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MODULAR AFFINE HECKE CATEGORY AND REGULAR

UNIPOTENT CENTRALIZER, I

ROMAN BEZRUKAVNIKOV, SIMON RICHE, AND LAURA RIDER

Abstract. In this paper we provide, under some mild explicit assumptions, a

geometric description of the category of representations of the centralizer of a
regular unipotent element in a reductive algebraic group in terms of perverse

sheaves on the Langlands dual affine flag variety. This equivalence is suggested

and motivated by the “geometric Langlands” philosophy.

1. Introduction

1.1. Towards an equivalence between the two modular categorifications of
the affine Hecke algebra. The present paper is the first one in a series dedicated
to proving a modular variant (i.e. a variant for coefficients of positive characteristic)
of the equivalence between the two categorifications of the affine Hecke algebra
constructed by the first author for Q`-coefficients [Be2], and to derive a proof of the
Finkelberg–Mirković equivalence describing the principal block of representations of
a connected reductive algebraic group in terms of perverse sheaves on the Langlands
dual affine Grassmannian [FM].

The origin of this work is the fact that the Hecke algebra of the affine Weyl
group attached to a semisimple algebraic group admits two natural (and useful)
geometric realizations: one (due to Iwahori–Matsumoto [IM]) in terms of Iwahori-
bi-invariant functions on the loop group of the given group, and one (due to
Kazhdan–Lusztig [KL] and Ginzburg [CG]) in terms of the equivariant K-theory
of the Steinberg variety of the Langlands dual group. The equivalence of [Be2]
“lifts” the isomorphism between these algebras to an equivalence of monoidal cat-
egories relating the Iwahori-equivariant derived category of the affine flag variety
of the given group to a certain derived category of equivariant coherent sheaves
on the Langlands dual Steinberg variety, both of the categories being defined over
Q`. (The precise statement of the equivalence requires some care, and will not be
reviewed here.)

The construction of this equivalence in [Be2] was based on a previous work of
S. Arkhipov and the first author [AB] which provided an equivalence of categories
“lifting” an isomorphism between two geometric realizations of the antispherical
module for the affine Hecke algebra; see the introduction of [AB] for more de-
tails. It turns out that adapting the constructions of [AB] to the modular setting
presents several technical issues that we cannot overcome at the moment in gen-
eral.1 Although it will be based on similar ingredients, our strategy will therefore
be different: in addition to the constructions of local geometric Langlands theory,

1In [AR3], P. Achar and the second author explain how to generalize this construction in case

G = GL(n) and ` > 1
2

( n
bn/2c

)
.
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2 R. BEZRUKAVNIKOV, S. RICHE, AND L. RIDER

we will employ Soergel’s method of describing the categories we want to compare
in algebro-combinatorial terms.

1.2. The regular quotient and representations of the regular unipotent
centralizer. The goal of the present paper and its sequel is to lay the foundation
for this algebro-combinatorial description. The role of Soergel bimodules in our
approach is played by the category of representations of the centralizer of a regular
unipotent element; this is motivated by [AB] where a similar construction is carried
out for Q`-coefficients, see also [Dod] where affine Soergel bimodules are related to
centralizers of regular elements. Thus, following the pattern of [So], we establish an
equivalence between a Serre quotient of the category of k-perverse sheaves on the
affine flag variety with one (if G is simply connected) simple object and representa-
tions of the regular unipotent centralizer in the dual group defined over k; this can
be thought of as an analogue of Soergel’s Endomorphismensatz, in its interpreta-
tion from [BBM]. (Here k is an algebraically closed field of positive characteristic.)
In a future work we plan to bootstrap this to an equivalence between the derived
categories of constructible k-sheaves on affine flags and coherent sheaves on the
Steinberg variety, establishing an analogue of Soergel’s Struktursatz.

To describe more explicitly the equivalence that we prove here, let us introduce
more notation. We will denote by G a connected reductive algebraic group over an
algebraically closed field of characteristic p > 0. Let us choose a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B. The choice of B determines an Iwahori
subgroup Iw in the loop group L+G of G, and we denote by FlG the associated
affine flag variety. This ind-scheme admits a natural action of Iw, and we can
therefore consider, for k an algebraically closed field of characteristic ` 6= p (with
` > 0) the Iw-equivariant derived category Db

Iw(FlG,k). This category admits a
natural convolution product, denoted ?Iw. Let PIw denote the heart of the perverse
t-structure on Db

Iw(FlG,k). Note that ?Iw does not restrict to a monoidal product
on PIw; however we can construct an abelian monoidal category out of these data
as follows. If we denote by P0

Iw the quotient of the category PIw by the Serre
subcategory generated by the simple objects whose support has positive dimension,
then it is not difficult to check that the assignment (F ,G ) 7→ pH 0(F ?Iw G )
descends to an exact monoidal product on P0

Iw, which we denote by ?0
Iw.

On the dual side we consider the Langlands dual reductive group G∨k over k, a
regular unipotent element u, and the corresponding centralizer subgroup ZG∨k (u).

We denote by Rep(ZG∨k (u)) the abelian category of finite-dimensional representa-

tions of ZG∨k (u); this category has a natural monoidal structure given by the tensor
product of representations.

Let us denote by R the root system of (G,T ), and by R∨ the corresponding
coroot system. We will assume that

• either ` is very good, or X∗(T )/ZR is free (i.e. G∨k has simply connected
derived subgroup) and X∗(T )/ZR∨ has no `-torsion;
• ` is bigger than some explicit bound depending on R and given in Figure 5.1

below.

