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Abstract: This paper proposes a new chance-constrained model predictive control (CCMPC)
algorithm with state estimation applied to the two-dimensional deployment of a multi-vehicle
system where each agent is subject to process noise and measurement noise. The bounded
convex area of deployment is partitioned into time-varying Voronoi cells defined by the position
of each agent. Due to the presence of noise in the system model, stochastic constraints appear
in the model predictive control problem. The proposed decentralized robust CCMPC algorithm
drives the multi-agent system into a static Chebyshev configuration where each agent lies on the
Chebyshev center of its Voronoi cell. Simulation results show the effectiveness of the proposed
control strategy on a fleet of quadrotors subject to wind perturbations and measurement noise.

Keywords: Multi-agent systems, Decentralized control, Model predictive control

1. INTRODUCTION

To carry out monitoring or search missions, a multi-
agent system (MAS) composed of unmanned vehicles can
be deployed over a bounded convex area (Cortes et al.,
2004). Several solutions exist for the deployment problem
(Schwager et al., 2011) but often rely on a dynamic Voronoi
tessellation (Voronöı, 1908) of the area of interest. The
objective is usually to drive the MAS into a centroidal
Voronoi configuration where the objective of each agent
is to reach the center of mass of the Voronoi cell (Sharifi
et al., 2015) or into a Chebyshev configuration where the
objective is the Chebyshev center (Nguyen et al., 2017;
Hatleskog et al., 2018; Chevet et al., 2020) of the cell,
which is often less complex to compute than the center
of mass. In this context, the Voronoi cells and objective
points are time-varying due to the movement of the agents
which are constrained to remain inside their cells. The
control algorithm then has to drive each agent to its
objective under this time-varying movement constraint.
Generally, the literature deals with the nominal case, i.e.
uncertainties/perturbations are not considered. However,
real systems are subject to perturbations (e.g. wind gusts)
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and noises (e.g. measurement noise from sensors). The
perturbations acting on the system can be modeled using
deterministic or stochastic approaches. The deterministic
approach requires a model of the perturbation while the
stochastic approach only requires a mean and a covariance.
In order to deal with these stochastic perturbations, several
control methods have been proposed for a single agent, such
as H∞ (Ugrinovskii, 1998) or optimal control (Petersen
et al., 2000), and for several agents, such as consensus (Ma
et al., 2017) or predictive control (Dai et al., 2017).

Model predictive control (MPC) is used for a wide variety
of systems dealing with constraints, uncertainties, etc.
MPC can also be used for the control of a multi-agent
system either in a centralized, distributed or decentralized
way. If the system is subject to bounded perturbations,
robust MPC strategies have been developed (Limon et al.,
2010) in order to further guarantee the feasibility and
stability properties for a simple system. However, if
these perturbations have a stochastic nature and an
unbounded support such as normally distributed noises, the
classical deterministic robust MPC strategies will be too
conservative. To handle this situation, several stochastic
MPC algorithms have been proposed to control a single
system (Farina et al., 2016) or a multi-agent system (Dai
et al., 2017) subject to perturbations and probabilistic
constraints. However, these methods often rely on a known
bound for the perturbation and fixed constraints over time.

In this paper, a MAS composed of several unmanned vehi-
cles is deployed inside a convex bounded two-dimensional



polyhedral area. Each agent is subject to modeling errors
and perturbations, which are represented respectively by
the covariance and the mean of a process noise, as well as
measurement noise, both with unknown bounds. At each
time instant, each agent computes its Voronoi cell based on
the knowledge of the other agents’ positions. Each agent
is also constrained to remain inside its cell, which can be
formulated as an optimization problem subject to time-
varying constraints. In this way, the agents are subject
to time-varying constraints. In (Gavilan et al., 2012), the
authors propose a chance-constrained MPC (CCMPC) algo-
rithm able to deal with time-varying constraints and process
noise with unknown bounds for a single system. The current
paper extends the result of (Gavilan et al., 2012) to the
Voronoi-based deployment of a multi-agent system subject
to process and measurement noise, where the full state
information is not available. Due to the noises considered in
the agents’ dynamical model, stochastic constraints appear
in the optimization problem. These stochastic constraints
are transformed into algebraic constraints by computing a
bound ensuring that the constraints are satisfied for almost
all possible Gaussian noise signals. Each agent uses the
CCMPC algorithm to track the Chebyshev center of its
Voronoi cell and the MAS converges to a static Chebyshev
configuration. The contribution of this paper covers: 1) the
extension of the method proposed in (Gavilan et al., 2012)
when the estimation of the state has to be performed; 2)
the application to the Voronoi-based deployment of a MAS
subject to process and measurement noise; 3) the validation
of the proposed chance-constrained MPC with a simulated
fleet of quadrotor unmanned aerial vehicles (UAVs).

