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Abstract

Fast prediction of the equilibrium configuration of a static floating rigid body is a challenging problem,
especially if the body geometry is complex. To address this problem, a new model is developed to seek
quickly the equilibrium configurations (position and orientation) of a continuous slender body with finite
deformations relatively to the water surface. The non-linear description of the body geometry relies on
the geometrically exact approach, where the orientations of the sections are parametrized by a continuous
field of rotation matrices. After introducing the advantages of this approach, a new model giving the exact
net wrench of buoyancy forces applied to the so-called Cosserat beam is reported. Then, an optimization
method adapted to the Lie group manifold is developed to compute the equilibrium configurations. The
numerical results are then compared to experimental data to validate the accuracy of the model. Finally, the
inverse problem consisting of finding the relevant body deformation for a desired equilibrium configuration
is introduced. After demonstrating that the inverse problem is ill-posed, a method is reported to deform
continuously the body with a constant stable head configuration.

Keywords: Floating body, equilibrium configuration, finite deformation, geometrically exact approach,
Cosserat beam

1. Introduction

Many maritime applications require to maintain
a body in a stable position on a free surface[1].
The stability of floating rigid bodies has been ex-
tensively studied thanks to the well-known stabil-5

ity criteria for single hulls [2]. However, control-
ling or predicting the static stability of a strongly
deformed body remains an open problem. Surpris-
ingly, some animals are capable to solve an ana-
log problem in a very elegant way. For instance,10

semi-aquatic snakes, like the Cottonmouth or grass
snakes, deform significantly their body to maintain
a static stable posture on a free surface, while their
head remains above the surface [3]. These snakes
use their body deformation to balance gravity and15

buoyancy forces and achieve (quasi-)static position-
ing. Understanding and reproducing the perfor-
mance of these animals could lead to new appli-
cations in maritime engineering. In the field of bio-
inspired marine robotics, stability induced by body20

deformation could improve thrust production and

energy efficiency of snake-like robots [4]. Moreover,
determining the stable position of deformed cables
on sea surface, which are widely used for offshore
engineering, is also of great interest for maritime25

applications [5]. Moreover, poly-articulated float-
ing systems, like floating articulated arms or energy
harvesting system, could adapt their shape to op-
timize the efficiency of their task thanks to a con-
trolled stability.30

Hence, one needs to understand the effect of the
geometric deformation of a slender body on its equi-
librium configurations. The objective of the paper
is thus to introduce an efficient tool computing the
equilibrium configurations of a slender deformed35

body floating on flat sea surface. More precisely,
the aim is to find the orientation and the position
of a mobile frame attached to the body for a given
body shape so that the net vertical force and the
net torques cancel out. An approach based on ex-40

periments or DNS would be very time-consuming to
perform a parametric study of the influence of the
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deformations. Consequently, a simplified model is
derived to perform rapidly the calculations. The
simplification of the problem consists of describing45

the slender body as a 3D beam plunged into a 3D
Cartesian space with a flat surface. To avoid time
consuming simulations, equilibrium configurations
are sought via an optimization method finding the
roots of the net wrench instead of solving the dy-50

namics. To take into account large deformations,
the model follows the approach introduced by J.C.
Simo: the geometrically exact approach [6, 7, 8].
In this framework, the parametrization of each sec-
tion orientation of the beam is performed thanks55

to rotation matrices taking values in the Lie group
SO(3). The great advantage of this model is to
preserve the geometric properties of the rotations
and to avoid afterwards complexities or singulari-
ties of others parametrizations, like the Euler’s an-60

gles. However, the price to be paid for using rota-
tion matrices instead of linearised models (infinites-
imal rotation) or other representations, is to per-
form differential calculus on a manifold rather than
in a vector space. For instance, the standard opti-65

mization methods used to compute equilibrium in
a vector space have to be adapted to the geome-
try of the Lie group, as it will be shown in section
4. Consequently, the present paper introduces in a
pedagogical way some of the specific features of the70

geometrically exact approach.
In the context of ocean engineering, a geometri-

cally exact approach has been introduced in [9] to
model the dynamics of underwater flexible cables.
The geometrically exact approach has also been75

successfully used to describe the swimming motion
of slender bodies in sub-marine robotic [10, 11, 12],
and in fluid mechanics applied to biology [13]. In-
deed, this geometrical method is particularly suit-
able for problem requiring to transport the kine-80

matics and forces from one frame to another [14].
This approach is thus useful for animal locomotion
since the forces acting on each segment are usually
expressed in the mobile frames, while the motion
is commonly described in the Galilean laboratory85

frame [13]. Therefore, the geometrically exact ap-
proach is also well-adapted to the present problem.
Unlike the previously mentioned works [10, 13] con-
sidering infinite volume, one of the originalities of
the present paper is to introduce buoyancy forces90

breaking the material symmetry of the isotropic
sub-marine space. Thanks to the exact geometrical
parametrization of each section relative to the water
surface, it is possible to compute exactly the local

buoyancy forces acting on a segment in the local95

body section frame, and then to express the result-
ing force in the Galilean reference frame. Hence,
the reported model combines a geometrically ex-
act description of the body with an exact model of
buoyancy forces.100

This paper is organized as follows. First, the ge-
ometrical model of the slender body is presented in
section 2. The computation of the buoyancy forces
is then developed in section 3. The exact calcu-
lation of the stiffness matrix is also reported. To105

find the equilibrium configuration, an optimization
method adapted to the manifold of the body con-
figuration is reported in section 4. To benchmark
the code, the equilibrium positions of a twisted el-
liptical cylinder and a helical rod are studied in sec-110

tion 5 thanks to this new model. The results are
then compared to experimental data. Finally, the
inverse problem consisting of finding the relevant
body deformation for a desired equilibrium config-
uration is presented. It is demonstrated that the115

inverse problem is ill-posed since it exists an infi-
nite set of body deformations corresponding to the
same equilibrium configuration. To illustrate this
feature, a method is reported to deform continu-
ously a slender body while maintaining the same120

head configuration.

2. Geometry of the Cosserat’s beam

In this section, the framework of the exact ge-
ometrically approach is introduced in a pedagogi-
cally meaningful way. The reader interested in this125

approach will find in [6, 7, 8, 10, 14, 15, 16] more
details concerning the geometrically exact approach
and the Lie group theory applied to mechanics. The
continuous buoyant slender body is modelled by an
inextensible shear-less beam of length L with el-130

liptical cross section that is plunged into a Carte-
sian space (Fig. 1). A Galilean reference frame
FG = (0, e1, e2, e3) is pinned to the water inter-
face so that the surface corresponds to the altitude
z = 0. The centerline of the beam is defined by the135

set of points {Os}, which are located by the posi-
tion vectors p(s) = (x(s), y(s), z(s)), and expressed
in FG, as a function of the curvilinear variable s ∈
I = [0, L]. The so-called Cosserat beam is modelled
by a continuous stack of elliptical rigid sections of140

infinitesimal thickness ds. The position and the ori-
entation of these sections are defined from the set of
material frames Fs = (Os, t1(s), t2(s), t3(s)) with
origin Os. The orthonormal vectors set {ti}i=1,2,3
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Figure 1: Parametrisation of the body considered as Cosserat beam

expressed in FG is composed of the vector t1, which145

is orthogonal to the local section and tangent to the
centerline at the position p(s), while the vectors t2
and t3 are aligned with the semi-axis of the ellipti-
cal section.