Under these assumptions, the main result of this paper (Theorem 5.4) states that
there exists an equivalence of abelian monoidal categories

(1.1) (P0
Iw, ?

0
Iw) ∼= (Rep(ZG∨k (u)),⊗k).
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Remark 1.1. In case k = Q`, the equivalence (1.1) (or in fact a slightly less explicit
variant) is a special case of the main result of [Be1], and it plays a technical role in
a proof in [AB]. The equivalence itself is stated in a remark in [AB], and is proved
explicitly in [AR3, §7.2].

The category Rep(ZG∨k (u)) is related to coherent sheaves on the Steinberg variety

because it identifies with the category of G∨k -equivariant coherent sheaves on the
regular unipotent orbit of G∨k . In a sequel to this paper we will “extend” our
equivalence to describe the category of equivariant coherent sheaves on the regular
part of the “Grothendieck resolution” version of the Steinberg variety supported
set-theoretically on the regular unipotent orbit. On the constructible side this
requires replacing Iw-equivariant perverse sheaves on FlG by certain monodromic

perverse sheaves on the natural T -torsor F̃lG → FlG.

1.3. Strategy of proof. Our construction of the equivalence (1.1) will rely in a
crucial way on the geometric Satake equivalence and Gaitsgory’s theory of central
sheaves. Let GrG denote the affine Grassmannian of G. This ind-scheme admits
a natural action of L+G, and we can consider the category Pervsph(GrG,k) of
L+G-equivariant étale k-perverse sheaves on GrG. This category admits a natural
convolution product ?, and the geometric Satake equivalence [MV] provides an
equivalence of abelian monoidal categories

(1.2) (Pervsph(GrG,k), ?)
∼−→ (Rep(G∨k ),⊗k).

The relation between perverse sheaves on GrG and on FlG is provided by Gaits-
gory’s functor Z : Pervsph(GrG,k)→ PIw. This functor, defined in terms of nearby
cycles, provides a “categorical lift” of Bernstein’s description of the center of the
affine Hecke algebra, and the perverse sheaves in its image have a number of very
favorable properties, studied in particular in [G1, G2, AB] and reviewed in [AR3].
Using a general lemma from [Be1], the properties of this functor provide a unipo-
tent element u ∈ G∨k , a subgroup scheme H ⊂ ZG∨k (u), and an equivalence of

monoidal categories between a certain subcategory P̃0
Iw of P0

Iw and the category of
finite-dimensional representations of H, under which the composition of Z with the
quotient functor PIw → P0

Iw corresponds to the composition of the Satake equiv-
alence (1.2) with the restriction functor Rep(G∨k ) → Rep(H). Most of the new
material in this paper will then be used to prove the following claims:

(1) u is regular;

(2) the subcategory P̃0
Iw is the whole of P0

Iw;
(3) the embedding H ⊂ ZG∨k (u) is an equality.

These proofs will use modular variants of some technical constructions from [AB].
In particular we will prove that, under appropriate assumptions, the images in the
category of Iwahori-Whittaker perverse sheaves of the objects Z(F ) with F tilting
in Pervsph(GrG,k) are tilting.

1.4. Contents. In Section 2 we prove some preliminary results on centralizers of
regular unipotent elements in reductive groups; in particular we study when this
group scheme is smooth, and provide a general criterion on subgroup schemes of
such centralizers that will be used to prove statement (3) from §1.3. In Section 3
we prove a slight extension of the general lemma from [Be1] alluded to in §1.3.
Section 4 provides a reminder on the geometric Satake equivalence and Gaitsgory’s
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central functor. In Section 5 we state our main result more precisely, and explain
the construction of u and H. In Section 6 we prove statement (1) from §1.3. In
Section 7 we introduce the category of Iwahori-Whittaker perverse sheaves on FlG,
and explain the relation with PIw and P0

Iw. In Section 8 we prove that the images of
certain central sheaves in the category of Iwahori–Whittaker perverse sheaves are
tilting. Finally, in Section 9 we use this to prove statements (2) and (3) from §1.3,
and thus complete the proof of our main result.

1.5. Acknowledgements. R.B. was supported by NSF Grant No. DMS-1601953.
This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (S.R.,
grant agreement No. 677147). L.R. was supported by NSF Grant No. DMS-1802378.

We thank M. Korhonen for explaining the proof of Lemma 2.16 to one of us and
for a helpful discussion on centralizers of regular unipotent elements, A. Bouthier
for another useful discussion on centralizers of regular unipotent elements, and M.
Finkelberg for spotting some typos.

2. Preliminaries on reductive groups

In this section we collect a number of general results on the geometry or represen-
tations of reductive algebraic groups which will be needed later in our arguments.

2.1. Quotients of group schemes. Let K be an algebraically closed field. In
our considerations below we will have to consider some quotients of affine K-group
schemes of finite type by closed subgroup schemes, without any reducedness as-
sumptions. For the reader’s convenience, in this subsection we briefly recall the
properties of this construction that we will use.

Let H be an affine K-group scheme of finite type.

• For any subgroup scheme H′ ⊂ H, the fppf-sheafification of the functor
R 7→ H(R)/H′(R) is represented by a K-scheme of finite type, denoted
H/H′; see [DG, III, §3, Théorème 5.4].
• We have dim(H/H′) = dim(H) − dim(H′); see [DG, III, §3, Remarque

5.5(a)].
• If H′ is smooth then the natural map H→ H/H′ is smooth; see [DG, III,
§3, Corollaire 2.6].
• If H is smooth, then the scheme H/H′ is smooth; see [DG, III, §3, Propo-

sition 2.7].
• If H′ is a normal subgroup, then the quotient H/H′ is an affine group

scheme (of finite type); see [DG, III, §3, Théorème 5.6].

