise. In particular, for p = 2 and m a
power of 2 we have deg(ψ2

m) = m− 1 if E is not supersingular and deg(ψ2
m) = 0

otherwise. By induction one can show that θm(X) ∈ Fp[X] is monic of degree
m2.
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3 Distribution of the Dodis-Yampolskiy Pseudo-Random
Functions

For a real z, we use the notation e(z) = exp(2πiz). For a sequence of N points
Γ = (γ0,n, . . . , γs−1,n)n∈{1,...,N} in the s-dimensional unit cube, we denote its
discrepancy by DΓ :

DΓ = sup
B⊆[0,1)s

∣∣∣∣TΓ (B)

N
− |B|

∣∣∣∣ ,
where TΓ (B) denotes the number of points of the sequence Γ in a box B (i.e. a
polyhedron [α0, β0)×· · ·×[αs−1, βs−1) ⊆ [0, 1)s) of volume |B| and the supremum
is taken over all such boxes. For an integer vector a = (a0, . . . , as−1) ∈ Zs, we

define |a| = maxν∈{0,...,s−1}|aν | and r(a) =
∏s−1
ν=0 max{|aν |, 1}.

In order to show that a sequence Γ is uniformly distributed, we need to show
that its discrepancy DΓ is very small (i.e. tends to 0). The following lemma
is our main tool for finding non-trivial upper bound for the discrepancy. It is a
slightly weaker form of the Koksma-Szüsz inequality [DT97, Theorem 1.21]. The
implied constant in the symbol ”�” depends on the integer s.

Lemma 1. For any integer L > 1 and any sequence Γ of N points, we have

DΓ �
1

L
+

1

N

∑
0<|a|<L

1

r(a)

∣∣∣∣∣
N∑
n=1

e

(
s−1∑
ν=0

aνγν,n

)∣∣∣∣∣ ,
where the sum is taken over all integer vectors a ∈ Zs with 0 < |a| < L.

We also need the well-known orthogonality relation:

m−1∑
η=0

em(ηλ) =

{
0 if λ 6= 0 mod m
m otherwise

(1)

and the inequality [[IK04], Bound (8.6)] (which holds for any integers m and M
with 1 ≤M ≤ m):

m−1∑
η=0

∣∣∣∣∣
M∑
λ=1

em(ηλ)

∣∣∣∣∣� m log m. (2)

3.1 Distribution of the Dodis-Yampolskiy Pseudo-Random Function
over Finite Fields

Let q = pr be a prime power for some integer r > 1, let g ∈ F∗q be an element
of prime order t. For x ∈ Zt and d ≤ t, we denote by Dx(d) the discrepancy of

the points (Vx,1(n)/p, . . . , Vx,r(n)/p) for 1 ≤ n ≤ d, where Vx(n) = g
1

x+n ∈ Fpr
and Vx(n) = Vx,1(n)β1 + · · ·+ Vx,r(n)βr, where {β1, . . . , βr} is an ordered basis
of Fpr over Fp. We identify Fp with the set of integers {0, 1, . . . , p− 1}.
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Theorem 1. For any x ∈ Zt, any integers k ≥ 2, ` ≥ 1 and 1 ≤ d ≤ t, we have:

Dx(d) ≤ t1−αk,lqβk,l+o(1)

d
,

where αk,l = 1
2(2k+l) −

1
4kl and βk,l = 1

4(2k+l) .

Proof. From Lemma 1, we derive

Dx(d)� 1

p
+

1

d

∑
0<|a|<p

1

r(a)

∣∣∣∣∣∣
d∑

n=1

ep

 r∑
j=1

ajVx,j(n)

∣∣∣∣∣∣ ,
where a = (a1, . . . , ar). Set

Sd(a) =

d∑
n=1

ep(

r∑
j=1

ajVx,j(n)).

Let {δ1, . . . , δr} be the dual basis of the given ordered basis {β1, . . . , βr}. For
j ∈ {1, . . . , r} and n ∈ {1, . . . , d}, we have Vx,j(n) = Tr(δjVx(n)), where Tr

denotes the trace of Fpr over Fp (namely Tr(x) = x+xp+ · · ·+xpr−1

). Therefore,

Sd(a) =

d∑
n=1

ep

Tr

 r∑
j=1

ajδjVx(n)

 =

d∑
n=1

ep(Tr(αaVx(n)))

where αa =
∑r
j=1 ajδj ∈ Fpr .