Notation. In the following, R is the set of the real numbers.
The matrices 0n×m and 1n×m are the matrices of size n×m
filled with zeros and ones respectively. The matrix In is
the identity matrix of size n × n. The transpose of the
matrix A is denoted by A>. A matrix diag (a1, . . . , an) is
the diagonal matrix with diagonal elements a1, . . . , an. The
vector |x| contains the absolute value of each element of x.

The Euclidean norm of the vector x is ‖x‖22 = x>x. The
notation A � 0 (resp. A � 0) means that A is a positive
semidefinite (resp. positive definite) matrix. The matrix
A⊗B is the Kronecker product of the matrices A and B.
If r is a random variable, then E(r) is the expected value
of r and P (r ≤ α) is the probability of the event r ≤ α, µr
and Σr are respectively the mean and covariance of r. The
set of all integers from n to m is denoted by n,m.

2. PROBLEM FORMULATION

In the context of a homogeneous multi-agent system 1

composed of N agents, this section presents the general
model of an agent i ∈ 1, N subject to process noise
and measurement noise. Then, it introduces the control
objective of the considered multi-agent system.

2.1 System model

An agent i ∈ 1, N obeys the continuous-time linear time
invariant dynamics:

1 A homogeneous MAS is considered to simplify the reading of
the paper. However, the results can be extended to the case of
heterogeneous MAS.

ẋi(t) = ACxi(t) +BCui(t) + di(t)

yi(t) = Cxi(t) + γi(t)
(1)

with xi ∈ Rn the state vector, ui ∈ Rm the input vector,
yi ∈ Rp the output vector, di ∈ Rn the process noise,
γi ∈ Rp the measurement noise and AC , BC and C
matrices of appropriate dimensions. The pairs (AC ,BC)
and (AC ,C) are respectively controllable and observable.
The system (1) is discretized with the sampling period Ts:

xi(k + 1) = Axi(k) +Bui(k) + δi(k)

yi(k) = Cxi(k) + γi(k)
(2)

with A = exp (AC · Ts), B =
∫ Ts

0
exp (AC · τ)Bdτ ,

δi(k) =
∫ Ts

0
exp(AC · τ)di((k + 1)Ts − τ)dτ .

Assumption 1. The process noise di(t) = p(t) + wi(t),
where p(t) is an external perturbation and wi(t) rep-
resents the modeling errors, and the measurement noise
γi(k) are independent and normally distributed with
means µd(t) = p(t) and µγ(k) = 0p×1 and covariance
matrices Σd = Σw � 0 and Σγ � 0, respectively 2 . The
value of p(t) is known at each time instant.

For all the agents, the pair (A,C) is assumed to be
observable. Let L ∈ Rn×m be the gain of a Luenberger
observer such that AL = A−LC is stable. The dynamics
of the estimated state x̂i(k) is:

x̂i(k + 1) = Ax̂i(k) +Bui(k) +L (yi(k)− ŷi(k))

ŷi(k) = Cx̂i(k)
(3)

The estimation error εi(k) = xi(k) − x̂i(k) has for
dynamics:

εi(k + 1) = ALεi(k) + δi(k)−Lγi(k) (4)

with the covariance matrix of the initial estimation error
chosen such that Σε(0) � 0. By introducing εi(k) in (3):

x̂i(k + 1) = Ax̂i(k) +Bui(k) +LCεi(k) +Lγi(k). (5)

Proposition 1. The covariance matrix Σδ of δi(k) is posi-
tive definite and the covariance matrix Σε(k) of the esti-
mation error εi(k) is positive definite ∀k > 0.

Proof. The covariance matrix Σδ is such that Σδ =∫ Ts

0
exp(AC · τ)Σdexp(A>C · τ)dτ (Franklin et al., 1998).

