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Connectivity Based DV-Hop Localization for
Internet of Things

Linging Gui, Yang Zhou, Fu Xiao, Feng Shu, Thierry Val

Abstract—Due to the cost-effective advantage, range-free lo-
calization schemes are attractive for low-cost Internet of Things
applications. As a distinguishing range-free scheme, DV-Hop
localization can localize those unknown nodes which have less
than 3 or even no neighbor anchors. However, the localization
results by existing DV-Hop based algorithm are found to be
inconsistent with the real connectivity between nodes. The in-
consistency inspires us to propose two algorithms to improve
localization accuracy. First a Centralized Connectivity-based DV-
Hop (CCDV-Hop) algorithm is proposed to optimize the accuracy
of DV-Hop localization. Establishing an optimization problem
which takes the real connectivity between any two nodes as the
constraints, the proposed algorithm can make the localization
results conform to the real connectivity. Then an algorithm with
lower complexity is proposed, namely Distributed Connectivity-
based DV-Hop (DCDV-Hop) algorithm, which can obtain near-
optimal localization performance in distributed networks. With-
out including the connectivity of all nodes, the constraints
in the proposed DCDV-Hop algorithm only consider the real
connectivity within two hops. Simulation results show that despite
higher complexity, the proposed algorithms can achieve much
better accuracy than other DV-Hop based methods.

Index Terms—Internet of Things, localization, range-free, DV-
Hop.

I. INTRODUCTION

NTERNET of Things (IoT) has been widely used in a
Ivariety of applications, such as environment protection,
health surveillance, disaster relief and object tracking [1]. IoT
usually consists of small sensor nodes that can wirelessly
communicate with each other. Typically powered by a tiny
battery source which has finite lifetime, sensor nodes have lim-
ited transmission power and small communication range [2].
So multi-hop communication is usually required for the data
transmission between distant nodes. In multi-hop networks,
localization is one of the fundamental issues because the
received data could be meaningless if the informations about
where they have been measured are unknown [3]. Localization
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is also essential for the design of energy-efficient location-
based techniques such as multi-hop routing and data fusion
[4].

In general, existing IoT localization schemes can be clas-
sified into two categories: range-based and range-free [5]. In
order to localize target nodes (namely unknown nodes) in 2-
Dimension space, both these two types of schemes require
at least 3 anchor nodes in the network which have already
known their own positions. The main principle of range-based
schemes is to first measure the distance or direction angle
between one unknown node and each anchor node, then to
calculate the position of the unknown node by trilateration or
triangulation [6]. The distance is usually measured based on
time of arrival (TOA) [7], time difference of arrival (TDOA)
[8], received signal strength indicator (RSSI) [9] or channel
state information (CSI) [10], while the direction angle is ob-
tained by angle of arrival (AOA) estimation [11]. Though more
accurate than range-free schemes, the range-based schemes
have two major drawbacks. First, the ranging information is
easily affected by multipath fading, noise and environment
variations. Second, special transceivers are always required to
precisely measure TOA or AOA, which increase the overall
cost [12]. However, range-free schemes don’t possess these
drawbacks because they only utilize connectivity information
between nodes.

Due to the cost-cffective advantage, range-free schemes are
preferable for low-cost IoT applications such as the positioning
of aged people in a large retirement home, or the behavior
analysis of clients in a large shopping mall. For these ap-
plications, the localization accuracy of several meters can be
accepted especially considering privacy issue. Many range-free
schemes have been proposed in the literature, such as Centroid
[13], Regulated signature distance (RSD) [14], Concentric
Anchor Beacon (CAB) [15], Hitball [16], Distance Vector Hop
(DV-Hop) [17] and other DV-Hop based algorithms [18]-[28].
Among these range-free schemes, DV-Hop based localization
methods have a distinguished advantage that they can localize
the unknown nodes which have less than 3 neighbor anchor
nodes in radio range. Thus DV-Hop localization can be applied
in the networks with low-density and sparsely-distributed
anchor nodes. For example, in a network with total 100 nodes,
only 10 are anchors and they are deployed sparsely. Therefore
in this paper we focus on DV-Hop localization.

DV-Hop algorithm consists of three steps. First, through the
flood of information, all nodes obtain the positions of anchors
as well as smallest hop count to each anchor; second, each
anchor calculates its distance-per-hop and floods this value;
third, every unknown node calculates its estimated distance to
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each anchor and then estimates its own position. In original
DV-Hop algorithm, localization error mainly results from the
estimation error of the distance between an unknown node
and each anchor node. The real distance between the two
aforementioned nodes is the product of hop count between
them and the real distance-per-hop between them. However,
the real distance-per-hop between the unknown node and each
anchor is difficult to obtain, thus, the authors in [17] replaced it
with the average distance-per-hop of each anchor. As a result,
the estimated distance between the unknown node and each
anchor is erroneous.

In order to improve localization accuracy of DV-Hop algo-
rithm, researchers have tried to decrease the estimation error
of the distance between the unknown node and each anchor.
For example, the authors in [22] used the shuffled frog leaping
algorithm (SFLA) to compute distance-per-hop. The authors
in [23] proposed a modified DV-Hop localization algorithm
based on communication radius dynamic adjustment. This
algorithm introduces the improvement of multiple commu-
nication radiuses to correct the least hop counts between
unknown nodes and anchor nodes, then corrects the distance-
per-hop by multiplying weight coefficients. In [24], the authors
proposed an improved DV-Hop algorithm based on bacterial
foraging optimization (BFO). In this algorithm, the distance-
per-hop is calculated by BFO according to the minimum
hops of nodes and the position information of anchor nodes.
The authors in [25] proposed DV-maxHop algorithm which
introduced a control variable MaxHop. When a node receives
the position of any anchor whose hop count is greater than
MaxHop, the information will be ignored and not propagated
further. Through this mechanism, the estimated distance with
large error (normally corresponding to two distant nodes) can
probably be excluded.