The rotation matrix R(s) ∈ R3×3 is defined from150

each local orthonormal basis {ti} so that R(s) =
(t1|t2|t3). The set of rotation matrices R ∈ R3×3

forms the special orthogonal group SO(3), under
the operation of matrix multiplication (see Ap-
pendix A.1.1).155

Thanks to the rotation matrices and the position
vectors, each point in a section referenced by the
coordinate vector q(b)(s) in Fs can be expressed in
FG with coordinates q(G)(s) given by

q(G)(s) = p(s) + R(s)q(b)(s) (1)

Consequently the fields p(s) and R(s) fully char-160

acterize the configuration of the beam relatively to
the reference frame FG. Equation 1 can be written
in a condensed form via the rigid transformation
gs(p,R) so that

q̄(G)(s) = gsq̄
(b) (2)

with q̄T = (qT , 1) the homogeneous coordinates165

[14], and the matrix g ∈ R4×4 defined by

gs =

(
R(s) p(s)

0 1

)
(3)

The rigid transformations gs take values in the
Euclidean group SE(3) = R3 × SO(3). Hence, the
configuration of the body in the reference frame FG
corresponds to a continuous curve of transformation170

gs with s ∈ I in SE(3). The transformation gs has
an inverse transformation g−1s given by

g−1s =

(
RT −RTp
0 1

)
(4)

To describe the deformation of the beam ir-
respectively of its configuration in the surface
frame, we introduce the rigid transformation175

fields 0gs
(
0p(s), 0R(s)

)
that characterizes the body

shape relatively to the mobile head frame F0 (Fig.
1). The transformations gs is given by the compo-
sition of the transformation 0gs with g0 (Fig. 1) so
that180

gs = g0
0gs (5)

Figure 2: Illustration of the geometry of the group SO(3).
Each rotation R ∈ SO(3) can be parametrized by a skew-

symmetric matrix Ω̂ ∈so(3) thanks to the exponential map.

For an inextensible rod, the geometry of the beam
is fully characterized by the field of vectors set{
0ti
}

(s) forming the material frames expressed in
the head frame F0. The deformation of the vectors
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set is parametrized thanks to the field of twist cur-185

vature vector κ(s) = (κ1, κ2, κ3). This strain field
defines the infinitesimal rotations of the sections ex-
pressed in the local material frame Fs

κ(s) =
∑
i

κi(s)
0ti(s). (6)

with the parameters κ1, κ2 and κ3 quantifying re-
spectively the torsion and both bending deforma-190

tions of the rod. The vectors fields
{
0ti
}

are thus
given by the evolution equation

d

ds
0ti=κ× 0ti (7)

for i ∈ [1, 2, 3] with the initial condition given by
0ti(s = 0) = ui, with ui a unitary vector with
(ui)i = 1, and 0 otherwise. Using the rotation ma-195

trix to express the transformation of the vector 0ti
so that 0ti = 0Rsui, equation 7 can be written into
a matrix form with 0Rs

d

ds
0Rs = 0Rs κ̂(s) (8)

and the initial condition 0R0 = Id. The skew-
symmetry matrix κ̂ is the matrix form of the vector200

product κ× defined by

κ̂(s) =

 0 −κ3 κ2
κ3 0 −κ1
−κ2 κ1 0

 (9)

The vector κ is thus the twist coordinate of the
matrix κ̂ taking values in the linear space so(3).
The right-hand side term of equation 8 is the com-
position of first an infinitesimal rotation κ̂(s) in the205

material frame, with a finite rotation 0R(s) corre-
sponding to the mapping from the material frame
to the head frame [8]. The solutions of equation 8
can be written under the following form

0Rs = exp(Ω̂(s)) (10)

with Ω̂(s) ∈ so(3) a skew-symmetric matrix, and
exp(·) the matrix exponential defined by

exp(Ω̂) = Id +

∞∑
n=1

1

n!
Ω̂n (11)

Equation 10 refers to the exponential map in the210

Lie groups theory [14, 16], mapping element from
so(3) to SO(3) (Fig. 2). The exponential map is a
convenient tool to parametrize finite rotation as a
function of skew-symmetry matrices. If the strain

κ̂ is constant, the matrix Ω̂ is equal to Ω̂(s) = κ̂s.215

In the present paper, the exponential matrix will
be used for the computation of the head orienta-
tion R0 in section 4. However when the strain field
κ̂(s) is not constant, the skew-symmetric matrix Ω̂
can only be approached by a Magnus expansion220

[17]. Instead of an approximation of this expan-
sion, a parametrization of the rotation based on the
quaternions will be used to solve equation 8 (for de-
tails see Appendix A.1.2). The main advantage of
using the quaternion instead of the rotation matrix225

is that it is easier to preserve the unit norm of Q
than the orthonormal property of R. Then, the po-
sition vector 0ps for an inextensible rod is given
by

0ps =

∫ s

0

0t1(s)ds (12)

Finally, the transformation 0gs is reconstructed230

via the fields 0p(s) and 0Rs thanks to equation 3. In
the model, the field of transformation 0gs defined by
the strain field κ(s) is fixed, and the transformation
g0 will be the unknown of the problem.

To take into account the possible anisotropy of a
body section, the shape of each section is consid-
ered elliptical with semi-axis aligned with the vec-
tors (t2, t3)(s). For a given section, all the points
belonging to a body section indexed by the posi-
tion vectors q(b) with components (q1, q2, q3) in Fs,
satisfy the following relations

q1 = 0,
(q2
a

)2
+
(q3
b

)2
< 1, (13)

with a and b the semi-radii. The body density ρb235

is considered constant, and smaller or equal to the
water density ρw. In the rest of the paper, all the
lengths will be rescaled by the length L. Hence,
the curvilinear variable s varies from 0 to 1 with
I = [0, 1]. The parameters a and b become the240

semi-radii normalized by the length L.
The numerical integration are performed thanks

to a Chebyshev collocation method implemented
in a MATLAB code, using differentiation matrices
[18]. This spectral method provides a good con-245

servation of the quaternion norm. Moreover, this
method exhibits a fast convergence of the solutions
[19], the so-called ”spectral accuracy” with an expo-
nential decrease of the numerical error as a function
of the number of grid points. This modal decompo-250

sition will be also useful to solve the inverse problem
reported in section 6.
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There are two worth noting remarks. First, the
present geometrical model of the body is continu-
ous, unlike a lumped mass model commonly used255

for mooring systems [5]. We will show in the next
section that the model of buoyancy forces relies also
on an exact calculation of the immersed surface and
of the buoyancy center for each section, thanks to
the geometrically exact approach. Secondly, the260

model relies on a rod parametrization satisfying
the Kirchhoff constraint, i.e. an inextensible beam
without shear between the sections. Therefore, the
sections remain orthonormal to the centerline but
might be non-parallel between each other, if the265

fields κ2(s) and κ3(s) produce a local bending of
the centerline. The helix reported in section 5 dis-
plays this feature. The use of the Kirchhoff model
is justified for slender bodies submitted to moder-
ate load, otherwise, the Ressner’s model has to be270

considered [20] without major modification of the
present model.