Let χ be defined by χ(z) = ep(Tr(z)). Then χ is a non trivial additive character
on Fpr . Since there exists j ∈ {1, . . . , r} such that aj 6= 0, then αa 6= 0. We have:

Sd(a) =

d∑
n=1

χ(αaVx(n)) with αa 6= 0.

We have

Sd(a) =

x+d∑
n=x+1
n∈Z∗

t

χ(αag
1/n) =

1

t

∑
n∈Z∗

t

χ(αag
1/n)×

t−1∑
c=0

x+d∑
v=x+1
v∈Z∗

t

et(c(n− v))

=
1

t

t−1∑
c=0

∑
n∈Z∗

t

χ
(
αag

1/n
)
et(cn)

× x+d∑
v=x+1
v∈Z∗

t

et(−cv).

By applying Proposition 1 and (2), we obtain

Sd(a) ≤ 1

t

t−1∑
c=0

∣∣∣∣∣∣∣∣
x+d∑
v=x+1
v∈Z∗

t

et(−cv)

∣∣∣∣∣∣∣∣× t
1−αk,`qβk,`+o(1) ≤ t1−αk,`qβk,`+o(1).
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By applying this bound to Dx(d), we have

Dx(d)� 1

p
+
t1−αk,lqβk,`+o(1)

d

∑
0<|a|<p

1

r(a)
� 1

p
+
t1−αk,`qβk,`+o(1)

d
logr p

≤ t1−αk,`qβk,`+o(1)

d

ut

With the choice k = 4, l = 8, t = q1+o(1) and d = t
127
128+ε, we obtain

Dx(d) ≤ pr(−ε+o(1)) = q−ε+o(1).

3.2 Distribution of the Dodis-Yampolskiy Pseudo-Random Function
over Elliptic Curves

Let E : y2 = x3 +Ax+B, be an elliptic curve over Fp. For P ∈ E(Fp) of prime
order t, for x ∈ Zt, and for 1 ≤ d ≤ t we denote by Dx(d) the discrepancy of the

points (X(Vx(n))/p) for n ∈ {1, . . . , d} where Vx(n) =
[

1
x+n

]
P ∈ E(Fp). We

obtain the following theorem.

Theorem 2. For any x ∈ Zt, any integers k ≥ 2, l ≥ 1 and 1 ≤ d ≤ t, we have:

Dx(d) ≤ t1−αk,`pβk,`+o(1)

d
,

where αk,` = 1
2(4k+`) −

1
4k` and βk,` = 1

4(4k+`) .

Proof. From Lemma 1, we derive

Dx(d)� 1

p
+

1

d

∑
0<|a|<p

1

|a|

∣∣∣∣∣
d∑

n=1

ep (aX(Wx(n)))

∣∣∣∣∣ ,
where a is an integer. Set Sd(a) =

∑d
n=1 ep(aX(Wx(n))), we have

Sd(a) =

x+d∑
n=x+1
n∈Z∗

t

ep

(
aX

([
1

n

]
P

))

=
1

t

∑
n∈Z∗

t

ep

(
aX

([
1

n

]
P

))
×

t−1∑
c=0

x+d∑
v=x+1
v∈Z∗

t

et (c(n− v))

=
1

t

t−1∑
c=0

∑
n∈Z∗

t

ep

(
aX

([
1

n

]
P

))
et(cn)

× x+d∑
v=x+1
v∈Z∗

t

et(−cv)
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By applying Lemma 6 and (3), we obtain

Sd(a) ≤ 1

t

t−1∑
c=0

∣∣∣∣∣∣∣∣
x+d∑
v=x+1
v∈Z∗

t

et(−cv)

∣∣∣∣∣∣∣∣× t
1−αk,`pβk,`+o(1)

≤ t1−αk,`pβk,`+o(1)

By applying this bound to Dx(d), we have

Dx(d)� 1

p
+ t1−αk,`pβk,`+o(1) × 1

d

∑
0<|a|<p

1

|a|

� 1

p
+ t1−αk,`pβk,l+o(1) × 1

d
log p

≤ t1−αk,`pβk,`+o(1) × 1

d

ut

With the choice k = 4, ` = 16, t = p1+o(1) and d = t
255
256+ε, we obtain Dx(d) �

p−ε+o(1).