While the above methods focused on the estimation of
distance-per-hop at the second step, further improvement can
be fulfilled at the third step of DV-Hop or even after all three
steps. For example, in [26], the authors focused on the im-
provement at the third step, proposing RAS DV-Hop algorithm
and GOS DV-Hop algorithm. In RAS DV-Hop algorithm,
one unknown node first calculated several candidate positions
based on different reference anchors and then choosed the
best candidate which had the minimum mean square error of
estimated distances to anchors. On the other hand, GOS DV-
Hop algorithm provided a global optimized solution for the
third step of DV-Hop.

All the aforementioned algorithms have a common problem
that their localization results are probably inconsistent with the
real connectivity between nodes. One main reason is that all
the above algorithms hardly checked whether the localization
results conformed to the real connectivity between all nodes,
let alone correcting the results based on the real connectiv-
ity. Therefore, the connectivity derived from the localization
results of the above algorithms, which we call the estimated
connectivity, are probably different from the real connectiv-
ity. This difference between the estimated connectivity and
the real connectivity inspires us to propose new algorithms
for optimizing the accuracy of DV-Hop localization. If the
localization results could be finally in accordance with the
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real connectivity, it is possible for the proposed algorithms to
rcach the best accuracy that range-free localization can attain,
because the underlying principle of range-free localization is
to localize nodes based on their connectivity.

Both the estimated connectivity and the real connectivity are
not hard to obtain. The estimated connectivity can be calcu-
lated based on the localization results and the communication
range, while the real connectivity can be obtained through
the communication between nodes. However, the difficulty
lies in how to make the localization results conform to the
real connectivity of all nodes in the network. This paper
not only introduces our finding about the consistency of the
connectivity, but also proposes two algorithms to tackle with
the above difficulty. The main contribution of this paper is
summarized as follows.

(1) To optimize the accuracy of DV-Hop localization, a
Centralized Connectivity-based DV-Hop (CCDV-Hop) algo-
rithm is proposed. By establishing an optimization problem
which takes the real connectivity between any two nodes as the
constraints, the proposed algorithm can make the localization
results conform to the real connectivity. To tackle the original
optimization problem, SCA (sequential convex approxima-
tion) technique and Taylor-expansion based approximation are
employed. The numerous connectivity constraints result in
relatively high complexity, thus the proposed algorithm is
suitable for centralized sensor networks.

(2) To reduce the computation complexity of CCDV-Hop,
a Distributed Connectivity-based DV-Hop (DCDV-Hop) algo-
rithm is proposed, which can obtain near-optimal localization
performance in distributed networks. Without including the
connectivity of all nodes, the constraints of the optimization
problem in the proposed algorithm only consider the real
connectivity within two hops. In the proposed algorithm,
every unknown node needs to iteratively perform two steps,
including position exchange step and position estimation step.
The former step is to obtain the latest estimated position
of the unknown nodes within 2 hops, while the latter step
is to calculate the position by solving the corresponding
optimization problem.

(3) The performance of two proposed localization algo-
rithms have been thoroughly investigated. The proposed al-
gorithms are compared to latest DV-Hop based algorithms.
Their performance have been evaluated in terms of localization
accuracy and complexity. Simulation results show that the
proposed algorithms can achieve much better accuracy than
other methods, though at the cost of higher complexity.

II. MODEL OF CONNECTIVITY

Since the main idea of our contribution is to improve local-
ization accuracy by taking full advantage of the connectivity
between nodes, in this section, the connectivity of nodes will
be modeled in a way associating the connectivity with the
positions of nodes.

In DV-Hop localization, the network connectivity between
an unknown node and an anchor can be expressed as the
minimum hop count between those two nodes [20]. If this
concept is extended to any two nodes in the network, the
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connectivity of one concerned node can be expressed as the
set of minimum hop counts between this concerned node and
other node. Thus we have

oreal = {hop; 1}, Ve € {1,2,... N} and k #i, (1)

where C7¢@ denotes the network connectivity of node 1,
hop; 1, is the smallest hop count between node ¢ and another
node k, and NV is the total number of nodes.

In fact, beside the minimum hop counts, the connectivity of
node ¢ can also be expressed in a simpler way as (2) by a set
of neighborhood relationship. Here the neighborhood between
two nodes means whether they are in the communication range
of each other.

creat = {IsNeighbor!$™}, Vi € {1,2,.... N}, k # 1,
@
where IsN ez’ghbor{jfl = 1 if node k£ and node ¢ can directly
communicate with each other; otherwise, IsNeighbor] 5 =
0.

Although (2) only denotes the neighborhood of node ¢, when
all nodes are considered (i.e., all values of 7 ranging from 1 to
N are considered), the set of (2) can express the neighborhood
between any two nodes in the network. In the same way, the set
of (1) with all nodes included can express the minimum hop
counts between any two nodes. The set of (2) is equivalent
to the set of (1), because the set of neighborhood between
any two nodes can be used to produce the whole topology of
the network, then the smallest hop counts between any two
nodes can be retrieved. Moreover, in practice, compared to
hop counts, the neighborhood between nodes is easier to be
obtained, because we can know whether one node is in the
communication range of another node just by direct signal
transmission/reception between those two nodes.