3. Calculation of the buoyant forces and
stiffness matrix

3.1. Buoyant forces exerted on a Cosserat beam275

The objective of this section is to perform an ex-
act calculation of the density of force and torque
acting on each infinitesimal elliptical section. As-
suming a mechanical equilibrium between the rod
and the water surface at rest, the acceleration of the280

fluid and body are neglected. The density of wrench
wa(s) of the buoyant force exerted on a section and
expressed in the frame Fs is defined by

wa(s) =

(
πa(s)
γa(s)

)
(14)

with πa(s) and γa(s) defining respectively the den-
sity of force and torque. The density of buoyancy285

force expressed in the local frame Fs is

πa = agρwSim
(
R(s)−1e3

)
(15)

with ag the gravity acceleration, ρwSim the linear
density of water mass for a local immersed surface
Sim(s), and R−1e3 the vertical vector e3 expressed
in Fs, via the inverse rotation R−1. To calculate290

the torque associated with the density of buoyancy
force, one needs to define the position of the buoy-
ancy center qB(s) where the force is applied to esti-
mate the moment arm. Thus, the density of torque
is given by295

γa = agρwSim
(
qB × R−1e3

)
(16)

To calculate the net wrench, all the wrenches
have to be expressed in the same reference frame.
For convenience, the Galilean reference frame FG
is chosen. The condensed relation w

(G)
a (s) =

AdTg−1wa(s) (Eq.A.9, see Appendix A.1.4) will be300

used in section 4 to express all the local wrenches
wa(s) in their section frame into the Galilean frame

FG. The net wrench is thus given by W(G)
a

W(G)
a =

∫
s∈I

w(G)
a (s)ds (17)

Finally, the net wrench WN (the index (G) is
omitted) combining the buoyancy force and the305

gravity force reads


ag

(∫ 1

0

(ρwSim − ρbSb) ds

)
e3

ag

[∫ 1

0

(ρwSim) RqB + (ρwSim − ρbSb)pds

]
× e3

(18)
Due to the symmetry, only three components of

WN can be non-zero. Indeed, the forces on the
body are invariant by parallel body translation rela-
tively to the sea surface, i.e. in the (0, e1, e2) plane,310

and also by solid body rotation along the vertical
axis e3. The unknowns of Eq. 18 are the surface
Sim and the weighted barycenter SimqB that are
calculated in the next section.

3.2. Immersed surface and weighted barycenter315

For the sake of simplicity, the calculation of
Sim and SimqB is performed in the section frame
Fs. The waterline is parametrized by the equa-
tion F

(
q(b)

)
= 0, with q(b) the position vector ex-

pressed in the frame Fs of the considered section.320

The values of Sim and qB in a body section are thus
defined by

Sim =

∫∫
Ds

dq2dq3 (19)

and

SimqB =

∫∫
Ds

qdq2dq3 (20)

with Ds the domain of the immersed surface (de-
tailed in Appendix A.3). To calculate the functions325
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Sim and qB, we will follow the following steps con-
sisting of : 1) parametrizing the waterline in the
section frame Fs, 2) mapping the elements from
the ellipse to a circle to compute the integral, 3)
defining the immersion conditions, and 4) integrat-330

ing the equations. Since the water surface is defined
by z = 0 in the frame FG, the position qb of the
water-line in Fs satisfies the following equality (Eq.
1)

ē3 ·
(
gsq̄

(b)
)

= 0 (21)

where ē3 corresponds to the homogeneous coordi-335

nates of the vertical vector e3 (Eq. 3). The bor-
der of the elliptical section being characterized by
q1 = 0, the implicit function F (q2, q3) = 0 of the
waterline is given by

F (q2, q3) = R32q2 +R33q3 + p3 (22)

with Rij the component of the rotation matrix R,340

and p3 the third component of p. This equation
becomes ill-posed when R32 = R33 = 0. This prob-
lem appears if the vertical components of the vec-
tors t2 and t3 vanish, when the section is parallel
to the surface with t1 ∝ e3. In this case, the con-345

cept of waterline is meaningless since since the sec-
tion is either fully wet or fully dry. To regularise
the problem, we fix Sim(s) = Sb if p3 < 0, and 0
otherwise. Therefore, this case is easily solved and
implemented in our model while all the other con-350

figurations are treated in the further calculations.
To simplify the integration, we introduce a bijec-

tive linear transformation (Fig. 3) that maps the
elements from an ellipse with semi-radii (a, b) to a
disk of radius r0 =

√
ab defined by355

L :

(
q2
q3

)
→
(
q̃2
q̃3

)
=

(√
b
a 0

0
√

a
b

)(
q2
q3

)
(23)

The waterline corresponds now to a chord of the
disk (Fig. 3). Due to the symmetry of the problem,
the new barycenter q̃B belongs to the line directed
by the radial vector er perpendicular to the water-
line, and can be written360

q̃B = rB(h)er (24)

with a radius rB > 0 calculated thanks to the level
of immersion h. The variable h is defined from the
position vector q̃h = her of the point of intersection
between the waterline and the radius orthogonal to

Figure 3: Transformation from ellipse to circle

the waterline. We introduce the angle θ to compute365

the unitary radial vector so that eTr = (cos θ, sin θ)
with

θ = arctan 2

(
−R32

√
a

b
,−R33

√
b

a

)
(25)

To obtain the level of immersion h (see Appendix
A.3), the vector q̃h is projected on er. Finally, the
level of immersion h is given by370

h =
p3√

R2
32
a
b +R2

33
b
a

(26)

This height h is algebraical in order to estimate
the transition from a dry body to a fully immersed
body. Four cases can be identified. First, if h is
larger than the radius r0 =

√
ab, then the section

is dry. When h = r0, the section has a punctual375

contact with the water surface. When |h| < r0, the
section is partially immersed. Finally, if h < −r0,
then the section is fully immersed. To summarize,
the surface is immersed (third and fourth case), if

p3 <
√
R2

32a
2 +R2

33b
2. (27)

Now the surface can be calculated thanks to the
height h via a surface integration with a cartesian
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Figure 4: Immersed surface (blue solid line) rescaled by the

ellipse area πab as a function of the rescaled height h/
√
ab,

and the rescaled distance rB/r0 (dashed red curve) between
the center of the ellipse and the barycenter of the immersed
surface

parametrization of the disk of radius r0. One can
show that the immersed surface is given by

Sim = r20

[
arccos

(
h

r0

)
− h

r0

√
1− h2

r20

]
. (28)

The variation of the immersed surface as a func-380

tion of h/r0 is reported in Fig. 4 (blue curve). The
advantage of defining an algebraical height h is ob-
vious since the surface increases smoothly as a func-
tion of h/r0 ∈ [−1, 1]. In the same way, the distance
rB introduced in Eq. 24 is given by385

SimrB =
2r30
3

(
1−

(
h

r0

)2
) 3

2

. (29)

The evolution of the rescaled distance rB/r0 of
the barycenter is reported in Fig. 4, varying from
the center of the disk for h/r0 < −1 to the ra-
dius rB = r0 for a punctual contact at h = r0.
Finally, the weighted position of the barycenter390

of the immersed portion of the ellipse given by
qB = rBL−1er reads

SimqB =
2r30
3

(
1−

(
h

r0

)2
) 3

2
(√

a
b cos(θ)√
b
a sin(θ)

)
(30)

with θ given by Eq.25. Consequently, equations
29 and 30 giving the immersed surface and the

weighted barycenter, can be used to compute the395

net wrench exerted on the body via Eq. 18.