4 Polynomial Interpolation of the Dodis-Yampolskiy
Pseudo-Random Function over Finite Fields

Let g ∈ F∗pr for some integer r > 1, be an element of prime order t | pr − 1.
In this section, we prove a lower bound on the degree of univariate polyno-
mial interpolation of the Dodis-Yampolskiy pseudo-random function over finite
fields. We consider polynomials that interpolates values of the Dodis-Yampolskiy
pseudo-random function for a fixed secret key x ∈ F∗t . The values considered are
evaluation of the function at integers n ∈ {1, . . . , d} for some integer 1 ≤ d ≤ t
and translates of these values by some fixed constants λ ∈ N. This setting is
interesting for applications in cryptography [CHL05,CHK+06]. Note that if one
value n is larger than d then, the Dodis-Yampolskiy function is not necessarily
defined at n + λ. In the following, we consider simple sets where all translates
belong to the function domain but our method can be adapted to other settings.

Theorem 3. Let λ be a fixed integer and let A ⊆ {1, . . . , d}. For some x ∈ F∗t ,

let F (X) ∈ Fp[X] be such that F (g
1

x+n ) = g
1

x+n+λ for all n ∈ A. We have

deg(F ) ≥ t− 2s

4
and w(F ) ≥

(
t

4s

)1/2

where ]A = t− s.

In the proof of Theorem 3, we use the following lemma [LW02] where the
weight w(F ) (or sparsity) of a polynomial F (X) ∈ Fp[X] is the number of its
non-zero coefficients.
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Lemma 2 ([LW02]). Let γ ∈ Fp be an element of order ` and F (X) ∈ Fp[X]
be a non-zero polynomial of degree at most `− 1 with at least b zeros of the form
γx with 0 ≤ x ≤ `− 1. The weight of F (X) satisfies w(F ) ≥ `/(`− b).

Proof (Theorem 3). Let R = {(n + x)mod t : n ∈ A}. Then R ⊆ Ft and ]R =

t − s. We have F (g
1
n ) = g

1
n+λ for all n ∈ R. Noticing that 1

n+λ = 1
λ (1 − 1

λ
n+1

),

we obtain F (g
u
λ ) = g

1
λ (1−

1
u+1 ) for all u = λ

n , n ∈ R.

Let R0 = {u = λ
n : n ∈ R \ {0}} and T = {u ∈ R0 : 2u + 1 ∈ R0}. Since

]R0 = t− s, we have ]T ≥ t− 2s. Then

F
(
g

2u+1
λ

)
= g

1
λ (1−

1
2u+2 ) = g

1
λ (

1
2+

1
2 (1−

1
u+1 )) = g

1
2λ × g

1
2λ (1−

1
u+1 )

for all u ∈ T . We thus have

F 2
(
g

2u+1
λ

)
= g

1
λ × g

1
λ (1−

1
u+1 ) = g

1
λ × F (g

u
λ ), for all u ∈ T .

Let H(X) = F 2(g
1
λX2) − g 1

λF (X). The polynomial H(X) is a non-zero poly-
nomial and deg(H) ≤ 4 deg(F ). Since H(X) has at least ]T = t − 2s zeros, we
have 4 deg(F ) ≥ t − 2s and then deg(F ) ≥ t−2s

4 . Moreover, if deg(H) ≤ t − 1,

since the zeros of H are the powers of g
1
λ , then we have by Lemma 2, w(H) ≥

t/(t− (t− 2s)), and since w(H) ≤ 2(w(F ))2, it follows that w(F ) ≥ (t/4s)1/2.
ut

Remark 1. Theorem 3 is non-trivial only when ]A > t/2. It remains an open
question to obtain non-trivial lowers bounds for smaller sets A.