On the other hand, the estimated connectivity of node ¢ can
be expressed as

Cestt = {]sNeighborfjfi}, Vi e{1,2,...,N}, k#1i, (3)

where IsNeigh,borf,fi is the neighborhood between the esti-
mated positions of node ¢ and node k. IsNeighborfj” can be

calculated as

{IsNeigthTiij“ = l,when | L; — Lg|| < R, @

IsNeighbor{3' = 0,when ||L; — Li| > R,

where L; = (2;,1y;)" and L, = (ap,yx)? are the estimated
positions of node 7 and node k by using a DV-Hop based
algorithm, respectively, || L; — Ly || is the distance between node
iand node k, i.e. || L;—Li|| = \/(zi — 21)2 + (y; — yx)2, and
R is the communication range of nodes (all nodes are assumed
to have the same range).

Then the connectivity difference of node 7 is defined as

Conn_Dif fi= ||Ct — Credd||

= \IsNeighborfi“fIsNeighbor{fkal |. ®)
k

As to the existing DV-Hop based algorithms, the connectivity
difference Conn_Dif f; is usually not cqual to 0, because
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the existing algorithms hardly check whether the localization
results conform to the real connectivity.

Our objective is to obtain more accurate estimated positions
which can conform to the real connectivity between nodes.
When the objective is achieved, the relation between the
real connectivity and the estimated positions of nodes should
satisfy

V two nodes ¢ and k, (6)
i — Li|| < R,if IsNeighbor. " is
ILi — Li|| < R,if IsNeighbor;$® is 1,
i — Lgl|| > [,1L [siNet or; 7. 18 0.
IL; — Li|| > R, if IsNeighbor(5* is 0

The above relation expression between the connectivity and
the positions of nodes will be used to construct our proposed
algorithms.

III. PROPOSED DV-HOP LOCALIZATION ALGORITHMS
BASED ON CONNECTIVITY OF NODES

In this section, we will propose two connectivity-based DV-
Hop localization algorithms. One is Centralized Connectivity-
based DV-Hop (CCDV-Hop) and the other is Distributed
Connectivity-based DV-Hop (DCDV-Hop). The choice be-
tween these two algorithms depends on whether there exists in
the network a powerful node (with the most energy and high
computation ability) or not. If the network has such a powerful
node, this node acts as the central node and executes our
CCDV-Hop algorithm to estimate the positions of all unknown
nodes. Otherwise, since there is no central node, each unknown
node executes our DCDV-Hop algorithm by itself to estimate
its own position. Next these two proposed algorithms will be
illustrated in detail.

A. Proposed CCDV-Hop

Our proposed CCDV-Hop algorithm can be applied in
centralized scenarios where there is a central node with the
most energy and strong computing power. Based on the
connectivity of all nodes in the network, our CCDV-Hop
algorithm aims to provide optimal estimated positions for
unknown nodes. To achieve this, our CCDV-Hop algorithm
first constructs an optimization problem which makes the best
use of the real connectivity between nodes, and then solves
this complex problem by multiple iterations. In the following,
the construction and solution of the optimization problem will
be illustrated in detail.

To construct an optimization problem, normally we should
first construct an objective function and then give the con-
straints. However, in our case, before the objective function,
our constraints have already been presented as (7) in the
previous section. That is, our constraints are the real connec-
tivity between any two nodes. Then we need to construct the
objective function.

In order to reduce computation complexity of our algorith-
m, the objective function is set to minimizing the distance
between the estimated position by our CCDV-Hop and that
by the original DV-Hop. The reason is illustrated as follows.
Generally, multiple iterations are required to solve the op-
timization problem of our CCDV-Hop algorithm. The start
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point of the iterations can be set to the result of original DV-
Hop algorithm. With more iterations executed, the solution
of the optimization problem should be farther away from the
start point. But more iterations also increase the complexity
of the algorithm. Therefore, in order to reduce computational
complexity of our algorithm, iterations should be reduced, and
then the distance between the start point and the solution of
the optimization problem will also be reduced.

According to the above illustration, the optimization prob-
lem can be expressed as

M
min Y (w; x [|L; — L) (7)
=1

st.Vie {1,2,...,M}
i = L;|l < R. (%), IsNeighbor;; =1) ()
|L: — Ly|| > R, (Vq, IsNeighbor; , # 1) )]

where M is the number of unknown nodes, w; is weight coef-
ficient, L; (as optimization variable) represents the coordinates
of unknown node i, L; is the localization result of unknown
node ¢ by original DV-Hop algorithm, R is the communication
range, L; and L, represent the coordinates of a neighbor node
J and a non-neighbor node ¢, respectively. It should be noted
that L; and L, arc not always unknown. Only when node j
and ¢ are unknown nodes, L; and L, are unknown; but when
they are anchor nodes, L; and L, are already known.

In the following, the weight coefficient w; will be illustrated
in detail. (Here the subscript ¢ denotes the i-th unknown
node.) Based on all L; (position results of original DV-hop
algorithm) and the positions of all anchors, we can obtain the
estimated connectivity of each unknown node at the position
L;. This estimated connectivity of L;, denoted as CE’ is
probably different from the real connectivity of node 4. If
their difference is large, the estimation error of L_L should
also be large. Thus in order to reduce localization error, the
adjustment on L; should be large, i.e., the distance between
L; (the optimal variable representing the estimated position of
node 7) and L; should be large. In this case, w; should be set
to a small value, so that the the distance between L; and L;
will be much less limited by the objective function. Therefore,
when the difference between the estimated connectivity of L;
and the real connectivity of node % is large, w; is set to a small
value. On the contrary, if the difference is small, since the
connectivity of node 7 at the estimated position L; is already
close to the real connectivity, the estimation error of L_L should
be small, so we don’t need to change L; much, then wj is set
to a relatively large value. The expression of w; is

1
Bz 3

where C; the real connectivity of node ¢ and Cz- is the
estimated connectivity of each unknown node at the position
L;.