3.3. Stiffness matrix

In this section, the stiffness matrix quantifying
the stability of a head configuration g0 is performed
in the framework of the geometrically exact ap-400

proach. The differential of WN written δWN is
linearly related to the twist coordinate of a vir-

tual head displacement δΨ
(G)
0 ∈ R3 in the spa-

tial Galilean frame thanks to the stiffness matrix
(DΨ0WN ) so that405

δWN =
(
DΨ0

(G)WN

)
δΨ0

(G) (31)

with
(
δΨ0

(G)
)T

= (δzh, δθr, δθp) the three com-

ponents corresponding respectively to a variation
produced by heaving, rolling and pitching motions
expressed in the Galilean frame. First, the variation
δWN is expressed as a function of δgs with410

δWN =

∫
s∈I

(DgswN ) δgsds (32)

where (DgswN ) is the jacobian matrix of the
wrench density for a variation δgs, which is reported
in Appendix A.4. Then, the variation δgs is ex-
pressed as a function of the virtual displacement
δψs ∈ R6 in the body frame with415

δgs = gsδψ̂s (33)

Finally, the adjoint operator Ad(g−1
s ) is used to

transport the virtual displacement

δψs = Ad(g−1
s )δψ

(G)
0 (34)

Combining Eqs. 31, 32, 33 and 34, the jacobian
matrix reads

(
DΨ0

(G)WN

)
=

∫ L

0

[
(Dgsw) gsT Ad(gs)P

]
ds

(35)

with T a linear operator transforming the twist co-420

ordinates into the screw-symmetric tensor, and P
an operator mapping δΨ

(G)
0 7→ δψ

(G)
0 (R3 → R6),

so that δψ
(G)
0 = PδΨ(G)

0 . This jacobian matrix will
be used in the Newton-Raphson method reported in
the next section.425
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4. Optimization method

The purpose of this section is to derive an opti-
mization algorithm seeking the equilibrium configu-
ration for a given body shape defined by the field of
configuration

(
0gs
)
. The choice of the mobile frame430

to perform the optimization method is of great im-
portance, since the net wrench WN , and more pre-
cisely the net torque, depends on the position of the
considered mobile frame where the resultant is es-
timated. If the head frame F0 is useful to describe435

the geometry, it is less convenient for the optimiza-
tion algorithm, and it shows poor convergence. The
center of mass (COM) defined by equation A.6 will
be preferred to the head frame. The configuration
of the COM frame gcom in FG is given by440

gcom = g0
0gcom (36)

with 0gcom a constant matrix defined in Eq. A.6.
Thanks to Eq. A.7, the wrench Wcom

N computed in
the center of mass frame is written in a condensed
form with the adjoint operator (cf. text after equa-
tion A.7 )445

Wcom
N = AdT(gcom)−1WN (37)

Hence, the algorithm will consist of finding the
configuration gcom canceling out Wcom

N , but the
final result will be expressed as a function of g0.
To do so, the optimization method has to preserve
the group property of the configuration g ∈ SE(3)450

(for the sake of clarity, we will omit the sub-index
com). Indeed, the challenge consists of defining an
incremental transformation gn 7→ gn+1 at the n+ 1
steps so that the wrench WN [gn+1] goes toward
zero, while the transformation gn+1 remains in the455

group. Since the problem derived from a poten-
tial energy, the existence of equilibrium position is
related to the extrema of the potential energy U
defined by

U =

∫ 1

s=0

[ρbSbzcom(s)− ρwSim(s)zB(s)] ds (38)

with zcom the altitude of the center of mass of the460

section indexed by s, and zB(s) the altitude of the
buoyancy center. A classical minimization method
in Rk will consist of finding the minima of U(x)
as a function of an element xn ∈ Rk via a line-
search method. This method is based on the update465

formula xn+1 = xn + tnξn, where ξn ∈ Rk is the
search direction and tn ∈ R+ the step size. In Rk,

the concept of moving in the direction of a vector is
straightforward, since the tangent space is also Rk.

Figure 5: Schema illustrating the update in the incremental
transformation to preserve the structure of the group SE(3).

To keep the group structure, each new configura-470

tion gn+1 is deduced from gn thanks to the update
formula with the transformation composition

gn+1 = gn (ngn+1) (39)

where ngn+1 is the relative transformation mapping
from the configuration gn to gn+1 (Fig. 5). Hence,
at each incremental step from n to n+ 1, the mate-475

rial frame is transported and re-oriented thanks to
a transformation ngn+1 ∈SE(3).

The transformation ngn+1 is then parametrized
by the step direction ξn ∈ R6 thanks to the expo-
nential mapping given by Eq. 10480

ngn+1 = exp(tnξ̂n) (40)

with ξ̂n the skew-symmetric matrix defined from
the twist coordinate ξn thanks to Eq. 9. Equation
40 defines a retraction, i.e. the projection of the
step direction with a step size tn onto the mani-
fold. The algorithm will be based either on a mod-485

ified gradient descent or a Newton-Raphson meth-
ods with an unitary step direction defined by

ξn =
1

|DWn|
DWn (41)

with Wn the net wrench. For the gradient method,
the matrix D is a diagonal matrix with positive el-
ements, that are calculated to avoid unbalanced in490

the weight of the components of the wrench. For
the Newton-Raphson method, the matrix D is the

inverse of the stiffness matrix
(
DΨ0

(G)WN

)−1
com-

puted in section 3.3.
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A satisfying condition for the algorithm will be to495

impose a reduction (for a stable equilibrium) of the
potential energy so that Un+1 < Un. However, this
condition does not provide a sufficient rate of con-
vergence to the solution. For a sufficient decrease,
the Armijo condition states that the following in-500

equality has to be satisfied

Un+1 < Un − c1tnξTn (WN )n (42)

for c1 ∈ [0, 1], (WN )n and Un being the wrench and
the energy estimated at the step n. This method
provides a convergence to the solution (see Ap-
pendix A.5). The Armijo condition will determine505

the step size so that tn corresponds to the largest
step size satisfying the inequality 42 .

At a step n, we assume that Un and (g0)n are
known. We define cf < 1 a contraction factor re-
ducing the step size at each iteration, and t̄ the ini-510

tal time step. The algorithm determining tn com-
bines equations 36, 37, 39, 40, and 42. It is reported
in the algorithm 1. The computation of the wrench
and the energy given by Eq. 18 and Eq. 38, are re-
spectively referenced by the functions WrenchCom-515

putation and EnergyComputation.

Algorithm 1 Algorithm describing the update
from the configuration (g0)n to (g0)n+1

(WN )n ← WrenchComputation((g0)n)

(Wcom
N )n ← AdT

(gcom)−1
n

(WN )n {Transport of

the wrench to the COM}
ξn ← D (Wcom

N )n {Calculation of the step direc-
tion}
Un+1 ← Un {initiation of the energy}
tn ← t̄ {initiation of the step}
while Un+1 > Un − c1tnξTn (Wcom

N )n do
tn ← cf × tn {step size contraction}
n(gcom)n+1 ← exp

(
tnξ̂n

)
{Retraction}

(gcom)n+1 ← (gcom)n
n(gcom)n+1{Update for-

mula}
(g0)n+1 ←

(
0gcom

)−1
(gcom)n+1{Head conFig.

}
Un+1 ← EnergyComputation((g0)n+1)

end while

After each loop, the configuration is updated
with gn = gn+1. To accelerate the code, the ini-
tial step size t̄ at the iteration n is equal to the
final step size tn−1 of the previous iteration for520

n > 1. The algorithm 1 is then repeated into an-
other loop with n iterations until the step size tn

reaches a given threshold, usually chosen smaller
than 10−10. Then, the algorithm is stopped be-
cause the energy minimum is almost reached. We525

observe that the resulting order of magnitude of the
wrench is around 10−8.