5 Polynomial Interpolation of the Dodis-Yampolskiy
Pseudo-Random Function over Elliptic Curves

In this section, p is an odd prime number, E is an elliptic curve defined over Fp
and P is a point of the curve E(Fp) with prime order t. We prove lower bounds on
the degree of polynomial interpolation of the Dodis-Yampolskiy pseudo-random

function over elliptic curves defined by Vx(n) = X
([

1
x+n

]
P
)

for a secret key

x ∈ F∗t and an integer n ∈ {1, . . . , d}, with 1 ≤ d ≤ t.

Theorem 4. Let S ⊆ {1, . . . , d}, ]S = t− s. We suppose X(P ) 6= 0. For some
x ∈ F∗t , let F (X) ∈ Fp[X] be such that ψ2

2(F (X(P ))) 6= 0 and F (Vx(n)) =
Vx(n+ 1) for all n ∈ S. We have

deg(F ) ≥ t− 2s

176
.

Proof. Let R = {(n + x) mod t : n ∈ S} ⊆ Ft. We have ]R = t − s. Let us
denote xk = X([k]P ) and R0 = { 1n : n ∈ R}, then we have F (xu) = x1− 1

1+u
for

9



all u ∈ R0. We consider the set T = {u ∈ R0 : 2u + 1 ∈ R0}, then ]T ≥ t − 2s.
For all u ∈ T , we have:

F (x2u+1) = x1− 1
2(u+1)

= x1/2+1/2(1−1/(u+1)) and F (xu) = x1−1/(u+1) (3)

Using division polynomials (see Section 2.3), we can write:

x1+1− 1
(u+1)

=
θ2(F (x2u+1))

ψ2
2(F (x2u+1))

(4)

Using the elliptic curve addition law, we have

x1+α =
a(xα)− 2y1yα

(xα − x1)2
where a(X) = x1X

2 + (x21 +A)X +Ax1 + 2B,

and for any polynomial G of degree m ≥ 1, we have

G(x1+α) =
u(xα)− yαv(xα)

(xα − x1)2m
and lc(u) = G(x1)

with uniquely determined polynomials u(X) and v(X) with deg(u) ≤ 2m (deg(u) =
2m if G(x1) 6= 0) and deg(v) ≤ 2m− 2 and where lc(u) is the leading coefficient
of the polynomial u(X). Since F (xu) = x1− 1

u+1
, we can rewrite (4) as:

a(F (xu))− y1y1− 1
u+1

(F (xu)− x1)2
=
θ2(F (x2u+1))

ψ2
2(F (x2u+1))

.

Since the point (x1− 1
u+1

, y1− 1
u+1

) ∈ E(Fp) and F (xu) = x1− 1
u+1

, the poly-

nomial y21(F (xu)3 + A · F (xu) + B)ψ4
2(F (x2u+1)) is equal to the polynomial

[(F (xu)− x1)2θ2(F (x2u+1))− a(F (xu))ψ2
2(F (x2u+1))]2. We thus obtain

y21(F (xu)3 +A · F (xu) +B)× p1(x2u)− y2up2(x2u)

(x2u − x1)12d0
= Q(xu, x2u, y2u),

where d0 = deg(F ) and Q(xu, x2u, y2u) denotes a polynomial of the form[
(F (xu)− x1)2

p3(x2u)− y2up4(x2u)

(x2u − x1)8d0
− a(F (xu))

p5(x2u)− y2up6(x2u)

(x2u − x1)6d0

]2
such that deg(p1) ≤ 6d0, deg(p2) ≤ 6d0 − 2, deg(p3) ≤ 4d0, deg(p4) ≤ 4d0 − 2,
deg(p5) ≤ 3d0 and deg(p6) ≤ 3d0 − 2. We obtain:

y21(F (xu)3 +AF (xu) +B)(x2u−x1)4d0(p1(x2u)− y2up2(x2u)) = P (xu, x2u, y2u),

where P (xu, x2u, y2u) = [(F (xu)− x1)2p3(x2u)− a(F (xu))(x2u − x1)2d0p5(x2u)
− y2u((F (xu)− x1)2p4(x2u)− a(F (xu))(x2u − x1)2d0p6(x2u))]2.