The matrix exp(AC · t) has full rank for all t (Horn and
Johnson, 1990) and, by Assumption 1, Σd � 0, thus
Σδ � 0 (Horn and Johnson, 1990). At time k > 0, the
random vectors εi(k − 1), δi(k − 1) and γi(k − 1) are
independent. From (4), the covariance matrix of εi(k) is
Σε(k) = ALΣε(k − 1)A>L + Σδ +LΣγL

> � 0 (Horn and
Johnson, 1990). Since Σδ � 0, Σε(k) � 0. 2

2.2 Control objective

The state vector of an agent is xi =
[
xi x>1,i yi x>2,i

]>
with

[xi yi]
>

the position of the agent in the two-dimensional
plane R2, x1,i ∈ Rn1 and x2,i ∈ Rn2 possible additional
states (e.g. speed) such that n1+n2+2 = n. Denote by W ⊂
R2 the convex bounded deployment region. The position of

each agent belongs to W, i.e. the restriction xri = [xi yi]
>

2 These means and covariances are considered to be the same
for all the agents. However, the result can be generalized to the
heterogeneous case where the means and covariances are different for
each agent.



of xi is such that xri ∈ W. This region is divided into N

Voronoi cells, one for each agent, such that W =
⋃N
i=1 Vi(k)

and Vi(k) ∩ Vj(k) = ∅, ∀i, j ∈ 1, N , i 6= j. The Voronoi
cell of an agent i is the convex bounded polygon defined as
Vi(k) =

{
x ∈ W

∣∣ ‖xri (k)− x‖2 ≤
∥∥xrj(k)− x

∥∥
2
,∀i 6= j

}
where xri (k) and xrj(k) are the restrictions of the state
vectors xi(k), xj(k) ∈ Rn of agents i and j. As a convex
bounded polygon, the Voronoi cell of the agent i is the set:

Vi(k) = {x ∈W|Hi,W(k)x ≤ θi(k)} (6)

where Hi,W(k) ∈ Rs×2 and θi(k) ∈ Rs, with s the number
of sides of the cell.

Assumption 2. Each agent is equipped with sensors allow-
ing it to know the other agents positions and is then able
to compute its own Voronoi cell.

The Chebyshev center ci(k) of the cell Vi(k) is the center
of the largest disc lying in Vi(k). This center is obtained
by a linear optimization problem maximizing the value of
the disc’s radius such that the radius is positive and each
point of the disc is in the cell (Chevet et al., 2020).

The objective is then the deployment of the multi-agent
system inside a bounded convex polygon W into a static
configuration such that the agents’ positions are at the
Chebyshev centers of their Voronoi cells despite the
considered process noise and measurement noise acting on
the MAS. Each agent computes its own control signal and
is driven towards an objective point

(
x0
i (k),u0

i (k)
)

solution

of x0
i (k) = Ax0

i (k)+Bu0
i (k) such that the restriction of x0

i
to the position in the plane R2 is equal to the Chebyshev
center of its Voronoi cell. Moreover, an extended Voronoi
cell Vi,x(k) = {x ∈ Rn|Hi(k)x ≤ θi(k)} can be defined
with Hi(k) ∈ Rs×n. Given the shape of the state vector,
the matrix Hi is obtained by adding n1 columns of zeros
after the first column of Hi,W and n2 columns of zeros
after the second column of Hi,W. The matrix Hi and the
vector θi will then be used as a polyhedral constraint on
the state vector for the MPC problem 3 .

Since the positions of the agents evolve over time, the
Voronoi cells and their associated Chebyshev centers are
time-varying. With a state-feedback control law, the nomi-
nal multi-agent system has been shown to converge towards
a static Chebyshev configuration (Hatleskog et al., 2018).
Nevertheless, in the presence of process noise modeled
as additive Gaussian noise, a robust control algorithm is
required in order to ensure the noise rejection and the multi-
agent system convergence towards a static configuration.
The next section then presents a decentralized robust MPC
algorithm based on a chance-constrained approach.

3. MAIN RESULT

In this section, a decentralized chance-constrained MPC
algorithm is formulated based on the estimation of the
agent’s state. The useful matrices for the definition of the
optimization problem are defined. Then, the cost function
and constraints of the optimization problem are expressed
with the previously defined matrices. However, due to the
presence of stochastic perturbations in the agent’s model,

3 Such constraints cause a coupling between the agents, thus the
need for a decentralized control algorithm.

the agent is subject to probabilistic constraints. A way
to transform these probabilistic constraints into algebraic
constraints is finally introduced.