Note that the Newton-Raphson method could
not converge if the initial state is not close enough
to the solution. Therefore, the gradient method530

could be preferred in some cases for its robustness.

5. Experimental benchmark

5.1. Body geometry

To illustrate and evaluate the performance of the
code, we have chosen two kinds of body deforma-535

tion: (a) a helical rod with circular cross-sections,
and (b) a piecewise-twisted elliptical cylinder.

The first body is a helix with a height h = 50mm,
a pitch p = 35mm, a radius a = 15mm, and an
angle α = 40◦ parametrised by the free software540

FreeCAD [21] (reported in Fig. 6). The volume
estimated by the software is V = 2.48 × 10−4m3,
and its length is L = 35.16 mm. The body has
been 3D-printed with a mass of 64g so that the
average body density is given by ρs = 257.5 kg/m3.545

After post-processing the mesh, the strain field κ is
reported in Fig. 6.

The second body is made of 3D-printed ellip-
tical sections that are stacked one next to the
other. Each body section is elliptical with semi-550

radii a = 2cm, b = 3cm, and width e = 8mm. The
angle of twist between each section is θ1 = −π/10.
The body reported in Fig. 7 is made of Nseg = 17
sections that are stacked together by an axial rod.
To model the piecewise rotation, we introduce the555

following field of strain

κ1(s) = θ1

Nseg−1∑
n=1

g (s− sn) (43)

where the sum is over the Nseg − 1 junctions, and
κ2, κ3 are set to zero. The function g is a Gaus-
sian function centred in sn = n

Nseg−1 of norm one

(
∫
gds = 1). The variance of the gaussian function560

is small enough to model the localized twist so that
we call this model the ”quasi-discrete” model. The
picture of the body and its numerical avatar are
reported in Fig. 7.
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Figure 6: Illustration of the helix (BOT), and the
parametrization of the infinitesimal rotation field with the
torsion κ1 (blue curve) and the bending κ3 (red curve)
(κ2 = 0).

5.2. Benchmark565

Then, we compare the numerical results of the
model with the experimental data for both geomet-
rical configurations. We start by studying the sta-
bility of the helix with circular cross-sections. The
picture of the floating body is reported in Fig. 8 so570

that its cross-section faces the lens. After a post-
processing, the contour of the upper part of the
body is estimated, and reported in red in Fig. 8.

We now perform the calculation of the equilib-
rium configuration thanks to the geometry of the575

body introduced in section 5.1. It is worth not-
ing that we use an average mass density ρs esti-
mated from the net mass and the net volume of the
body, whereas the 3-D printing process could pro-
duce small inhomogeneous distribution of mass per580

cross section. The body is discretized on N = 100
points on the Chebyshev grid, which is sufficient
to reproduce the strain field κ reported in Fig.6.
The efficiency of the Newton-Raphson (NR) and
the gradient descent (GD) methods are compared.585

The evolution of the norm of the vertical force and

Figure 7: (top) Piecewise-twisted rod made of 17 3D-printed
elliptical sections, and (bottom) its 3D reconstruction (we
have only represented the lateral surface of the body) given
by Eq. 43.
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Figure 8: Picture of the floating helix on a free surface at
rest (z = 0). The contour curve is superimposed in red.

the torques are reported in Fig. 9 (red symbols
for NR method and blue symbols for GD method).
Both methods display a quasi exponential conver-
gence to the equilibrium, but with different rates.590

The GD method requires 50 iterations while the NR
method needs only 30 iterations to reach a residue
equal to 10−8.
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Figure 9: Top: norm of the vertical force as a function
of the iteration of the optimization process. Bottom: norm
of both bending torque as a function of the iteration of the
optimization process for the helical body. The circles (re-
spectively squares) correspond to the torque τx (resp. τy).
Blue symbols are the data from the gradient method while
the red ones comes from the Newton-Raphson method.

To estimate the validity of the code, the body
contour of the experimental data (red curve) is su-595

perimposed to the front picture of the numerical
one (Fig. 10, top). Since the solution is invariant
by translation parallel to the surface and rotation
along the z−axis, the abscissae x and the angle of
rotation θz are computed to obtain the best match.600

Hence, we observe a relative good qualitative agree-
ment with only 2 free parameters. When the body
is tilted with a slight inclination angle along the y-
axis (θy = −3◦), the matching is even better (Fig.
10, bottom). Consequently, we conclude that the605

model gives a good estimation of the configuration
with an incertitude of θy = ±3◦, which could be eas-
ily explained by a small inhomogeneous mass dis-
tribution of the 3-D printing or a slight inclination
of the camera.610

For the twisted rod with elliptical segments, a
quantitative study can be performed via the esti-
mation of the inclination angle θx along the x−axis
of the first elliptical section. The results are re-
ported in Fig. 12 with the experimental data (black615

circle) and the numerical estimations (blue square

Figure 10: Superimposition in the x0z plane of the contour
(red curve) of the body given by the experiment on the pro-
file of the helix obtained by the model. The abscissae and
the ordinate are dimensionless. Top: without correction.
Bottom: with a slight tilt of θy = −3◦ along the y−axis.

and dashed curve). The number of segments Nseg
has been varied from 12 to 17. The experimental
angles are obtained by computing the inclination
angle of the first segment (Fig. 12).620

The numerical estimation of the equilibrium con-
figuration is performed thanks to the quasi-discrete
model given by Eq. 43 (blue squares in Fig.
11), and a second continuous model, which is
parametrized by a constant torsion κ1 = θ1(Nseg −625

1) (dashed blue curve). The first model requires
at least N = 500 points for a good convergence
(to capture the sharp variation of twist angle be-
tween the sections), whereas only N = 100 points
are necessary for the continuous model. We ob-630

serve that the quasi-discrete model is slower than
the continuous model. For instance, the solution
of the quasi-discrete model takes 40 ± 1.5 seconds,
while the continuous model requires 10 ± 1s for a
laptop with a CPU Intel-Core i7-6500U and 16Go635

of RAM. Note that the number of points of the

11



N number of segments
12 13 14 15 16 17

an
gl

e 
of

 in
cl

in
at

io
n

-90

-80

-70

-60

-50

-40

-30
num. 1
num. 2
exp

Figure 11: Inclination angles θx in degrees along the x−axis
by respect to the original vertical orientation for a rod made
of N segments. The numerical data are reported in blue
(square for the discrete model, dashed curve for the contin-
uous model), and the experimental one in black (circle).
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Figure 12: Illustration of the inclination angle θx along
the x−axis given by the dashed white line by respect to the
original vertical orientation (white bold line). In this picture,
the angle is θx = −28.4◦ ± 2 for N = 17 segments.

continuous model can be reduced to N = 10 with
a small change of accuracy (around 10−4) in order
to decrease the computation time to 1s.

The inclination angle θx computed via the quasi-640

discrete model and the continuous one model are
almost equal with a relative difference smaller than
10−3. Consequently, the beam can be modelled by
a continuous field of twist. The evolution of the
torques and the force as a function of the number645

of iterations is reported in Fig. 13. The convergence
to the minimum is significantly slower than the one

of the helix case, with some plateaus (see Fig. 13).
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Figure 13: Top: norm of the vertical force as a function
of the iteration of the optimization process. Bottom: norm
of both bending torque as a function of the iteration of the
optimization process. The circles (respectively squares) cor-
respond to the torque τx (resp. τy). Blue symbols are the
data from the gradient method while the red ones comes
from the Newton-Raphson method.