We then proceed as previously by trying to eliminate y2u. We obtain an

expression in function of xu and x2u and we replace x2u by θ2(xu)
ψ2

2(xu)
. We finally

obtain a rational function in xu of the form:

Q(xu)

ψ40d0
2 (xu)

= 0, where Q(X) ∈ Fp[X] and deg(Q) ≤ 88d0.
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Claim. Q(X) 6= 0 if ψ2
2(F (x1)) 6= 0 and x1 6= 0

Proof (Claim). We have deg(P5) = 3d0 iff ψ2
2(F (x1)) 6= 0. If deg(P5) = 3d0,

One can then verify that the leading coefficient of Q is the leading coefficient of
the numerator of the rational function obtained from [(F (xu) − x1)2p3(x2u) −
a(F (xu))(x2u − x1)2d0p5(x2u)]4 after replacing x2u by θ2(xu)

ψ2
2(xu)

.

Therefore, if deg(P5) = 3d0, then the leading coefficient of Q is (f2 × x1 ×
ψ2
2(F (x1)))4 which is non zero if x1 6= 0 since deg(P5) = 3d0 iff ψ2

2(F (x1)) 6= 0,
where f is the leading coefficient of F . Then if ψ2

2(F (x1)) 6= 0 and x1 6= 0, Q(X)
is a non-zero polynomial. ut

If ψ2
2(F (x1)) 6= 0 and x1 6= 0, Q(X) is a non-zero polynomial with at least

]T/2 different zeros. We thus have 88d0 ≥ (t− 2s)/2 and the claimed result. ut

The condition X(P ) 6= 0 in the statement of Theorem 4 holds obviously for
almost all point P . The lower bound then holds if the group order ]E(Fp) is odd
since in this case, the technical condition ψ2

2(F (X(P ))) 6= 0 is always satisfied.
However, we obtain a weaker lower bound for the polynomial degree which holds
for every curve E.

Theorem 5. Let 1 ≤ d ≤ t be a fixed integer and let A ⊆ {1, . . . , d}, ]A = t−s.
For some x ∈ F∗t , let F (X) ∈ Fp[X] such that F (Vx(n)) = Vx(n + 1) for all
x ∈ A. We have deg(F ) ≥ (t− 3s)1/2/6.

In the proof of Theorem 5, we use the following simple lemma:

Lemma 3. Let E : y2 = x3 + Ax + B be an elliptic curve over Fp with A 6= 0
and B 6= 0. Let F (X) ∈ Fp[X] be a non-constant polynomial with F (X) 6= X.
Then there exists α ∈ Fp such that ψ2

2(F (α)) = 0 and ψ2
2(α) 6= 0.

Proof. There are exactly three distinct zeros α1, α2, α3 ∈ Fp of ψ2
2(X). For all

index i ∈ {1, 2, 3}, there exists at least one βi ∈ Fp such that F (βi) = αi,
because F is not a constant polynomial. Since for all i, j ∈ {1, 2, 3}, i 6= j, we
have αi 6= αj , then the system F (X) = αi and F (X) = αj has no solution. It
follows that the polynomial ψ2

2(F (X)) has at least three different zeros.
Let d denote the degree of F and let us suppose that there does not exist

α ∈ Fp such that ψ2
2(F (α)) = 0 and ψ2

2(α) 6= 0. Then we have that ψ2
2(F (X))

has exactly three zeros which are the zeros of ψ2
2(X). If d = 1, then it will

imply that F (X) = X which is impossible. If d ≥ 2, for all i ∈ {1, 2, 3}, the
equation F (X) = αi has exactly one solution γi of multiplicity d which is one
of {α1, α2, α3}. Then γ1 and γ2 are the zeros of the (d − 1)-derivative of F (X)
which is of degree 1 and this is impossible because γ1 6= γ2. Hence in all cases,
we obtain a contradiction. So there exists α ∈ Fp such that: ψ2

2(F (α)) = 0 and
ψ2
2(α) 6= 0.