3.1 State prediction

Over a prediction horizon Np, the estimated state (5) and
the estimation error (4) become respectively:

X̂i(k) = F x̂i(k) +GuUi(k) +GεEi(k) +GγΓi(k) (7)

Ei(k + 1) = Fεεi(k) +Gε
δ∆i(k)−Gε

γΓi(k) (8)

with X̂i(k) =
[
x̂i(k + 1)> · · · x̂i(k +Np)

>]>, Ui(k) =[
ui(k)> · · · ui(k +Np − 1)>

]>
and Ei(k) (resp. Γi(k)

and ∆i(k)) defined the same way as Ui(k) by replacing
ui by εi (resp. γi and δi). The matrix F is such that

F =
[
A> · · · ANp

>
]>

and the matrix Fε is obtained by

replacing A by AL in F . The matrix Gu is such that:

Gu =


B 0n×m · · · 0n×m
...

. . .
. . .

...
...

. . . 0n×m
ANp−1B · · · · · · B

 , (9)

the matrices Gε and Gγ are obtained by replacing B in
(9) respectively by LC and L, and the matrices Gε

δ and
Gε
γ are obtained by replacing A by AL and B respectively

by In and L.

3.2 Chance-constrained MPC problem

Based on (Gavilan et al., 2012), a decentralized robust
chance-constrained model predictive controller for an agent
i ∈ 1, N following the dynamics (2) is expressed as follows:

min
Ui(k)

J(k) (10a)

s.t. x̂i(k + l) ∈ Vi,x(k), l ∈ 1, Np, (10b)

Ui(k) ∈ Ui, (10c)

with J(k) = E
(
X̂obj
i (k)>QX̂obj

i (k) + Ui(k)>RUi(k)
)

.

The weightsQ,R � 0 are diagonal matrices and X̂obj
i (k) =

X̂i(k) − X0
i , where X0

i = 1Np
⊗ x0

i (k) with x0
i (k) the

objective state vector defined in Section 2.2. For a vehicle,
u0
i is often the null vector, thus it is not considered here.

If u0
i 6= 0m×1, then Ui(k) is replaced in (10a) by Ui(k)−

U0
i (k), where U0

i (k) = 1Np ⊗ u0
i (k).

Due to stochastic process and measurement noise, solving
the optimization problem (10) requires to find a bound for
the unknown terms appearing in the constraint (10b) as
detailed hereafter. In Section 3.3, this bound is the solution
of an optimization problem under probabilistic constraints.

Given the expression of X̂i(k) from (7), the cost function
(10a) is rewritten by removing the terms that do not depend
on Ui(k) and have no influence on the solution of (10):

J(k) = Ui(k)>
(
G>uQGu +R

)
Ui(k) + 2(F x̂i(k)

+GεµE(k)−X0
i )
>QGuUi(k)

(11)

with µE(k) = E (Ei(k)). Since µγ(k) = 0p×1, the mean
of Γi(k) is the null vector and it does not appear in the
expression of the cost function J(k).



The extended Voronoi cell is such that Vi,x(k) =
{x ∈ Rn|Hi(k)x ≤ θi(k)} as detailed in Section 2.2. To
predict the evolution of the Voronoi cells over the prediction
horizon, each agent would have to know at each time
instant the input sequence of all the other agents. With
Assumption 2, there is no need of communication between
the agents. The extended Voronoi cell of each agent is
then considered constant over the prediction horizon. Thus,
the constraint (10b) can be rewritten over the prediction

horizon by using (7) and replacing X̂(k) by its expression:

Hi,u(k)GuUi(k) ≤ Θi,u(k)−Hi,u(k)F x̂i(k)

−Hi,u(k) (GεEi(k) +GγΓi(k))
(12)

where Hi,u = INp
⊗Hi and Θi,u = 1Np

⊗ θi.
In the constraint (10c), Ui is a set of polyhedral constraints
such that Ui =

{
u ∈ RmNp

∣∣|u| ≤ Umax

}
, where Umax ∈

RmNp with only positive components.

With this formulation, the constraint (12) depends on the
knowledge of the process noise and the measurement noise
over the prediction horizon. However, the value of these
signals is not known and the only available information are
the mean and covariance of these noises. The constraint
(12) then needs to be modified to depend only on the
available information in order to solve the problem (10).

3.3 Noise bound for robust satisfaction of constraints

In (12), a bound for the uncertain term Hi,u(k)
(
GεEi(k)+

GγΓi(k)
)
, which is also written Hi,u(k) [Gε Gγ ] Ξi(k),

with Ξi(k) =
[
Ei(k)> Γi(k)>

]>
the disturbance vector,

has to be found in order to express the constraint (12) only
based on known information.