The number of constraints in the optimization problem is
calculated as follows. If node ¢ has .J; neighbor nodes, then
(8) consists of J; inequations. On the other hand, if node ¢ has
@; non-neighbor nodes, then (9) consists of (; inequations.

Since there are in total N nodes in the nctwork, we have

w; (10)

4

J; + Q; = N — 1. Then if there are M unknown nodes in
the network, since each unknown node has N — 1 constraints,
there are totally M x (N — 1) constraints in our optimization
problem.

To solve the optimization problem, equivalent conversion
should be performed first because it is difficult to directly
tackle the original optimization problem. In the original op-
timization problem, the objective function and all constraints
are all expressed in the form of distance calculation which
involves the root operation and are hard to tackle. Equivalently
we first transform all the distance to the square of distance,
then the original optimization problem becomes

M
min Y (w; x || L; — L;|*) (11)
=1
st.Vie{1,2,..., M}
|L; — L;|* < R?, (V§, IsNeighbor; ; =1)  (12)
|L; — L,||> > R*. (Vq, IsNeighbor;, # 1)  (13)

It can be observed that the objective function in (11) and
the inequation constraints in (12) are all convex, while all
the inequation constraints in (13) are not convex. To make
the above optimization problem tackable, SCA (Sequential
Convex Approximation) technique will be employed. Then
through multiple iterations of SCA, the approximate optimal
solution of the original optimization problem can be derived.
Another important conversion is that in every iteration, each
non-convex inequation constraints in (13) needs to be trans-
formed to a linear inequation based on first-order Taylor
expansion. Since L, can be the position of either an anchor
node or an unknown node, the linear transformation of (13)
in the case of anchor node will be different from that in the
case of unknown node. In the following, the transformation of
(13) in the nyy, iteration will be illustrated in detail according
to the above two cases.

Case 1: L, is unknown

Since L, and L; are both unknown, the left side of each
inequality in (13) is a function with 2 variables L; and L,.
Then the first-order Taylor expansion of the left side of (13)
should be performed upon L, and L; simultancously. Similar
to [29], the Taylor expansion point at ny iteration is set to
the approximate optimal solution at the (n — 1)y, iteration,
denoted as L;(n—1) and L,(n—1). Thus the first-order Taylor
expansion of ||L;—Ly||? at L; = Ly(n—1) and L, = Ly(n—1)
can be expressed as

1L — Lq|f?

~[|Li(n — 1) — Ly(n — D)
O(ILin = 1) = Ly(n — 1)|)
oL;
(| Li(n — 1) — Ly(n — 1)|?)
oL,
= 2Li(n — 1)~ Ly(n — 1) - (L; — L)
— || Li(n 1) = Ly(n — 1) %

+ (Lz — Ll-(n — 1)) .

+(Lyg— Lg(n—1))-

(14)

Substituting (14) into the left of (12), we can transform cach
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non-convex constraint in (12) into a linear constraint as
2Li(n—1) = Ly(n— )" - (Li — Ly)~
|Zi(n—1) — Ly(n — 1)||* > R2. (15)
(Vq, IsNeighbor; , = 0)

Case 2: L, is already known (g corresponding to an anchor
node)

Compared to the unknown case, the transformation of
(12) in this case will be simpler because there is only one
variable L; on the left side of (13). Thus the first-order Taylor
expansion of the left side of (13) will be performed only
upon L;. The Taylor expansion point is still set to L;(n — 1)
which is the approximate optimal solution at the (n — 1)y
iteration. So the first-order Taylor expansion of ||L; — Ly ||* at
L; = L;(n— 1) can be expressed as

ILi — Lg|?

~ || Li(n — 1) = Lg?

CO(ILi(n — 1) — Ly|1*)
0L,

+ (LZ - Lz(’l’l - 1))

= [|Li(n — 1) = Ly|®
+2(Li(n—1) — Ly)" - (L; — Li(n — 1)).
Substituted with (III-A), each non-convex constraint in (13)
can be transformed into a linear constraint as
2(Li(n —1) — L))" - (L; — Li(n — 1))+
|Li(n—1) — Lg||* > R2. (17)
(Vq, IsNeighbor; , = 0)

(16)

Combining the above two cases, at the nyy, iteration, Vg,
satisfying I'sNeighbor; = 0, can be transformed to

If L, is unknown,

2(Li(n —1) — Lo(n — 1))" - (Li — Ly) -
ILi(n = 1) = Ly(n — 1)||I* > R?,

if L, is known,

2(Li(n —1) — Ly)T - (L; — Li(n — 1))+
|Litn — 1) — L[> > B

To solve the new optimization problem comprising of (11),
(12) and (18), we can use convex optimization tools such as
CVX (a Matlab software for disciplined convex programming).
The corresponding solution denoted as L;(n) (i = 1,2,... M)
represents the estimated position of all unknown nodes at
the nyy, iteration. Then in the (n + 1)¢y, iteration, L;(n) and
L,(n) (if g corresponds to unknown node) will be used as the
expansion point of the first-order Taylor expansion on (13).

In SCA, the aforementioned process at each iteration will
repeat multiple times until the objective function satisfies the
end condition. As the end condition, the convergence rate,
defined as the difference between the objective function values
of two adjacent iterations, should go below a preset threshold.
To verify the achievability of the end condition, we prove the
convergence based on the reduction to absurdity as follows. If
the aforementioned multiple-iteration process cannot be con-
vergent, the value of the objective function will decrease until
negative infinity. However, the value of the objective function

(18)
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in (9) is always no less than 0. Therefore, the aforementioned
multiple-iteration process should be convergent. When the
objective function meets the end condition, the approximate
optimal solution of the original optimization problem can
be obtained, which also gives the estimated positions of all
unknown nodes. The whole procedure can be summarized as
Algorithm 1.