Proof (Theorem). Let R = {(n+x) mod t : n ∈ A}. Then R ⊆ Ft and ]R = t−s.
The equation F (Vx(n)) = Vx(n+ 1) then becomes:

F

(
X

([
1

n

]
P

))
= X

([
1

n+ 1

]
P

)
,
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for all n ∈ R. Denoting xk = X([k]P ) = X([k mod t]P ) and considering the set
T = {n ∈ R/n/2, n+ 1 ∈ R}, we have

F
(
x 2
n

)
= F

(
x 1
n/2

)
= x 1

n/2+1
= x 2

n+2
=
θ2(x 1

n+2
)

ψ2
2(x 1

n+2
)

=
θ2(F (x 1

n+1
))

ψ2
2(F (x 1

n+1
))

=
θ2(F (F (x 1

n
)))

ψ2
2(F (F (x 1

n
)))
,

hence we have

F

(
θ2(x 1

n
)

ψ2
2(x 1

n
)

)
=
θ2(F (F (x 1

n
)))

ψ2
2(F (F (x 1

n
)))
, for all n ∈ T.

Finally, we consider the polynomial

H(X) = ψ2d0
2 (X)ψ2

2(F (F (X)))

(
F

(
θ2(X)

ψ2
2(X)

)
− θ2(F (F (X)))

ψ2
2(F (F (X)))

)
.

The polynomial H(X) has at least ]T/2 zeros. We have F (F (X)) 6= X and
by Lemma 3, it will imply that there exists α ∈ Fp such that ψ2

2(F (F (α))) = 0

and ψ2
2(α) 6= 0. Hence, we have H(α) = −θ2(F (F (α)))ψ2d0

2 (α) 6= 0, since θ2(X)
and ψ2

2(X) have no common zeros. Therefore, H(X) is a non-zero polynomial
and deg(H) ≤ 9d20. Then we get that 9d20 ≥ ]R/2 and the result follows. ut

6 Conclusion

We studied the distribution of the Dodis-Yampolskiy pseudo-random function
values over finite fields and over elliptic curves. We also proved lower bounds
on the degree of polynomials interpolating the values of these functions in this
two settings of practical interest. As future works, it would be interesting to
study the distribution of k-tuples (Vx(m), . . . , Vx(m + k))m and to study the
linear complexity and minimal polynomials of the sequence generated by the
Dodis-Yampolskiy functions over finite fields and over elliptic curves.
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A Proof of Proposition 1

The classical Weil bound for exponential sums can be found in [Wei48,NW00].

Lemma 4. Let F (x) be a non constant polynomial in Fq[x] such that F (x) 6=
h(x)p − h(x) for any h(x) ∈ Fq(x). We have∣∣∣∣∣∣

∑
x∈Fq

ψ(F (x))

∣∣∣∣∣∣ ≤ (deg(F )− 1)q1/2

We deduce the following simple lemma:

Lemma 5. For any pairwise distinct positive integers 1 ≤ r1, . . . , rυ ≤ R, we
have

max
(a1,...,aυ)∈Fυpr

(a1,...,aυ)6=(0,...,0)

∣∣∣∣∣
t∑

n=1

ψ

(
υ∑
i=1

aig
rin

)∣∣∣∣∣ ≤ Rq1/2.
Proof. Let s = (q − 1)/t. We have g = θs, where θ is a primitive root in Fq and

t∑
n=1

ψ

(
υ∑
i=1

aig
rin

)
=

t∑
n=1

ψ

(
υ∑
i=1

aiθ
srin

)
=

1

s

q−1∑
n=1

ψ

(
υ∑
i=1

aiθ
srin

)

=
1

s

∑
x∈Fq

ψ

(
υ∑
i=1

aix
sri

)
− 1


Applying Lemma 4, we obtain :

max
(a1,...,aυ)∈Fυpr

(a1,...,aυ)6=(0,...,0)

∣∣∣∣∣
t∑

n=1

ψ

(
υ∑
i=1

aig
rin

)∣∣∣∣∣ ≤ 1

s
((Rs− 1)q1/2 + 1) ≤ Rq1/2.

ut
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Proof (Proposition 1). For any integer k ≥ 2, we have

Sa,b
k =

∑
n1,...,nk∈Z∗

t

ψ

a k∑
j=1

g1/nj

 et

b k∑
j=1

nj

 .

For m ∈ Zt, we collect together the terms with n1 + · · ·+nk ≡ m mod t, getting:

|Sa,b|k ≤
∑
m∈Zt

∣∣∣∣∣∣∣∣
∑

n1,...,nk∈Z∗
t

n1+···+nk≡m mod t

ψ

a k∑
j=1

g1/nj


∣∣∣∣∣∣∣∣ .