If the disturbance vector Ξi(k) is normally distributed with
mean µΞ(k) and covariance matrix ΣΞ(k), then:

Yi(k) = (Ξi(k)− µΞ(k))
>

Σ−1
Ξ (k) (Ξi(k)− µΞ(k)) (13)

follows a chi-squared law with (n + p)Np degrees of
freedom (Flury, 1997), where (n + p)Np is the size of
Ξi(k). Then, finding the solution α of the chance constraint
P
(
χ2 ((n+ p)Np) ≤ α

)
= P ensures that Yi(k) is bounded

by α with a probability P (Gavilan et al., 2012).

The objective is then to find a bound bi(k) such that
bi(k) ≤ −MiΞi(k), where Mi = Hi,u(k) [Gε Gγ ], with a
probability P close to one. With this bound, the constraint
(12) is satisfied for almost all disturbances. This bound is:

(bi(k))l = min
Ξi(k)

− (Mi)l Ξi(k)

s.t. Yi(k) ≤ α
(14)

where (Mi)l and (bi(k))l are respectively the l-th row of
Mi and the l-th element of bi(k) and Yi(k) defined in (13).

To guarantee the existence of the bound, Ξi(k) has to be
normally distributed, thus ΣΞ has to be invertible. Since
εi(k − 1), ∆i(k − 1) and Γi(k − 1) are independent, from
the expression of Ei(k) in (8), this covariance is:

ΣΞ(k) =

[
ΣE(k) −Gε

γΣΓ,L

−ΣΓ,L
>Gε

γ
> ΣΓ

]
(15)

where:

ΣE(k) = FεΣε(k−1)F>ε +Gε
δΣ∆G

ε
δ
>+Gε

γΣΓG
ε
γ
>, (16)

with ΣΓ = INp
⊗Σγ , Σ∆ = INp

⊗Σδ and ΣΓ,L a block
lower diagonal matrix with Σγ the element at line l and
column l − 1, where l > 1.

Proposition 2. The covariance matrix ΣΞ(k) is positive
definite ∀k > 0.

Proof. By taking the Schur complement (Boyd et al.,
1994) in (15), ΣΞ(k) � 0 if and only if ΣΓ � 0 (which
is always true) and S(k) � 0 with S(k) = ΣE(k) −
Gε
γΣΓ,LΣΓ

−1ΣΓ,L
>Gε

γ
>. Since Σγ � 0, Σγ is invertible

and ΣΓ
−1 = INp

⊗ Σγ
−1. Using (16), S(k) becomes

S(k) = FεΣε(k−1)F>ε +Gε
δΣ∆G

ε
δ
>+Gε

γΣΓ,1G
ε
γ
>, with

ΣΓ,1 = diag
(
Σγ ,0(p−1)Np×(p−1)Np

)
. To have S(k) � 0,

at least one of the matrices defining S(k) has to be
positive definite while the others only need to be positive
semidefinite. Proposition 1 gives Σε(k − 1) � 0 thus
FεΣε(k − 1)F>ε � 0 (Horn and Johnson, 1990). Since

ΣΓ,1 � 0, it is verified that Gε
γΣΓ,1G

ε
γ
> � 0. It remains

to prove that Gε
δΣ∆G

ε
δ
> � 0. The matrix Gε

δ defined in
Section 3.1 is Gε

δ = InNp
+ T where T is a strictly lower

triangular matrix. Thus, Gε
δΣ∆G

ε
δ
> = Σ∆ + TΣ∆T

> +
TΣ∆+Σ∆T

>, with the last two terms positive semidefinite
because Σ∆ is a block diagonal matrix and T is strictly
lower triangular, thus their eigenvalues are all 0. In addition,
TΣ∆T

> � 0 and Σ∆ � 0 thus ΣΞ(k) � 0. 2

With Proposition 2, ΣΞ(k) is invertible. By applying a
similar procedure to the one presented in (Gavilan et al.,
2012), the optimization problem (14) is explicitly solved
and the l-th element of bi(k) is:

(bi(k))l = −
√

(Mi)l αΣΞ(k) (Mi)
>
l − (Mi)l µΞ(k). (17)

Then, by replacing the constraint (10b) by (12) with the
bound defined in (17), it is now possible to find a solution
to the proposed decentralized CCMPC (10).