We observe a good agreement between the ex-
perimental (black circles) and the numerical (blue)650

angles θx. The angle difference between the model
and the experiments increases from θx = 2◦ for
Nseg = 12, to θx = 8◦ for Nseg = 17. To eval-
uate a confidence interval, we have performed the
calculation of θx with a variation of plus or minus655

5% on θ1, i.e. a variation of 1◦. The result is re-
ported in grey in Fig. 11. The experimental data
falls in the confidence interval. Thus, the angle dif-
ference between the experiment and the model can
be explained by a possible slight variation of the660

twist angle θ1 between each segment.

6. Inverse problem and invariant manifold of
the head configuration

6.1. An ill-posed problem

This section deals with the inverse problem con-665

sisting of seeking the body shape that provides a
stable head configuration. This problem is mo-
tivated by applications like the static-positioning
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of deformed structures or the design of complex
floaters to stabilize naval structures.670

The direct problem treated in section 4 and 5
is well-posed since a countable number of solutions
exists for a given strain field κ(s). The convergence
to the solutions depends on the initial conditions.
However, the inverse problem is of ill-posed kind,675

because the solutions are not unique. Indeed, the
strain κ(s) takes value in a function space that is an
infinite-dimensional vector space. In our case, this
space is assumed to be a Hilbert space in order to
apply the Chebyshev polynomial decomposition (cf.680

appendix Appendix A.2). This method allows us
to map elements from the vector space of the ampli-
tudes of the polynomials (κ̃1, κ̃2, κ̃3)[0:Np−1] to the
functions of the Hilbert space. A bijective mapping
is achieved when Np →∞.685

The system is underdetermined for a truncation
at order Np > 1 since there are 3Np degrees of free-
dom with only 3 conditions of stability for WN = 0.
For an exact decomposition with Np → ∞, the di-
mension of the solution space is infinite, i.e. there690

is an infinite way to deform the body without mod-
ifying the head configuration. In the next section,
we show how to compute the strain field that form
a continuous manifold named M(g0), the so-called
invariant manifold defined by all all the strain κ(s)695

corresponding to the same head configuration g0.

6.2. The invariant manifold of the head configura-
tion

First, we introduce the relative variation of
wrench δWN produced by an infinitesimal vector700

δκ(s) defined by

WN (g0,κ+ δκ) = WN (g0,κ)+δWN (δκ)+o(|δκ(s)|)
(44)

with the following linear differential form

δWN (δκ) =

∫ L

0

(Dκw) δκds (45)

(Dκw) being the jacobian of the wrench density
relative to the variation of twist δκ(s). The exact
calculation of (Dκw) is reported in Appendix A.6.705

It is worth noting that the calculation of (DκWN )
requires to evaluate the variation of the local con-
figuration δgs of a section as a function of δκ. In
the geometrically exact framework, this transfor-
mation is given by a linear differential equation (see710

A.29) that is relatively simple compared to other

parametrizations (Euler’s angles). This is one of the
great advantage of the geometrically exact frame-
work.

To pass from one equilibrium to another, the dif-715

ferential form has to cancel out with δWN = 0.
To produce no wrench variation, we seek the incre-
mental twist δκ(s) that belongs to the null space of
the linear operator defined by Eq. 45. Thanks to
the Chebyshev polynomial decomposition, the field720

δκ(·) can be parametrized by a truncated series

δκ(s) =

Np−1∑
j=0

(δκ̃)j Tj(s) (46)

This decomposition is then introduced in Eq. 45
to perform the integration. Thus, Eq. 45 can be
rewritten as a function of the polynomial coeffi-
cients (δκ̃)j ∈ R3 stacked in a vector δκ̃ with725

δWN = (Dκ̃WN ) δκ̃ (47)

with the 3 × (3NT ) jacobian matrix (Dκ̃WN ).
Thanks to a singular value decomposition, the basis
vectors of the null space of (Dκ̃WN ) can be com-
puted so that any strain can be written into the
following form730

δκ̃ = P‖δ(κ̃)‖ + P⊥(δκ̃)⊥ (48)

with P‖ a 3NT ×3(NT −1) projection matrix to the
null space, P⊥ a 3NT×3 projection matrix with the
three vectors producing a variation of the wrench
locally. The sub-index ‖ refers to the local tangent
space of M(g0), and the sub-index ⊥ corresponds735

to the vector space perpendicular to the tangent
space.

The first right-hand side term in Eq. 48 pro-
duces a tangential variation to the manifoldM(g0).
However, Eq. 44 is a linear approximation of the re-740

sulting wrench produced by a variation of the body
shape, and the equilibrium is only satisfied at order
|δκ|. Any strain δκ̃‖ produces a residual wrench
(even small) that must be corrected to avoid a de-
parture from the manifold M(g0). Hence, we use745

the component (δκ̃)⊥ to compensate the residual
wrench. The second right-hand side term in Eq. 48
is thus used as a corrector to remain in the vicinity
of the manifold.

6.3. Illustration of the invariant manifold750

There are some practical reasons to use the in-
variant manifold of the head configuration for mar-
itime applications, i.e. maintaining the configura-
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Figure 14: Initial (thick curves) and final (dashed line)
strain fields (κ1, κ2, κ3)(s) (respectively the blue, black and
red curves) resulting from the iterative body strain. Result-
ing variation of strain δκ between the initial and the final
states is displayed in the insert.

tion of one extremity of the body while modifying
its body shape. For instance, the local stability of a755

deformable vessel can be modified by a quasi-static
modification of the body shape, either to improve
the stability or to decrease it for better maneuvra-
bility. To clean up macro plastic, a floating manip-
ulator could grip an object while maintaining con-760

stant contact with it. The purpose of this section is
thus to give an example of the process introduced
in the previous section consisting of following the
manifold M(g0) by successive body deformations.

To illustrate this process, we consider the helical765

body presented in section 5. The aim is to uncoil
the helix by decreasing progressively the torsion κ1
and the bending κ3. The method relies on the de-
composition reported in Eq. 48. At each new step,
the current strain fields κ are projected onto the770

tangent space. The resulting vector δκ̃‖ is rescaled
to one, and then multiplied by ε = 2 × 10−3 to
produce an infinitesimal variation. Finally, the re-
sulting vector δκ̃ = P‖δκ̃‖ is projected from the
modal space to the physical space, and then sub-775

tracted from the strain fields κ. The amplitude
of ε is small enough to remain in the vicinity of
M(g0), but not too small for keeping a reasonable
number of iterations. For each update of the body
shape, the vector δκ̃⊥ is then computed to pro-780

duce a wrench compensating the one due to δκ̃‖.
During the process, the ratio |δκ⊥|/|δκ‖| is of or-

der 10−4, and the body shape variation is mostly
produced by the component δκ‖. This process has
required 6000 iterations to reduce the norm of κ by785

3. Every 300 iterations, the head configuration is
recomputed thanks to the optimization method in
order to check the equilibrium head configuration.