By the Cauchy inequality, we can upper-bound |Sa,b|2k by

t
∑
m∈Zt

∣∣∣∣∣∣∣∣
∑

n1,...,nk∈Z∗
t

n1+···+nk≡m mod t

ψ

a k∑
j=1

g1/nj


∣∣∣∣∣∣∣∣
2

= t
∑

(n1,...,n2k)∈Nk

ψ

a 2k∑
j=1

(−1)jg1/nj


where the outside summation is taken over the set of vectors

Nk = {(n1, . . . , n2k) ∈ (Z∗t )2k : n1 + · · ·+ n2k−1 ≡ n2 + n4 + · · ·+ n2k mod t)}.

One can see that for any m ∈ N with gcd(m, t) = 1, we have

∑
(n1,...,n2k)∈Nk

ψ

a 2k∑
j=1

(−1)jg1/nj

 =
∑

(n1,...,n2k)∈Nk

ψ

a 2k∑
j=1

(−1)jgm/nj

 .

Let us fix some parameter Q with Q ≥ 2 log t. Let Q be the set of primes m ≤ Q
with gcd(m, t) = 1. Averaging over all m ∈ Q, we obtain

|Sa,b|2k ≤
t

]Q
∑
m∈Q

∑
(n1,...,n2k)∈Nk

ψ

a 2k∑
j=1

(−1)jgm/nj

 .

The number w(t) of prime divisors of t satisfies w(t) ≤ (1+o(1))(log t)/(log log t)
(which can be seen from the trivial inequality w(t)! ≤ t and the Stirling formula).
By the prime number theorem, we have (since Q ≥ 2 log t):

]Q ≥ (1 + o(1))
Q

logQ
− (1 + o(1))

log t

log(log t)
≥ 0.5

Q

logQ
,

provided that t is large enough. We have ]Nk ≤ t2k−1. Using the Hölder inequal-
ity and then extending the region of summation, we obtain that for any integer
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` ≥ 1, we have:

|Sa,b|4k` ≤
t2`

]Q2`
(]Nk)2`−1

∑
n1,...,n2k∈Z∗

t

∣∣∣∣∣∣
∑
m∈Q

ψ

a 2k∑
j=1

(−1)jgm/nj

∣∣∣∣∣∣
2`

� t4k`−2k+1 log2`Q

Q2`

t∑
n1,...,n2k=1

∣∣∣∣∣∣
∑
m∈Q

ψ

a 2k∑
j=1

(−1)jgmnj

∣∣∣∣∣∣
2`

=
t4k`−2k+1 log2`Q

Q2l

t∑
n1,...,n2k=1

∑
m1,...,m2`∈Q

ψ

a 2k∑
j=1

2∑̀
h=1

(−1)j+hgmhnj


=
t4k`−2k+1 log2`Q

Q2`

∑
m1,...,m2`∈Q

∣∣∣∣∣
t∑

n=1

ψ

(
a

2∑̀
h=1

(−1)hgmhn

)∣∣∣∣∣
2k

.

For O(]Q`)=O(Q` log−`Q) tuples (m1, . . . ,m2`) ∈ Q2` such that the tuple of the
elements on the odd positions (m1, . . . ,m2`−1) is a permutation of the elements
on the even positions (m2, . . . ,m2`), we estimate the inner sum trivially as t.
For the remaining O((]Q)2`) = O(Q2`(logQ)−2`) tuples, we use the bound of
Lemma 5. Therefore,

|Sa,b|4k` �
t4k`−2k+1 log2`Q

Q2l
(Q` log−`Qt2k +Q2` log−2`Q(Qq1/2)2k)

= t4k`−2k+1(Q−` log`Qt2k +Q2kqk).

Taking Q = 2t2k/(2k+`)q−k/(2k+`)(log q)`/(2k+`) and if t ≥ q1/2(log q)2, one can
see that Q ≥ 2 log t and we obtain

|Sa,b|4k` � t4k`−(2k`−2k−`)/(2k+`)qk`/(2k+`)(log q)`/(2k+`)

and the result follows. ut
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