4. SIMULATIONS

In this paper, the considered multi-agent system is a fleet
of four quadrotor UAVs. The nonlinear continuous-time
state-space model of a UAV agent is presented in (Chevet
et al., 2020). This model is the one used to simulate the
behavior of an agent. The control architecture for this
system is as follows: a position reference is provided to the
position controller which computes pitch and roll references
for the orientation controller. The yaw reference is constant
during the flight. Then, the orientation and the altitude
controllers provide torque and upward thrust inputs to
the nonlinear UAV model. The chance-constrained MPC
algorithm described in Section 3 is used for the position
controller, while the orientation and altitude controllers
are obtained by feedback linearization as in (Voos, 2009).

4.1 Position subsystem model

To design the position controller, the position subsystem
is obtained from the linearized and discretized state-space
model (Chevet et al., 2020) to fit the system (2). For

one UAV agent, the state vector is xi = [xi vx,i yi vy,i]
>

,
with i ∈ 1, 4, xi, yi the agent’s position and vx,i, vy,i the



components of its horizontal speed. The input vector is

ui = [φi θi]
>

, with φi and θi the agent’s roll and pitch
angles. The yaw reference remains equal to 0◦ during the
flight, thus the state matrices defined in (2) are:

A = I2 ⊗
[
1 Ts
0 1

]
B =

1

2
gTs

[
0 1
−1 0

]
⊗
[
Ts
2

]
,

C = I2 ⊗ [1 0]

(18)

with g = 9.81 m · s−2 the gravitational acceleration and
Ts the sampling period. The noise covariances are Σd =
diag(0.001, 0.025, 0.001, 0.025) and Σγ = 0.0011 · I2 and
µd will be described in Section 4.4.

4.2 Position controller

The chance-constrained model predictive controller runs
at T out

s = 0.2 s with a prediction horizon Np = 10,
while the inner loop (the orientation controller) runs at
T in
s = 0.001 s. Thus, to accurately estimate the system’s

state, the structure from Fig. 1 is used. On a real UAV,
the variation rate of the angle reference is limited to
avoid important variations on the actuators’ inputs. Thus,
here, the variation rate of the angle reference is limited to

±100◦/s. Then, this reference
[
φref
i (k) θref

i (k)
]>

is sent to
the inner loop controller and an observer, both running at
T in
s as shown in Fig. 1. This observer is meant to provide

an accurate value of the state to the outer loop controller
and thus runs at the same rate as the inner loop controller.
The state estimate is then sent to the position controller
every T out

s seconds.

With this structure, the prediction model (3) considered for
the chance-constrained MPC design uses the matrices in
(18) with Ts = T out

s , while the second observer’s model is
obtained from the matrices in (18) with Ts = T in

s . The
observer gain L in (3) is a linear quadratic estimator
obtained with the weights Q = 100I4 and R = I2. The
observer in Fig. 1 is also a linear quadratic estimator
obtained with the weights Q = 10I4 and R = I2.

The objective point x0
i (k) is a vector with four elements:

the coordinates of the Chebyshev center of the cell as
first and third elements and zeros as second and fourth
elements. Moreover, the weights Q and R for the cost
function (10a) are chosen to be Q = INp⊗diag(10, 1, 10, 1)
and R = 100I2Np

. The angle reference is limited to ±30◦

such that Ui =
{
u ∈ R2Np

∣∣|u| ≤ π/6 · 12Np

}
.

Finally, with the considered dimensions for the problem,
the chi-squared variable presented in Section 3.3 has 60
degrees of freedom. Thus, if P is chosen to be 0.999, nearly
all the disturbances are bounded by α = 99.607 in (14).

4.3 Orientation and altitude controllers

The following orientation and altitude controllers are
obtained as presented in (Voos, 2009). Further description

CCMPC ZOH
Rate

limiter
Observer ZOH

T out
s T in

s

T in
s

Angle reference

Measurement

T out
s

Position
reference

Fig. 1. Structure of the position controller.
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Fig. 2. Evolution of the agents’ real and estimated position
and Chebyshev center from t = 0 s to t = 9.8 s.

is out of the scope of this paper and these are given
for reproducibility of the results. The torque on the x
axis is computed as τx,i(k) = (Iz − Iy)ωy,i(k)ωz,i(k) +
IxK1ωx,i(k) + K2

(
φref
i (k)− φi(k)