Algorithm 1 CCDV-Hop algorithm

1. Given the distribution of nodes and the radio range;
2. Determine the real connectivity of each node;
3. Obtain L; (the estimated position of each unknown node
1 by the original DV-Hop algorithm;
4. Initialize L;(0) = L;, Ly(0) = Ly (if L, is unknown) or
L, (f Ly is known);
5. Repeat
1) transform (13) to (18) by the first-order Taylor expansion
at the nyy iteration;
2) solve the new optimization problem comprised of (11),
(12) and(18) by CVX;
3) obtain the optimal solution L;(n);
4) calculate objective function f, = Eiﬁl wil|Li(n) — L)%
5) use L;(n) and Lq(n) for the Taylor expansion at next
iteration.
6. Until | fr, — fn—1 |<preset threshold;
7. Return L] = L;(n).

In the following analysis, the computational complexity of
our CCDV-Hop algorithm is derived. To solve our convex
problem comprised of (11), (12), (18), CVX tools usually
convert it into a SOCP (Second-Order Cone Programming)
problem as

min z (19)
(L1,LayeLags2)
s.t.
_ — z—1 z+1
lv/wi(Ly—=Ly), ..../war (Lay — L), 5 | < 5
(20
IIL; — L;|| < R, (Vj, IsNeighbor; ; = 1), 28]
agLi +b, > R*, (Vq, IsNeighbor; , # 1), (22)

where the parameters a, and b, can be obtained from (18).

According to [30], the complexity of solving a SOCP
problem is derived as O(v/Ngpsn? > ok Mk)> Where Negy is
the number of constraints, v/ N, represents the upper bound
of the number of iterations, n is the total dimensions of
all optimization variables, nj is the dimension of the k-th
constraint.

As to the above problem, the number of constraints in (20)
is I, the number of constraints in (21) is denoted as Ny,
while the number of constraints in (22) is denoted as N,pn—peigh-
S0 Neons = 1+ Noyeigh + Nyopneigh- Since the above problem
has 2M + 1 scalar optimization variables, n equals 2M + 1.
From the constraints, it can be found that n; = 2, ny, = ng =
coo = NN +1 = 2, TLNWQHLQ = ... = NN, weieh+ Nueion+1 = 1.
Then the complexity of CCDV-Hop algorithm is calculated as

Comp_CCDV — Hop =
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O (\/1+A/Vm'igh + Monfn(’igh (2AI + 1)2(2 + QAN;(eigh + Nnm#neigh) ) .
(23)

Given a sensor network, N, and N, peign can be re-
garded to be proportioned to N, so the above complexity can
be simplified to O(N1®M?). Since M is a portion of N, the
complexity can be further expressed as O(N39).

B. Proposed DCDV-Hop algorithm

Making best use of the connectivity of all nodes, our
proposed CCDV-Hop algorithm is supposed to provide ap-
proximate optimal estimated positions for all unknown nodes.
However, the computation complexity of CCDV-Hop is high
because it not only has many constraints but also requires
multiple iterations to solve the optimization problem. In order
to reduce the computation complexity but keep nearly similar
localization accuracy, DCDV-Hop is proposed in this section.

As a distributed algorithm, our DCDV-Hop is executed by
each unknown node which optimizes its estimated position
based on its connectivity. However, here the connectivity is a
two-hop connectivity defined as

C2'P = [sNeighbor; 1, ¥ k within two hops of node i.
24
This two-hop connectivity can be regarded as a part of the
complete network connectivity expressed in (7), but it is the
most important part. Since all the neighbor nodes and the
nearest non-neighbor nodes are considered in the two-hop
connectivity, the assemble of the two-hop connectivity of all

nodes is approximate to the complete network connectivity.

The two-hop connectivity should be acquired at the first
beginning of our DCDV-Hop algorithm because each unknown
node needs to utilize the acquired connectivity to estimate
the position. To obtain the two-hop connectivity, node ¢
only needs to communicate with the nodes within two hops.
Subsequently, the communication traffic of our DCDV-Hop
will be much less than that of CCDV-Hop because the latter
requires the connectivity between node ¢ and any other node.
Moreover, the small-scale connectivity also helps to reduce
the computation complexity of our DCDV-Hop because the
two-hop connectivity generates much fewer constraints for the
optimization problem.

The main principle of our DCDV-Hop algorithm is briefly
presented as follows. Each unknown node needs to iteratively
perform two steps. During each iteration, the first step is
position exchange while the second step is position estimation.
At the first step, each unknown node N; broadcasts its current
estimated position (obtained from last iteration) to the nodes
within 2 hops. It should be noted that, the initial estimated
position of NN; can be obtained by the original DV-Hop
algorithm. After the first step, every node within 2 hops of
N, should be aware of the current estimated position of N;.
Then at the second step, based on the estimated positions of
nodes within 2 hops as well as the two-hop connectivity, each
unknown node constructs and solves an optimization problem,
obtaining its new estimated position. The new position will be
taken as its current estimated position at the first step in next
iteration. In the following, the construction and solution of

6

the optimization problem in our DCDV-Hop algorithm will be
illustrated in detail.

In DCDV-Hop, during each iteration, each unknown node
establishs an optimization problem similar to that in (11,
12, 13) but much simpler, because the unknown node only
needs to estimate its own position upon its 2-hop connectivity.
Thus during each iteration, each unknown node N; builds an
optimization problem as

min || L; — Li| (25)
(Vj, IsNeighbor; ; = 1)
I1Li — Lyl > R, 27)

(Vg within two hops, IsNeighbor; ; = 0)

where L; represents the coordinates of unknown node ¢, L;
is 4’s estimated position by last iteration (during the first
iteration L; is node i’s estimated position by original DV-
Hop algorithm), R is the communication range, L; and L,
represent the coordinates of a neighbor node j and a non-
neighbor node ¢, respectively. It should be noted that, if j and
g correspond to unknown nodes, L; and L, will be assigned
with their estimated positions obtained from last iteration.