If H acts on a K-scheme X of finite type, and if x ∈ X(K), then the centralizer
ZH(x) of x in H is the scheme-theoretic fiber over x of the morphism H → X
defined by g 7→ g · x. By [DG, III, §3, Proposition 5.2], this morphism factors
through a locally closed embedding H/ZH(x)→ X.

2.2. Smoothness of centralizers. From now on we assume that G is a smooth
affine group scheme of finite type over K. For any g ∈ G we can consider the
centralizer ZG(g) relative to the adjoint action of G on itself. We will denote by g
the Lie algebra of G. This vector space is endowed with the adjoint action of G,
and we set gg := {v ∈ g | g · v = v}. We start by recalling the following standard
characterization of smoothness of centralizers.
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Lemma 2.1. The group scheme ZG(g) is smooth iff we have

dim(ZG(g)) = dim(gg).

Proof. First, assume that dim(ZG(g)) = dim(gg). Let ZG(g)red be the reduced
(hence smooth) group scheme associated with ZG(g). Then we have embeddings

Lie(ZG(g)red) ⊂ Lie(ZG(g)) ⊂ gg.

Here we have dim(Lie(ZG(g)red)) = dim(ZG(g)red) = dim(ZG(g)), hence our as-
sumption implies that these inclusions are equality. This implies in particular that
dim(Lie(ZG(g))) = dim(ZG(g)), hence that ZG(g) is smooth.

Assume now that ZG(g) is smooth. The morphism G → G defined by h 7→
hgh−1g−1 factors as a composition

G→ G/ZG(g)→ G,

where first morphism is smooth by our assumption and the second morphism is a
locally closed embedding (see §2.1). Moreover, the quotient G/ZG(g) is smooth of
dimension dim(G) − dim(ZG(g)). We deduce a factorisation of the induced map
on tangent spaces (namely, the difference of id and the adjoint action of g) as

g→ T[e]

(
G/ZG(g)

)
→ g,

where [e] is the base point of G/ZG(g). Here the first map is surjective and the
second one is injective. We deduce that

dim(gg) = dim(g)− dim(G/ZG(g)) = dim(ZG(g)),

proving the desired equality. �

As explained in §2.1, the morphism G → G defined by h 7→ hgh−1 factors
through a locally closed embedding G/ZG(g)→ G. The image of this embedding
is denoted O(g), and called the adjoint orbit of g. It is a smooth locally closed
subscheme of G, and by [DG, III, §1, Remarque 1.15], its set of K-points is {hgh−1 :
h ∈ G}. In particular, this definition coincides with that given e.g. in [Hu, §1.5].

2.3. The case of regular unipotent elements in reductive groups. From now
on we assume that G is connected reductive, and denote by u a regular unipotent
element. We denote by B ⊂ G the unique Borel subgroup containing u, by U its
unipotent radical (so that u ∈ U) and choose a maximal torus T ⊂ B. We will
denote by b, t, u the Lie algebras of B, T and U respectively. We will also denote
by R ⊂ X∗(T) the root system of (G,T), by R∨ ⊂ X∗(T) the associated coroots,
and by ZR ⊂ X∗(T) and ZR∨ ⊂ X∗(T) the root and coroot lattices. We will
denote by r the rank of G (equal to dim(T)), by rss its semisimple rank (i.e. the
rank of ZR), and by ` the characteristic of K.

Let Z(G) be the (scheme-theoretic) center of G. We start with the following
observation.

Lemma 2.2. The group scheme Z(G) is smooth iff the quotient X∗(T)/ZR has
no `-torsion.

Proof. It is well known that Z(G) is the scheme-theoretic intersection of the kernels
of the roots of (G,T); in other words it is the diagonalizable K-group scheme whose
group of characters is X∗(T)/ZR. This implies the desired claim. �
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Our main concern in this subsection is to determine when ZG(u) is smooth. Our
starting point is the following result due to Steinberg.

Proposition 2.3 (Steinberg). Assume that X∗(T)/ZR∨ has no `-torsion. Then
ZU(u) is smooth of dimension rss, and we have

gu = bu = z⊕ uu,

where z ⊂ t is the center of g, i.e. the intersection of the kernels of the differentials
of the roots of (G,T). In particular, ZG(u) is smooth iff Z(G) is smooth, and in
this case multiplication induces an isomorphism of group schemes

Z(G)× ZU(u)
∼−→ ZG(u).

Proof. It is proved in [St] (see also [Hu, §§4.4–4.5]) that under our assumptions
we have gu = bu = z ⊕ uu, and that dim(uu) = dim(ZU(u)red) = rss. (In these
references G is assumed to be semisimple and simply connected, but the proof
applies in the present generality.) This implies that dim(ZU(u)) = dim(uu), hence
that ZU(u) is smooth by Lemma 2.1. These results also imply that ZG(u) is
smooth iff dim(z) = r − rss, i.e. dim(z) = dim(Z(G)). Now it is easily seen that
Lie(Z(G)) ⊂ z, so that this condition is equivalent to Z(G) being smooth. If
this condition is satisfied, since all the group schemes involved are smooth, the
isomorphism Z(G) × ZU(u)

∼−→ ZG(u) can be checked at the level of varieties,
where it is well known (see e.g. [Hu, End of §4.1]). �

The other result we will need (for which we do not need any assumption) is the
following.