The initial (thick curves) and final (dashed line)
twist fields (κ1, κ2, κ3)(s) are reported in Fig. 14.790

The configurations of the central-line in the Carte-
sian space are also reported in Fig. 15. The black
curve corresponds to the initial state, and the pro-
gressive body shape evolution is illustrated by a
variation from a blue curve (first iteration) to a795

red curve (last iteration). The head is marked by
the red circle. A rotation along the z axis and a
shift to the origin (x, y) = (0, 0) are performed to
align the bodies since the wrench is invariant under
these transformations. At every step, the decrease800

of the bending κ3 and the torsion κ1 is compen-
sated by an increase of κ2. At the final stage, all
three components are of same order of magnitude.
We clearly observe on left Fig. 15 that the rods
progressively uncoils. The oscillatory bending (see805

Fig. 14 and 15) produces ripples along the rods to
maintain some sections fully immersed and other
fully dry. The final state (red curve) of the central
line is similar to a transversally curved bow with
the tail and the center immersed.810

For each iteration, the variation of the altitude,
and the roll and pitch angles of the heads frame rel-
ative to the initial state are computed, and reported
in Fig. 16. The relative deviation from the ini-
tial head configuration remains very small (around815

10−4), which confirms the efficiency of the correct-
ing process.

7. Conclusion

This paper presents a continuous model of a
buoyant slender body with finite deformations on820

a flat free surface. The model relies on the geomet-
rically exact approach, where the configuration of
the slender body is parametrized by elements of the
group SE(3). Elliptical sections have been consid-
ered, and an exact model of buoyancy wrench is re-825

ported. The model has been benchmarked against
two experiments consisting of studying the equi-
librium configuration of a helical rod with circu-
lar cross-section, and a piecewise-twisted elliptical
cylinder. The model reproduces the experimental830

observation. For each body, few seconds are re-
quired to obtain the equilibrium configurations with
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Figure 15: Iterative process uncoiling the helical body while maintaining the head configuration constant. The initial body
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Figure 16: Relative error during the uncoiling process.

good precision. Hence, this is the first model con-
sidering an exact description geometry of the body
with an exact computation of the buoyant force act-835

ing on elliptical cross-section.

Consequently, this new model is well suited for
parametric investigations studying the effect of
complex geometry on the stable configuration of
continuous slender bodies floating on a flat surface.840

Moreover, the parametrization of the body geome-
try thanks based on the infinitesimal rotation field
κ allows for the consideration of elastic properties of
the slender body, such as the bending or torsional

stiffness. A step further would consist of study-845

ing the dynamics of this body based on the Euler-
Poincaré equations, which will be investigated in a
next paper.
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Appendix A. Appendices

Appendix A.1. Tools for the geometrically exact
approach

Appendix A.1.1. Lie group860

The coordinate frame {ti} is right-handed and
orthonormal, the determinant of R(s) is equal to 1.
The inverse of an element R is given by its trans-
pose R−1 = RT , and the neutral element is the 3×3
identity matrix Id. The Lie group SO(3) is a differ-865

entiable manifold of dimension 3 plunged into the
vector space R3×3 (Fig. 2). The non-linearity of the
body geometry is related to the non-commutativity
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of the matrix multiplication, i.e. to the composi-
tion of rotations. This non-linearity implies that870

the manifold is globally curved (Fig. 2), even if
the tangent space TRSO(3) at each element R has
a vector space structure. Moreover, all the tangent
spaces are isomorph to the tangent space at the
neutral element called the Lie algebra so(3). These875

properties will be important when the equilibrium
configurations will be sought in section 4.

Appendix A.1.2. Unitary quaternion

Quaternions of norm one, also called unit quater-
nions, are in bijection with points of the real 3D880

sphere. Each unit quaternion Q are defined by the
components Q = q0 + q, with q = q1i + q2j + q3k
and (q0, q1, q2, q4) ∈ R4 so that QQ∗ = 1. Each unit
quaternion parametrizes a rotation R(s) of a vector
ui by the following left and right multiplications885

QuiQ
∗ ≡ R(s)ui (A.1)

Using the properties of the quaternion, the rota-
tion matrix can be then calculated by the following
formula

R(s) = Id + 2q0q̂ + 2q̂2 (A.2)

Equation A.2 is analog to the Rodrigues’ for-
mula [14] used for computing the exponential map890

for constant skew-symmetric matrix. Hence, equa-
tion A.2 preserves the group structure of the rota-
tion matrix like the exponential map. Combining
equations 8 and A.1, the evolution equation for the
quaternion Q(s) can be written into the following895

form

d

ds
Q =

1

2
K̂(s)Q (A.3)

with the skew-symmetric matrix

K̂(s) =


0 −κ1 −κ2 −κ3
κ1 0 κ3 −κ2
κ2 −κ3 0 κ1
κ3 κ2 −κ1 0

 (A.4)

Appendix A.1.3. Center of mass configuration

The center of mass 0pcom relative to the head
frame F0 is given by900

0pcom =
1

ML

∫
s∈I

ρbSb
0p(s)ds (A.5)

with M the net mass of the body, L the length of
the body, and Sb = πab the surface of the section.
The configuration of the center of mass reads

0gcom =

(
Id

0pcom
0 1

)
(A.6)

with Id the identity matrix.

Appendix A.1.4. Transport of wrench905

The wrench is transported to one frame to an-
other via the transport of the density of buoyancy
forces giving


π

(G)
a (s) = Rπa

γ
(G)
a (s) = Rγa + p× (Rπa)

(A.7)

with π
(G)
a and γ

(G)
a the density of force and torque

exerted on the section indexed by the variable s,910

and expressed in the frame FG. These relation can
be rewritten into a matrix form

w(G)
a (s) =

(
R 03
p̂R R

)
wa(s) (A.8)

with 03 a 3× 3 null-matrix, and p̂ the matrix form
of the vector product p × (·) ( Eq. 9). The 6 × 6
matrix introduced in equation A.8 corresponds to915

the transpose of the adjoint operator Adg−1 . In the
Lie group theory, the adjoint operator Adg−1 trans-
ports twists from one coordinate frame to another
[14], and by virtue of the conservation of the net
work, the transposed operator AdTg−1 allows for the920

transport of wrenches. Therefore, the condensed
form of Eq.A.8 is given by

w(G)
a (s) = AdTg−1wa(s) (A.9)

Appendix A.2. Chebyshev colocation method

In our code, each function is expressed using the
Chebyshev series expansion at order N as925

κ(s) =

N−1∑
k=0

κ̃kTk(s) (A.10)

with κ̃k the amplitude of the Chebyshev polynomial
Tk(s) defined by recurrence relation

Tk(s) = 2sTk−1(x)− Tk−2(s) (A.11)

with T0 = 1 and T1 = x. The abscissae are dis-
cretized on a Chebyshev grid defined by si = cos(θi)
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with θi = iπ/(N − 1). Hence, there is a linear930

relation between the amplitude of the mode κ̃k
staked in the vector κ̃, and the value of the function
κi = κ(si) staked in the vector κ so that κ = Γbκ̃
with the N × N backward transformation matrix
Γb given by935

Γb =

 T0(x0) . . . TN−1(x0)
...

. . .
...