The number of constraints in the optimization problem is
calculated as follows. If node ¢ has .J; neighbor nodes, then
(8) consists of J; inequations. On the other hand, if there are
T’; non-neighbor nodes which are 2 hops away from node ¢,
then (30) consists of 7; inequations. Thus there are J; + T;
constraints in the above optimization problem.

To solve the optimization problem, similar to CCDV-Hop
algorithm, we first equivalently transform all the distance to
the square of distance, then the original optimization problem
becomes

HBH | L; — L ||? (28)
s.t]|L; — Lj||? < R?, (29)
(Vj, IsNeighbor; ; = 1)
|L; — Lg|* > R*. (30)

(Vg within two hops, IsNeighbor; ; = 0)

It can be observed that the objective function in (28) and the
inequation constraints in (29) are all convex, while all the in-
equation constraints in (30) are not convex. Similar to CCDV-
Hop algorithm, we can derive the solution of the original
optimization problem through multiple iterations of SCA. And
in every SCA iteration, we need also to transform each non-
convex inequation constraints in (30) to a linear inequation
based on first-order Taylor expansion. The transformation of
(30) in the ny, iteration will be illustrated in the following.

Since there is only one variable L; on the left side of (30),
the first-order Taylor expansion of the left side of (30) will
be performed upon L;. At the ny, SCA iteration, the Taylor
expansion point is set to the solution at the (n — 1)y, SCA
iteration, denoted as L;(n — 1). Thus the first-order Taylor
expansion of ||L; — Ly||* at L; = L;(n — 1) can be expressed
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as
[ Li _Lq||2
~ ||Li(n — 1) — Lg|)?
(n—1) — 2
+(L; — Li(n—-1)) - O 6[1) Lql*)
= || Li(n — 1) — Lg|1?
+2(Li(n—1) = Ly)" - (Li = Li(n — 1))

€2))

Substituting (31) into the left of (30), we can transform cach
non-convex constraint in (30) into a linear constraint as

2(Li(n —1) — Ly)" - (L; — Li(n — 1))+
IZi(n = 1) = Lyl > R*. 52)
(Vg within two hops, IsNeighbor; ; = 0)

To solve the new optimization problem comprising of (28),
(29) and (32), we can still use CVX. The corresponding
solution denoted as L;(n) represents the estimated position
of node ¢ at the ny, SCA iteration. Then in the (n + 1)
iteration, L;(n) will be used as the Taylor expansion point
to transform (30). The aforementioned process at each SCA
iteration will repeat multiple times. Then the acquired solution
of the optimization problem will be taken as node %’s current
estimated position to be used at the first step in the next
outer-iteration. The whole procedure can be summarized as
Algorithm 2.

Algorithm 2 DCDV-Hop algorithm

1. Given the distribution of nodes and the radio range R;
2. Determine the 2-hop connectivity of each unknown node
&

3. Initialize L; as the estimated position by original DV-Hop
algorithm;

4. Repeat outer-iterations;

« position exchange: unknown node ¢ receives estimated
positions of the nodes within 2 hops;
« position calculation: Repeat inner iterations to solve
(28, 29, 30);
1) transform (30) to (31) by the first-order Taylor
expansion at the ny iteration;
2) solve the new optimization problem comprised of
(28), (29) and (31) by CVX;
3) obtain the optimal solution L;(n);
4) use L;(n) and Ly(n) for the Taylor expansion at next
iteration;
Until the number of inner-iterations > preset threshold.
5. Until the number of outer-iterations > preset threshold;
6. Return L] = L;(n).

The computational complexity of our DCDV-Hop algorithm
is derived as follows. For DCDV-Hop algorithm, the CVX
tools convert our convex problem comprised of (28), (29),
(32) into a SOCP problems as

min 2z (33)
(Li,z)
s.t.
- z-1 z+1
Ivwi (L — L), 5 | < 5 (34)
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L; — L;|| <R, (Vy, IsNeighbor; ; =1 (35)

j J
agLi+b, > R?, (Vg within two hops, IsNeighbor; , =0)
(36)

where the parameters a, and b, can be obtained from (32).

The number of constraints in (34) is 1, the number of
constraints in (35) is .J;, while the number of constraints in
(36) is 1;. SO N.yus = 1 + J; + T;. Since the above problem
has 3 scalar optimization variables, n equals 3. From the
constraints, it can be found that ny = 2, no = n3 = ... =
nr+1= 2, nNj4+2 = . =Nj,4+Ti+1 = 1.

Since the complexity of solving a SOCP problem is
O(V/Negnsn® >, ny), the complexity of DCDV-Hop algorithm
is calculated as

Comp_DCDV—Hop=0(/J;+T;+1Q2J; +T;+2)). (37)

Given a sensor network, the above complexity can be sim-
plified to O((.J; 4+ T;)'?). Since .J; + T; should be much
smaller than N, the complexity of DCDV-Hop algorithm is
much smaller than that of CCDV-Hop algorithm.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we first discuss the localization accuracy of
our proposed CCDV-Hop and DCDV-Hop algorithms by two
specific examples, then investigate the average performance
of our algorithms through Monte Carlo simulations by using
Matlab. Our algorithms are compared to not only the original
DV-Hop algorithm [17] but also some latest algorithms such
as DV-maxHop [25], RAS DV-Hop [26] , GOS DV-Hop [26]
and an improved DV-Hop [27].