Lemma 2.4. The group scheme ZU(u) is smooth, of dimension rss, and abelian.

Proof. First we assume that G is semisimple and simply connected. In this case, the
fact that ZU(u) is smooth of dimension rss has been established in Proposition 2.3.
Once this fact is established, to prove that this group scheme is abelian one can
work at the level of varieties. In this setting, this result is discussed in [Hu, §4.7].
(In case ` is good this result is due to Springer [Sp], and follows from the fact that
ZU(u) is connected; the case of bad characteristics, which will not be used below,
was worked out by Lou.)

We deduce the general case as follows. Let D(G) be the derived subgroup of G,
and let G′ → D(G) be its simply connected cover. Let B′ be the preimage of B
under the composite morphism ν : G′ → G, and U′ be its unipotent radical. Then
ν restricts to a group scheme isomorphism U′

∼−→ U. In particular, there exists a
unique element u′ ∈ U′ mapping to u, and we obtain a group scheme isomorphism

ZU′(u
′)
∼−→ ZU(u).

By the case treated above we know that ZU′(u
′) is smooth, of dimension rss, and

abelian. We deduce that ZU(u) has the same properties. �

In the rest of this subsection, for completeness we explain how Proposition 2.3
can be slightly generalized to cover more general reductive groups. First we consider
the case of simple groups. (Here by a simple group we mean a semisimple group of
adjoint type whose root system is irreducible.)

Lemma 2.5. Assume that G is simple, and that ` 6= 2 if G is of type B, C, D or
E7, and ` 6= 3 if G is of type E6. Then we have gu = bu.
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Proof. If G is of type A then the claim can be checked by a matrix calculation.
Otherwise, our assumption ensures that X∗(T)/ZR∨ has no p-torsion, so that the
claim follows from Proposition 2.3. �

We deduce the following more general criterion.

Proposition 2.6. (1) We have

bu = z⊕ uu,

where z ⊂ t is the center of g, i.e. the intersection of the kernels of the
differentials of the roots of (G,T). As a consequence, if X∗(T)/ZR has
`-torsion then ZG(u) is not smooth.

(2) Assume either that X∗(T)/ZR∨ has no `-torsion, or that ` satisfies the
following condition: ` 6= 2 if R has a component of type B, C, D or E7,
and ` 6= 3 if R has a component of type E6. Then if X∗(T)/ZR has no
`-torsion, the group scheme ZG(u) is smooth, and multiplication induces
an isomorphism of group schemes

Z(G)× ZU(u)
∼−→ ZG(u).

Proof. (1) The equality bu = z ⊕ uu is easily checked using the fact that u has
nontrivial components on any root subgroup corresponding to a simple root. Now
the dimension of z is the codimension of the image of k⊗Z ZR in t∗. If X∗(T)/ZR
has `-torsion then it follows that dim(bu) > r−rss +dim(uu). In view of Lemma 2.4
this implies that dim(gu) > r, hence that ZG(u) is not smooth by Lemma 2.1.

(2) We assume that X∗(T)/ZR has no `-torsion. In this case Z(G) is smooth
by Lemma 2.2. Therefore, as in the proof of Proposition 2.3, to prove the claims it
suffices to prove that if one of the two conditions of the statement hold the group
scheme ZG(u) is smooth. In case X∗(T)/ZR∨ has no `-torsion, this has been proved
in Proposition 2.3.

Now we assume that ` 6= 2 if R has a component of type B, C, D or E7, and
` 6= 3 if R has a component of type E6. By (1), since X∗(T)/ZR has no `-torsion
we have dim(bu) = r. Hence, in view of Lemma 2.1, ZG(u) is smooth iff gu = bu.
Consider the adjoint semisimple group G/Z(G); then we have Lie(G/Z(G)) = g/z.
The kernel of the quotient map g→ g/z is contained in b; therefore, to prove that
gu = bu it suffices to prove that (g/z)u = (b/z)u, where u is the image of u
in G/Z(G) (a regular unipotent element). Here G/Z(G) is a product of simple
groups; therefore the desired equality follows from Lemma 2.5. �

Remark 2.7. In case G is an adjoint group of type E6 and ` = 3, or G is an adjoint
group of type E7 and ` = 2, the group scheme ZG(u) is not smooth, as can be
checked from the tables of [La] and Lemma 2.1. (In particular, Lemma 2.5 does
not hold in these cases either.) We do not know what happens for types B, C, D
in characteristic 2.

2.4. The unipotent cone and the multiplicative Springer resolution. We
continue to assume that G is a connected reductive group. We fix a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B, and denote by U the unipotent radical of B.
The multiplicative Springer resolution is the induced variety

Ũ := G×B U,
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where B acts on U by conjugation. Let us denote by U ⊂ G the unipotent cone,
i.e. the closed subvariety whose K-points are the unipotent elements in G. The

adjoint action of G on itself induces a morphism Ũ → G which factors through a
morphism

π : Ũ → U .
This morphism is surjective (see [Bo, Theorem 11.10]), hence induces an embedding
of G-modules

(2.1) O(U) ↪→ O(Ũ).

We will also denote by Ureg ⊂ U the unique open G-orbit, which consists of the
regular unipotent elements. If u ∈ Ureg, then using the notation of §2.2 we have
Ureg = O(u); therefore, the adjoint action induces an isomorphism

(2.2) G/ZG(u)
∼−→ Ureg.