T0(xN−1) . . . TN−1(xN−1)

 (A.12)

We defined also the N ×N forward transforma-
tion matrix Γf = Γ−1b . The matrix Γf and Γb are
calculated explicitly thanks to the recurrence re-
lation A.11 and the orthonormal properties of the
polynomials [18, 19].940

The differentiation of the vector y is obtained
thanks to the differentiation matrix defined by D1

with y′ = D1y. Once again, we use a recur-
rence relation to calculated each polynomial deriva-
tive as a function of the polynomials at lower or-945

der. These coefficient are stacked into a matrix
D. Thus, any derivative at order n written Dn

is given by Dn = ΓbDnΓf . Reciprocally, the in-
tegral K(s) =

∫ s
0
κ(x)dx of the function y can be

calculated thanks to matrix I containing the co-950

efficients related to the integration of the polyno-
mials [18]. Hence, integration is performed by a
matrix product so that K = (ΓbIΓf )κ. The reso-
lution of the evolution equation of the quaternion
Q(s) (Eq. A.3) is solved thanks to the recombi-955

nation method. The quaternion are stacked in a
vector QT =

(
(q0)[1:N ], . . . , (q3)[1:N ]

)
∈ R4N (with

(qi)j = qi(xj)) satisfying the linear system

D1Q =
1

2
K̃Q (A.13)

The boundary condition at x0 can be written into
a matrix form960

βQ = (Q)0 (A.14)

with β a 4 × N matrix and (Q)0 ∈ R4 the val-
ues of the quaternion at x0. The matrix D being
non invertible, the recombination method consists
of writing the solution under the following form

Q = Pz + R(Q)0 (A.15)

with P the basis of the null space of the matrix β, z965

the component of the basis vectors of the null space,
and R the pseudo-inverse of β. The unknowns are

the components of z that satisfy the solvable linear
system

PT
(
D1 −

1

2
K̃
)

Pz = −PT
(
D1 −

1

2
K̃
)

R(Q)0

(A.16)
Finally, the left-hand side matrix is invert to ob-970

tain z that is used in Eq.A.15.

Appendix A.3. Notes on the calculation of the im-
mersed surface

Appendix A.3.1. Integration domain

The domain Ds is defined so that all the points of
the ellipse plane formed by (0, t2, t3) with q1 = 0,
satisfy both inequalities

Ds(q2, q3) =


(q2
a

)2
+
(q3
b

)2
≤ 1

F (q2, q3) < 0

(A.17)

The first inequality corresponds to the points in-975

side the ellipse, and the second one, to all the points
below the water surface.

Appendix A.3.2. Linear mapping

Since the jacobian determinant of transformation
23 is one, the calculation of the surface in the circle980

domain reads

Sim =

∫∫
D̃(s)

dq̃2dq̃3 (A.18)

with the new domain of integration D̃ defined by
all the points (q̃2, q̃3) satisfying both inequalities

D̃ =



(
q̃2√
ab

)2

+

(
q̃3√
ab

)2

≤ 1

R32

√
a

b
q̃2 +R33

√
b

a
q̃3 + p3 ≤ 0

(A.19)

In the same way, the barycenter becomes

Simq̃B =

∫∫
D̃(s)

q̃dq̃2dq̃3 (A.20)

with q̃B the position of the barycenter of the im-985

mersed portion of the circle. Thanks to the inverse
mapping L−1, the weighted barycenter in the ellipse
frame is given by

SimqB = L−1
∫∫
D̃(s)

q̃dq̃2dq̃3 (A.21)
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Appendix A.3.3. Level of immersion h

The components of the vector q̃h satisfy the fol-990

lowing linear system

 R32

√
a
b R33

√
b
a

−R33

√
b
a R32

√
a
b

 q̃h =

−p3
0

 (A.22)

The first row corresponds to the parametrization
of the waterline, the second one to the radius. The
solution of the system reads

q̃h =
1

R2
32
a
b +R2

33
b
a

−R32

√
a
b p3

−R33

√
b
ap3

 (A.23)

Hence, the algebraical height h = −n·q̃h is finally995

given by Eq.26.

Appendix A.4. Exact calculation of (Dgsw)

The aim of this appendix is to calculate the rela-
tive variation of wrench density δwn as a function
of the vector δgTs without approximation. Only the1000

variation of net buoyancy force density will be ex-
plicitly reported. Hence, the variation of net buoy-
ancy force density as a function of (δpz, δR32, δR33)
reads

δπN = −2agρwr0

√1−
(
h

r0

)2
×



1√
R2

32
a
b +R2

33
b
a

−a
b

pzR32

(R2
32
a
b +R2

33
b
a )3/2

− b
a

pzR33

(R2
32
a
b +R2

33
b
a )3/2



T

 δpz
δR32

δR33



(A.24)

The computation of the variation of net buoy-
ancy force density requires more steps that can’t be
detailed here. For the sake of clarity, the explicit
formula are not reported, and only the method is
explained. First, the variation is applied to γN so

that

δγN = ag [ρwRδ (SimrBer) + (δR) (SimrBer)

+ρwδSimp + (ρwSim − ρbSb)δp]× e3

(A.25)
Then, we express the variation δ(Simrc), δ(Sim),1005

δer as a function of δh and δθ, which are then ex-
pressed as function of δgs. The combination of the
different terms leads to the jacobian (DδgsγN ). It is
worth noting that the variation δπN depends only
on (δpz, δR32, δR33) defining the level of immersion1010

while the variation δγN depends on all the compo-
nents of δgs since a variation is applied to Rs and
ps.

Appendix A.5. Convergence to the solution for the
optimization method1015

By construction, the quantity (tnξn)TWn is ho-
mogeneous to a work, and it is always positive for
tn > 0 ( Eq. 41), ensuring a convergence to the
minimum. Consequently, this condition states that
the energy reduction Un − Un+1 is smaller than a1020

percentage c1 of an extracted work during the iter-
ation, with the linear estimation of the work given
by (tnξn)TWn. Thus, the step size tn corresponds
here to a time scale, and the step direction ξn is the
unitary twist coordinate of a virtual body velocity1025

of the mobile frame F0 [14].

Appendix A.6. Jacobian matrix (DκwN )

From Eq. 33 and 32, we already know how to
calculate a variation of the wrench as a function of
a virtual body shape displacement δ(0ψs). Conse-1030

quently, we have to find a linear relation between
δ(0ψs) and δκ. First, the evolution equation of the
matrix 8 has to be generalized to rigid body trans-
formation by combining Eq. 8 and 12 [14]

(0gs)
′ = 0gsξ̂ (A.26)

with the body strain ξT = (κT , sT ) associated with1035

the screw-symmetric matrix ξ̂ defined by

ξ̂ =

(
κ̂ s

01,3 0

)
(A.27)

with 01,3 a 1×3 null-vector, and sT = (1, 0, 0). The
relation between δ(0ψs) and δξ reads [16]

δξ = adξδ(
0ψs) +

d

ds
δ(0ψs) (A.28)
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The term adξ is the adjoint action which may be
identified with the derivation on the Lie-algebra.1040

The adjoint action adAB can be expressed thanks

to the screw-symmetric matrix with âdAB =
[Â, B̂] = ÂB̂ − B̂Â. To invert Eq. A.28, we substi-
tute the spatial derivative by the linear differential
operator D1 (see Appendix Appendix A.2). As-1045

suming that the linear operator is invertible, the
variation of virtual body displacement δ(0ψs) reads

δ(0ψs) = [adξ +D1]
−1
δξ (A.29)

This equation is nothing but the resolution of the
EDO A.28 with δ(0ψs) unknown. Finally, the vari-
ation of wrench as a function of a variation of body1050

strain δξ reads

(Dκw) δκ = (Dgsw) gsT
(

[adξ +D1]
−1
δξ
)

(A.30)
with T a linear operator transforming the twist co-
ordinates into the screw-symmetric tensor.
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