A. Simulation parameters

The two specific examples correspond to a small scale
network which has 6 nodes and a middle scale network with
30 nodes. As for the example of small scale network, the main
simulation parameters are listed in Table I. Sensor nodes are
uniform-randomly distributed in a 40mx40m region. The node
density defined as the average number of nodes per 400m? is
1.5.

TABLE I: Simulation parameters in small scale network

Parameters Values
Network area 40mx40m
Node distribution density 1.5 per 400m?
Communication range in ideal channel 20m
Total number of sensor nodes 6
Number of anchor nodes 3

As for the example of middle scale network, the main
simulation parameters are listed in Table II. Sensor nodes are
uniform-randomly distributed in a 60mx60m region with the
node density of 1 per 400m?.

As for the general case, in order to obtain the average per-
formance of concerned algorithms, the simulation is executed
ten thousand times. Each time a number of sensor nodes are
uniform-randomly distributed in a 100mx 100m region, anchor
nodes are randomly selected from all those nodes, and then the
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TABLE II: Simulation parameters in middle scale network

Parameters Values
Network area 60m x 60m
Node density (low) 1 per 400m?
Communication range in ideal channel 20m
Total number of sensor nodes 9
Number of anchor nodes 3

unknown nodes use the aforementioned algorithms to estimate
their positions. The average localization error, computation
time and network traffic of each concerned algorithm will be
compared and analyzed.

B. Simulation results

The localization results of the small-scale network example
is shown in Fig. 1. In the example, Ay, A> and A3 are anchor
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Fig. 1. Example of small scale network

nodes whose coordinates are (6, 22), (22, 10) and (38, 2),
respectively. Uy, Uz and Us are unknown nodes whose real
positions are (22, 22), (26, 2) and (34, 18), respectively. Hq
(21.07, 26.52), H5 (8.79, -34.3) and H3 (49.86, 49.03) are the
estimated positions of the unknown nodes by the original DV-
Hop algorithm. From Fig. 1, we can see that the connectivity
between H; and Hj3 does not satisfy their real connectivity,
neither does the connectivity between Hy and A, nor the
connectivity between Hs and As. Then our CCDV-Hop and
DCDV-Hop algorithms can be used to adjust the localization
results of DV-Hop. P; (21.07, 26.52), P, (18.55, 6.68) and P
(32.33, 21.18) are the localization results by our DCDV-Hop
algorithm, while C'; (20, 24.2), Cy (22, 5) and C3 (37, 15.8)
are the localization results of our CCDV-Hop algorithm. The
localization results by RAS DV-Hop is the same as DV-Hop,
while the localization results of the three unknown nodes by
GOS DV-Hop are respectively (23.45, 25.61), (11.3, -32.67)
and (46.86, 45.7). Thus the average localization errors of DV-
Hop, RAS DV-Hop, GOS DV-Hop, our DCDV-Hop and our
CCDV-Hop are respectively 26.55m, 26.55m, 22.41m, 5.68m
and 3.90m. So given the localization error by DV-Hop as
the reference, the localization accuracy has been improved
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Fig. 2. Example of middle scale network

by 15.6%, 78.6% and 85.3% in GOS DV-Hop, our DCDV-
Hop and our CCDV-Hop, respectively. Our CCDV-Hop is
found to be more accurate than our DCDV-Hop, because the
connectivity between any two nodes are all utilized in CCDV-
Hop.

Similarly the localization results of the middle-scale net-
work example are shown in Fig. 2. Since it is lengthy to
present the localization results of all unknown nodes, only
one unknown node is taken as an example. In Fig. 2, U; is
the real location of the unknown node, H; is the localization
result by DV-Hop, P; is the localization result by our DCDV-
Hop, and C is the localization result by our CCDV-Hop. The
localization errors by the original DV-Hop and DV-maxHop
are 9.76m and 6.82m, respectively. But the localization errors
by our DCDV-Hop and CCDV-Hop are much smaller, i.e.,
4.36m and 3.42m, respectively.

In general cases, the average localization errors by each
concerned algorithm is shown in Fig. 3. The ratio of anchor
nodes to all nodes is fixed as 20%. It can be observed that
when the density of nodes increases, the localization errors
of all concerned algorithms decrease. The reason is that with
an increasing node distribution density, the network has more
nodes which can not only produce more accurate distance-
per-hop but also bring more connectivity information. It can
also be observed that the localization errors of both DCDV-
Hop and CCDV-Hop arc much smaller than other algorithms.
The reason is that these two proposed algorithms endeavour
to make the localization results conform to the connectivity
between nodes, while this consistency of localization results
and connectivity has not been considered by other algorithms.

Fig. 4 shows how the average localization errors change
with different ratios of anchor nodes. The density of nodes is
set to 0.005 per m2. We can observe that the localization errors
of all concerned algorithms decrease with the ratio of anchor
nodes. Two reasons are given in the following. First, when
the number of anchor nodes increases, the average hop count
between each unknown node and each anchor node becomes
smaller, so is the estimation error of their distance. Second,
more anchor node can provide each unknown node with more

Page 8 of 29



Page 9 of 29

oNOUV A~ WN =

supplementary information which is reliable, determinate and
helpful for its localization. It can also be observed that local-
ization errors of our DCDV-Hop and CCDV-Hop algorithms
are much smaller than the other algorithms.
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Fig. 3. Localization error with different densities of nodes

In order to evaluate the computational complexity of the
concerned algorithms, the computation time consumed by
the algorithms are simulated and shown in Fig. 5. The total
number of nodes is set to 100. The computer used for the
simulation has a 3.3GHz CPU and a 4GB RAM. It can
be observed that when the ratio of anchor nodes increases,
the computation time of each algorithm becomes larger. The
reason is that each algorithm estimates the position of an
unknown node based on the positions of anchor nodes as well
the connectivity or hop count between the unknown node and
each anchor node. It can also be observed that the computation
time of CCDV-Hop is much higher than other algorithms. The
reason is that in CCDV-Hop, the central node is responsible
for the whole computation task, i.e., that node has to estimate
the positions of all unknown nodes by itself.