The choice of B determines a system of positive roots for (G,T), chosen as the
opposites of the roots appearing in the Lie algebra of B, and therefore a notion
of dominant weights. For λ ∈ X∗(T) we denote by OŨ (λ) the pullback under the

projection Ũ → G/B of the line bundle on G/B naturally associated with λ.

Lemma 2.8. If λ ∈ X∗(T) is dominant, then there exists an embedding of G-

modules Γ(G/B,OG/B(λ)) ↪→ Γ(Ũ ,OŨ (λ)). In particular, Γ(Ũ ,OŨ (λ)) 6= 0.

Proof. The pushforward of the structure sheaf under the projection Ũ → G/B is the
quasi-coherent sheaf on G/B associated with the B-module O(U). In particular,
the natural morphism from OG/B is induced by the embedding k ↪→ O(U), hence

is injective. We deduce an embedding Γ(G/B,OG/B(λ)) ↪→ Γ(Ũ ,OŨ (λ)). �

We denote by Ũreg the inverse image of Ureg in Ũ . For each simple root α we
denote by U(α) ⊂ U the subgroup generated by the root subgroups associated
with roots different from −α (in other words, the unipotent radical of the parabolic
subgroup of G containing B associated with the subset {α} of the set of simple
roots). Then U(α) is stable under the B-action, so that we can define

Dα := G×B U(α).

The subvariety Dα is a divisor in Ũ , and we have

OŨ (Dα) = OŨ (−α).

For any sum of positive roots λ, written as λ =
∑
α nα · α (where α runs over

the simple roots), we set

Dλ :=
∑
α

nα · Dα.

Then Dλ is an effective divisor in Ũ with

OŨ (Dλ) = OŨ (−λ),

and if each coefficient nα is positive the associated closed subscheme Yλ ⊂ Ũ satisfies

Ũ r Yλ = Ũreg,
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see e.g. [Hu, §4.1]. It follows that if jreg : Ũreg ↪→ Ũ is the embedding, then we have

(2.3) (jreg)∗OŨreg = lim−→
m∈Z≥0

OŨ (m · Dλ)

(where the maps OŨ (m · Dλ) → OŨ ((m + 1) · Dλ) are induced by the natural
embedding OŨ ↪→ OŨ (Dλ)).

Lemma 2.9. Let λ =
∑
α nα · α, where nα > 0 for all α. Then restriction to Ũreg

induces an isomorphism

lim−→
m∈Z≥0

Ext1
CohG(Ũ)

(OŨ (m · λ),OŨ )
∼−→ Ext1

CohG(Ũreg)
(OŨreg ,OŨreg).

Proof. The morphism jreg is affine. Therefore, using adjunction we obtain an iso-
morphism

Ext1
CohG(Ũreg)

(OŨreg ,OŨreg) = Ext1
CohG(Ũreg)

(j∗regOŨ ,OŨreg)

∼= Ext1
QCohG(Ũ)

(OŨ , (jreg)∗OŨreg).

The derived functor functor RΓ(Ũ ,−) commutes with filtered direct limits (see
e.g. [Li, Lemma 3.9.3.1]), and so does the functor of derived G-invariants, see [J1,
Lemma I.4.17]. Since the functor RHomQCohG(Ũ)(OŨ ,−) is the composition of

these two functors (see [MR1, Proposition A.6]), it also satisfies this property,
which implies the desired claim in view of (2.3). �

2.5. Tilting modules and subgroups of the centralizer of a regular unipo-
tent element. From now on we assume that:

(1) G has simply connected derived subgroup (i.e. X∗(T)/ZR∨ is free);
(2) ` is good for G;
(3) X∗(T)/ZR has no `-torsion.

The assumption of the derived subgroup of G has the following consequence.

Lemma 2.10. (1) The morphism

O(U)→ O(Ureg)

induced by restriction is an isomorphism.

(2) The restriction of π to Ũreg is an isomorphism of varieties Ũreg
∼−→ Ureg.

Proof. Since U and Ũ are unchanged if G is replaced by its derived subgroup, we
can assume G is semisimple (and simply connected). Then (1) follows from the
normality of U (see [Hu, Theorem 4.24(iii)]) and the fact that the complement of
Ureg in U has codimension at least 2 (which itself follows from the facts that U has
finitely many orbits and that non-regular orbits have dimension at most dim(U)−2,
see [Hu, Remark in §4.1].) For (2), see [Hu, §6.3–6.4]. �

Lemma 2.11. We have
H1(Ũ ,OŨ ) = 0,

and moreover the G-module O(Ũ) admits a good filtration.

Proof. Assume first that G is semisimple. Under our assumption on `, Ũ identifies
with the usual (additive) Springer resolution (see [KLT, Proposition 3]), so that our
claims are special cases of [KLT, Theorem 2] and [KLT, Theorem 7]. The general
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case follows, using the fact that Ũ is unchanged if G is replaced by its derived
subgroup D(G), and that a G-module V admits a good filtration iff V|D(G) admits
a good filtration. �

Now we fix u ∈ Ureg. Under our assumptions, Proposition 2.3 ensures that the
centralizer ZG(u) is smooth. By Lemma 2.2, the center Z(G) is also smooth.

Lemma 2.12. Let K ⊂ ZG(u) be a subgroup scheme containing Z(G). If for any
finite-dimensional tilting G-module V the embedding

V ZG(u) ↪→ V K

is an equality, then K = ZG(u).