)
where ωx,i, ωy,i and

ωz,i are the angular speeds Ix = Iy = 0.03 kg · m2 and
Iz = 0.04 kg · m2 are the moments of inertia along the
three axes and K1 and K2 are parameters chosen to
obtain the desired dynamics for the inner loop. Here, the
values K1 = −200 and K2 = 100 are considered for the
parameters. The torques τy,i(k) and τz,i(k) are obtained
with a cyclic permutation of x, y and z in the expression
of τx,i(k) and by replacing φ by θ and ψ (the yaw angle)
respectively, with ψref

i (k) = 0. With the same approach,
the total upward thrust is Ft,i(k) = m · (g + K3vz,i(k) +
K4

(
zref
i (k)− zi(k)

)
)/(cosφi(k) cos θi(k))−1 where zi and

vz,i are the altitude and vertical speed, zref
i is the altitude

reference, m = 1.4 kg is the mass of the UAV and K3 and
K4 are parameters chosen to obtain the desired dynamics
for the altitude loop. Here, the values K3 = −3.6 and
K4 = 4 are considered for the parameters.

4.4 Simulation results

A fleet of four quadrotor UAVs is deployed inside a square of
20 m of side length: W =

{
x ∈ R2

∣∣|x| ≤ 10 · 12

}
. They all

start from a hovering position with zi(0) = 5 m, with

i ∈ 1, 4, at x1(0) = [1 0 1 0]
>

, x2(0) = [1 0 −1 0]
>

,

x3(0) = [−1 0 1 0]
>

, x4(0) = [−1 0 −1 0]
>

.

At t = 0 s, they start tracking the Chebyshev center
of their associated Voronoi cell and are subject to a
process noise and a measurement noise having a mean
µd(t) = µγ(k) = 04×1 and the covariances Σδ and Σγ

described in Section 4.1. From t = 12 s to t = 20 s, each
UAV is subject to a wind gust of 2 m/s on each axis such

that µd(t) = [0 2 0 2]
>

which is assumed to be known by
the agents as stated in Assumption 1.

The first part of the movement, from t = 0 s to t = 9.8 s,

is shown in Fig. 2. The initial positions [xi(0) yi(0)]
>

are
represented by discs (red discs). The evolution of the real

positions [xi yi]
>

(blue circles) as well as the evolution

of the estimated positions [x̂i ŷi]
>

(red circles) and the
Chebyshev centers ci (black asterisks) of the four agents
every 0.2 s are presented inside the Voronoi partition at
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Fig. 3. Distance between the agent 2 real position and its
Chebyshev center (top) and between the agent 2 real
position and its estimated position (bottom).

t = 9.8 s. The position of each agent converges to its
Chebyshev center as expected from (Hatleskog et al., 2018),
while the estimated position converges quickly to the real
position. In the following, since the formation is symmetric,
only the results for the agent 2 are provided, the results
for the other agents being similar.

Figure 3 presents the distance between the real position

[x2 y2]
>

of agent 2 and its Chebyshev center c2 and
the distance between the real position and the estimated

position [x̂2 ŷ2]
>

of agent 2. The estimated position is
initialized to the agent’s real position. The bottom plot of
Fig. 3 shows that the estimation error is relatively small
(‖ε2(k)‖2 < 6 · 10−3) during the entire movement.

The top plot of Fig. 3 shows that the agent converges to
its Chebyshev center since the distance between the real
position of agent 2 and c2 is close to 0 m after 2 s. However,
from t = 12 s to t = 20 s, the system is subject to wind
perturbations. Because there is no integral action in the
proposed control algorithm, a static error appears while
the system is perturbed. Without perturbation, the agent
converges back to its Chebyshev center.

5. CONCLUSION

This paper presents a decentralized chance-constrained
model predictive control algorithm with state estimation
meant to drive a multi-agent system subject to process
noise and measurement noise into a static configuration
when deployed inside a bounded convex two-dimensional
area. At each time instant, each agent computes a Voronoi
cell in which it will evolve and the Chebyshev center of
this Voronoi cell. Then, with the proposed approach, the
system converges towards a static configuration in which
each agent lies on its Chebyshev center despite model
mismatch and perturbations (represented respectively by
the covariance and the mean of the process noise) and
measurement noise. Simulation results show the efficiency
of the proposed approach. Future work will extend this
result to the case of biased measurements corresponding,
for example, to sensor faults.
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