In order to evaluate network cost of the concerned algo-
rithms, the number of transmitted packets by the algorithms
are simulated and shown in Fig. 6. The ratio of anchor nodes
is set to 10%. Since RAS DV-Hop, GOS DV-Hop and DV-
maxHop focus on the computational optimization at the third
step while sharing the same Step 1 and Step 2 as the original
DV-Hop, their communication costs mainly come from the
network-wide broadcast of anchor information during the first
two steps. However, at the third step, in order to obtain the
connectivity between nodes, our CCDV-Hop and DCDV-Hop
algorithms require additional data transmissions.

The approximate number of additional transmissions in our
two proposed algorithms will be estimated in the following.
As for our CCDV-Hop algorithm, additional transmissions are
needed for each unknown node to send its neighbor list to the
central node. If only one unknown node sends its neighbor
list to the center node, the number of transmitted packets
is supposed to equal the minimum hop counts between the
unknown node and the center node, because the intermediate
nodes on the shortest path will do nothing but relay the
neighbor list. However, since all unknown nodes are required
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to send their lists to the center node, in one transmission an
unknown node can not only relay the neighbor list it received
from another unknown node, but also send its own neighbor
list. In other words, when one unknown node sends a packet
to one neighbor node (toward the center node), this packet
contains a combined neighbor list which contains both its own
neighbor information and the neighbor information received
from other unknown nodes. Therefore, each unknown node
only needs to send the combined neighbor list to one neighbor
node. Then if this neighbor node is an anchor node, it just
relays the list toward the center node; otherwise, this neighbor
unknown node will first adds its own neighbor information
into the list and then relay the list toward the center node. As
a result, if N denotes the number of nodes in the network,
the number of additional transmitted packets in CCDV-Hop is
about N-1, since the centre node is always the receiver. So
we have

Ccepv—Hop = N — 1. (38)

Although the build of the table of neighbors for each
unknown node also requires communication between nodes,
the communication can be well designed so that it will not
introduce additional transmissions. For example, the build of
the table of neighbors can be incidentally fulfilled at the first
step of DV-Hop, because at the first step all nodes help each
anchor node to broadcast its position throughout the network.

The simulation results shown in Fig. 6 can also verify
the derived result in (38). For example, when the density
of nodes is 0.0025 per m2, the number of nodes is 25.
Then according to (38), the number of additional transmitted
packets is about 25, similar to the simulation result in Fig.
6, which is around 27 (27=540-513, where 540 and 513 are
the number of transmitted packets by CCDV-Hop and DV-
maxHop, respectively).

As for our DCDV-Hop algorithm, at each iteration, ad-
ditional transmissions are required for each unknown node
to send its estimated position to the nodes within 2 hops.
Similarly, using the transmission strategy in CCDV-Hop, each
unknown node broadcasts a combined packet that contains its
own estimated position and the estimated positions it received
from its neighbors. So the number of additional transmitted
packets in DCDV-Hop is about

CpeDV—Hop = MUMjtera X N, (39)

where num;ser, denotes the number of iterations and N is
the number of nodes. The simulation results in Fig. 6 can
also help to verify the derived result in (39). For example,
when the density of nodes is 0.0025 per m2, nuMm perq 1S set
to 5, according to (39) the number of additional transmitted
packets is about 5 x 25 = 125, similar to the simulation result
in Fig. 6, which is around 132 (132=645-513, where 645 and
513 are the number of transmitted packets by DCDV-Hop and
DV-maxHop, respectively). We can observe that the overall
network cost of DCDV-Hop is larger than that of CCDV-Hop.
The reason is that DCDV-Hop requires multiple iterations,
while at each iteration the updated position (estimated at last
iteration) of each unknown node needs to be transmitted to
the nodes within 2 hops.
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The transmit power can influence the localization accuracy.
All nodes in the network are assumed to have the same
transmit power and the same communication range. If the
transmit power increases, the communication range of each
node also increases and then each node may have more
neighbor nodes. When the transmit power increases from a low
level to a medium level, the number of neighbor nodes around
one node also increases from a small number to some medium
number (e.g., from 1 to 3). In this case, the localization
accuracy can be improved by the increase of transmit power,
because the new-added neighbor nodes can help to localize
each unknown node. But if the transmit power is high, around
cach node there are already many ncighbor nodes. In this case,
the increase of transmit power may have limited effect on
accuracy improvement, as mentioned in [31].

V. CONCLUSION

Although DV-Hop localization scheme has its distinguishing
capability to localize unknown nodes which have less than
3 or even no neighbor anchors, its localization accuracy is
not so satisfactory. We find that the localization results by
existing DV-Hop based algorithm are inconsistent with the
real connectivity between nodes. So in this paper we propose
two algorithms to rehabilitate the connectivity. First a Cen-
tralized Connectivity-based DV-Hop (CCDV-Hop) algorithm
is proposed to optimize the accuracy of DV-Hop localization
by taking the real connectivity between any two nodes as the
constraints. SCA (sequential convex approximation) technique
and Taylor-expansion based approximation are employed to
solve the corresponding optimization problem. Then in order
to obtain near-optimal localization performance in distributed
networks, a algorithm with lower complexity is proposed,
namely Distributed Connectivity-based DV-Hop (DCDV-Hop)
algorithm. Not including the connectivity of all nodes, the
constraints in the proposed DCDV-Hop algorithm only con-
sider the real connectivity within two hops. Simulation results
show that with higher complexity, the proposed algorithms
can achieve much better accuracy than other DV-Hop based
methods.
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