Proof. We will show that if K ⊂ ZG(u) is a proper subgroup scheme containing
Z(G), then there exists a finite-dimensional tilting G-module V such that the
embedding V ZG(u) ↪→ V K is strict.

We assume (as we may, by surjectivity of π) that u ∈ U. By Proposition 2.3,
multiplication induces a group scheme isomorphism

ZU(u)× Z(G)
∼−→ ZG(u).

Since K is contained in ZG(u) and contains Z(G), we deduce that we also have

(ZU(u) ∩K)× Z(G)
∼−→ K.

By Lemma 2.4, ZU(u) is abelian; therefore the same is true for ZG(u), hence K
is automatically a normal subgroup. We deduce that the quotient ZG(u)/K is a
smooth affine group scheme of finite type (see §2.1). Since this group scheme is
nontrivial by assumption, it follows that O(ZG(u)/K) 6= k.

Let L ⊂ O(ZG(u)/K)/k be a simple ZG(u)/K-submodule (where the action on
O(ZG(u)/K) is induced by right multiplication), and denote by E its inverse image
in O(ZG(u)/K). Since ZU(u) is unipotent, the group ZG(u)/K ∼= ZU(u)/ZU(u)∩
K is also unipotent; therefore L ∼= k, and E fits in an exact sequence of ZG(u)/K-
modules

(2.4) k ↪→ E � k.
Recall that any ZG(u)-module M determines a G-equivariant quasi-coherent

sheaf LG/ZG(u)(M) on G/ZG(u), see [J1, §I.5.8]. In particular, if f : G/K →
G/ZG(u) is the projection, then we have

f∗OG/K
∼= LG/ZG(u)(O(ZG(u)/K)),

see [J1, §I.5.12, Remark 3]. The functor LG/ZG(u)(−) is exact; in particular, the
short exact sequence (2.4) provides a short exact sequence of G-equivariant coherent
sheaves

(2.5) OG/ZG(u) ↪→ LG/ZG(u)(E)� OG/ZG(u),

and the embedding E ↪→ O(ZG(u)/K) provides an embedding

(2.6) LG/ZG(u)(E) ↪→ f∗OG/K.

In view of (2.2), the exact sequence (2.5) can be considered as an exact sequence

in CohG(Ureg), or equivalently (see Lemma 2.10(2)) in CohG(Ũreg). After choosing
a weight λ as in Lemma 2.9, which we furthermore assume to be dominant, this
lemma ensures that there exists m ∈ Z≥0 and a short exact sequence

(2.7) OŨ ↪→ E � OŨ (m · λ)



AFFINE HECKE CATEGORY AND REGULAR UNIPOTENT CENTRALIZER, I 11

for some m ∈ Z≥0 whose image under j∗reg is (2.5). In particular, E is a vector

bundle on Ũ such that j∗regE = LG/ZG(u)(E). Since Ũreg is open (hence dense) in

Ũ , the morphism

E → (jreg)∗LG/ZG(u)(E)

induced by adjunction is injective. Taking global sections we deduce an embedding
of G-modules

Γ(Ũ ,E ) ↪→ Γ(G/ZG(u),LG/ZG(u)(E)).

Composing this map with the morphism obtained from (2.6) by taking global sec-
tions, we deduce an embedding of G-modules

(2.8) Γ(Ũ ,E ) ↪→ O(G/K).

Let us now come back to (2.7), and denote by Rep∞(G) the category of all
(not necessarily finite-dimensional) algebraic G-modules. By Lemma 2.11 we have

H1(Ũ ,OŨ ) = 0. Therefore, by taking global sections we obtain an exact sequence
of G-modules

(2.9) O(Ũ) ↪→ Γ(Ũ ,E )� Γ(Ũ ,OŨ (m · λ)).

Now the second statement in Lemma 2.11 implies that for any finite-dimensional
tilting G-module V we have

Ext1
Rep∞(G)

(
V,O(Ũ)

)
= 0.

On the other hand, using Lemma 2.8 we see that there exists a (finite-dimensional)
tilting G-module V (e.g. the indecomposable tilting G-module with highest weight
mλ) such that

HomRep∞(G)(V,Γ(Ũ ,OŨ (m · λ))) 6= 0.

Applying the functor HomRep∞(G)(V,−) to (2.9) we deduce a strict embedding

HomRep∞(G)(V,O(Ũ)) ↪→ HomRep∞(G)(V,Γ(Ũ ,E ))

and then, using (2.1) and (2.8), a strict embedding

HomRep∞(G)(V,O(U)) ↪→ HomRep∞(G)(V,O(G/K)).

By Lemma 2.10(1) and (2.2), this map can be considered as a strict embedding

HomRep∞(G)(V,O(G/ZG(u))) ↪→ HomRep∞(G)(V,O(G/K)).

Now, by Frobenius reciprocity we have isomorphisms

HomRep∞(G)(V,O(G/ZG(u))) ∼= (V ∗)ZG(u),

HomRep∞(G)(V,O(G/K)) ∼= (V ∗)K.

Since V ∗ is a tilting module, this finishes the proof. �
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2.6. The Springer resolution. We continue with the assumptions of §2.5.
We denote by g, b, u, t the Lie algebras of G, B, U, T. We now consider the

more traditional “additive” Springer resolution

Ñ := G×B u,

and the Grothendieck resolution

g̃ := G×B b.

Both Ñ and g̃ are vector bundles over the flag variety G/B. Moreover there exists
a natural morphism g̃ → t induced by the quotient morphism b → b/u ∼= t, and

Ñ identifies with the fiber of this map over 0. We will also denote by treg ⊂ t the
open subset of regular elements, i.e. the complement of the union of the kernels of
the differentials of the roots of (G,T). (Note that our assumption (3) implies that
the differentials of roots are nonzero, so that this open subset is nonempty.)

Lemma 2.13. There exists a canonical isomorphism of G-varieties

G/T× treg
∼−→ g̃×t treg.

Proof. As explained in [J2, p. 188], the adjoint action induces an isomorphism

U× treg
∼−→ b×t treg,

for the morphism b → t considered above. Inducing from B to G we deduce the
desired isomorphism. �

Below we will use the following well-known properties of the Springer resolution.

Lemma 2.14. (1) For any i > 0, we have Hi(Ñ ,OÑ ) = 0.
(2) We have

O(Ñ ) ∼= IndG
ZG(u)(k),

and moreover this G-module admits a good filtration.
(3) We have a canonical isomorphism of O(treg)-modules

O(treg)⊗O(t) O(g̃) ∼= O(treg)⊗k IndG
T (k).

Proof. In case G is semisimple, claim (1) is proved in [KLT, Theorem 2], and
the second assertion in (2) is proved in [KLT, Theorem 7]. As in the proof of
Lemma 2.11, these statements follow in the general case.

Let now N ⊂ g be the nilpotent cone, i.e. the closed subvariety whose K-points
are the nilpotent elements in g. Our assumptions imply that the prime number
` is pretty good in the sense of [Her], see [Her, Lemma 2.12]. In view of [Her,
Corollary 5.5], we deduce that there exists a G-equivariant “Springer isomorphism”

U ∼−→ N .
By [McN, Remark 10], such an isomorphism necessarily restricts to a B-equivariant

isomorphism U
∼−→ u, which itself induces a G-equivariant isomorphism Ũ ∼−→ Ñ .

Hence to finish the proof of (2) it suffices to construct an isomorphism of G-

modules O(Ũ) ∼= IndG
ZG(u)(k). However, U is a normal variety (see the proof of

Lemma 2.10); therefore by Zariski’s Main Theorem the projective and birational

morphism π induces an isomorphism O(U)
∼−→ O(Ũ), so that the claim follows from

Lemma 2.10(1) and (2.2).
Claim (3) follows Lemma 2.13 by taking global sections. �
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Bn (n ≥ 2) Cn (n ≥ 3) Dn (n ≥ 4) E6 E7 E8 F4 G2

` 6= 2 ` - n ` 6= 2 ` 6= 3 ` 6= 2 ∅ ` 6= 3 ` 6= 2

Figure 2.1. Conditions on `

2.7. Fixed points of the centralizer of a regular unipotent element. We
continue with the assumptions of §§2.5–2.6.

Lemma 2.15. For any finite-dimensional G-module V which admits a good filtra-
tion and any regular unipotent element u ∈ G, we have

dim(V ZG(u)) = dim(V0).

Proof. Lemma 2.14(1) and standard arguments imply that the G-module O(g̃)

admits a filtration with associated graded isomorphic to O(t) ⊗ O(Ñ ); see [BMR,
Proposition 3.4.1] or [MR1, Lemma 4.12] for similar considerations. In particular,
this space is free as an O(t)-module, it admits a good filtration (by Lemma 2.14(2)),
and we have a canonical isomorphism

(2.10) k⊗O(t) O(g̃) ∼= O(Ñ ).

Now, we consider the complex RIG(V ⊗ O(g̃)), where IG is the functor of G-
invariants. Since V and O(g̃) admit good filtrations, the G-module V ⊗ O(g̃)
also admits a good filtration (see [J1, Proposition II.4.21]), which implies that our
complex is concentrated in degree 0 (see [J1, Proposition II.4.13]). Using [MR1,
Proposition A.8], Lemma 2.14(2) and (2.10) we see that

k
L
⊗O(t) RIG(V ⊗ O(g̃)) ∼= RIG(V ⊗ IndG

ZG(u)(k)).

As above the right-hand side is concentrated in degree 0, and isomorphic to V ZG(u).
In particular, from this computation one deduces that (V ⊗O(g̃))G is free over O(t),
and that its rank is dim(V ZG(u)).

On the other hand, using Lemma 2.14(3) we see that

O(treg)⊗O(t) (V ⊗ O(g̃))G ∼=
(
V ⊗ O(treg)⊗ IndG

T (k)
)G ∼= V0 ⊗ O(treg),

so that this O(treg)-module is free of rank dim(V0). The desired equality follows. �

2.8. Fixed points of regular unipotent elements in tilting modules with
quasi-minuscule highest weight. In this subsection we drop our previous as-
sumptions, but assume instead that G is quasi-simple and simply connected, not of
type A. We will denote by α0 its highest short root (i.e. its unique quasi-minuscule
dominant weight).

Lemma 2.16. Assume that ` := char(K) satisfies the conditions in Figure 2.1.
Then if V is the indecomposable tilting module of highest weight α0 and u ∈ G is
regular unipotent, we have

dim(V u) = dim(V0).

Proof. 2 The conditions in Figure 2.1 are exactly those which guarantee that the
Weyl module of highest weight α0 is simple, hence tilting (see [Lüb], see also [Ko,
Table 1]).

2This proof was explained to one of us by M. Korhonen. Our earlier proof required stronger
assumptions on `.
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Assume first that G is of exceptional type. Then the Jordan blocks of u acting
on V (in particular their number, which coincides with dim(V u)) are described
in [La]. From these tables we obtain that the number of Jordan blocks is in each
case equal to the number of short simple roots in R, i.e. to dim(V0).

We assume now that G is of classical type. If G is of type Bn then G ∼= Spin(2n+
1,k) and V is the natural (2n+1)-dimensional representation of SO(2n+1,k), seen
as a G-module through the canonical surjection Spin(2n + 1,k) � SO(2n + 1,k);
the desired claim is then clear. If G is of type Dn then V is the adjoint represen-
tation. By Proposition 2.6 the dimension of gu is n, which of course coincides with
dim(g0) = dim(t).

Finally, we consider the case when G is of type Cn, so that G ∼= Sp(2n, k). If
E is the natural 2n-dimensional representation of this group, then V is the direct
summand of ∧2E (as a G-module) given by the kernel of the natural morphism
∧2E → k sending v ⊗ v′ to χ(v, v′), where χ is the alternating form used to define
the symplectic group (see e.g. [PS]); from this we see that to conclude it suffices
to prove that dim((∧2E)u) = n. Now u acting on E has a single Jordan block, so
that the desired claim follows from [Lin] or [Ba, Theorem 2.1(2)]. �

Remark 2.17. M. Korhonen informed us that Lemma 2.16 holds for all character-
istics, except maybe in type D for ` = 2. For instance in type B for ` = 2, the
tilting module is the restriction of the natural module for the group of type Dn+1,
and a regular unipotent element for the group of type Bn is regular in the group
of type Dn+1, hence acts on this module with two Jordan blocks.

3. Reconstructing a subgroup from the restriction functor

In this section we prove a slight extension of [Be1, Proposition 1] which will be
required for our arguments.

3.1. Statement. Let (A, ?) be a monoidal category. Recall that the Drinfeld center
Z(A) of (A, ?) is the category whose objects are pairs (X, ι) with X an object in A
and

ι : X ? (−)
∼−→ (−) ? X

an isomorphism of functors such that

ιY ?Z = (id ? ιZ) ◦ (ιY ? id)

for any Y, Z in A (where we omit the associativity isomorphism for simplicity), and
whose morphisms from (X, ι) to (X ′, ι′) are morphisms X → X ′ in A which are
compatible with the morphisms ι and ι′ in the obvious way. The Drinfeld center
of a monoidal category admits a natural structure of braided monoidal category,
with monoidal product induced by that of A, and the braiding (X, ι) ? (X ′, ι′)

∼−→
(X ′, ι′) ? (X, ι) given by ι.

If (B,⊗) is a symmetric monoidal category, then as explained in [Be1, §2.1] the
datum of a braided monoidal functor from B to Z(A) is equivalent to that of a
central functor from B to A, i.e. a pair consisting of a monoidal functor F : B→ A
(with “monoidality” isomorphisms φ−,−) together with bifunctorial isomorphisms

σX,Y : F (X) ? Y
∼−→ Y ? F (X)

for X in B and Y in A, which satisfy the following properties.
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(1) For X,X ′ in B, the isomorphism σX,F (X′) coincides with the composition

F (X) ? F (X ′)
φ−1

X,X′−−−−→
∼

F (X ⊗X ′) ∼−→ F (X ′ ⊗X)
φX′,X−−−−→
∼

F (X ′) ? F (X)

where the middle isomorphism is the image under F of the commutativity
constraint of B (applied to (X,X ′)).

(2) For Y1, Y2 in A and X in B, the composition

F (X) ? Y1 ? Y2

σX,Y1?idY2−−−−−−−→
∼

Y1 ? F (X) ? Y2

idY1?σX,Y2−−−−−−−→
∼

Y1 ? Y2 ? F (X)

coincides with σX,Y1?Y2 (where we omit the associativity constraint of A).
(3) For Y in A and X1, X2 in B, the composition

F (X1 ⊗X2) ? Y
φX1,X2

?Y
−−−−−−−→

∼
F (X1) ? F (X2) ? Y

idF (X1)?σX2,Y−−−−−−−−−−→
∼

F (X1) ? Y ? F (X2)

σX1,Y
?idF (X2)−−−−−−−−−−→
∼

Y ? F (X1) ? F (X2)
idY ?φ

−1
X1,X2−−−−−−−−→
∼

Y ? F (X1 ⊗X2)

coincides with σX1⊗X2,Y .

Our goal in this section is to prove the following statement. Here, we let K be
an algebraically closed field, and for H an affine K-group scheme of finite type we
denote by Rep(H) the category of finite-dimensional H-modules (in other words,
O(H)-comodules). This category admits a natural symmetric monoidal structure,
with product given by tensor product over K.

Proposition 3.1. Let G be an affine K-group scheme of finite type. Let (A,⊗) be
a K-linear abelian monoidal category with unit object 1 which satisfies End(1) = K,
and such that ⊗ is exact in each variable. We assume furthermore that 1 is a simple
object of A, and that HomA(1, X) is finite-dimensional for all X in A. Assume we
are given an exact, central functor

F : Rep(G)→ A

such that each object in A is isomorphic to a subquotient of an object F (V ) with
V in Rep(G). Then there exists a subgroup scheme H ⊂ G and an equivalence of
monoidal categories

Φ : Rep(H)
∼−→ A

which satisfies F ∼= Φ ◦ ResGH, where ResGH : Rep(G) → Rep(H) is the restriction
functor.

Remark 3.2. (1) The assumption that 1 is simple follows from the condition
that End(1) = K in case A is rigid, see [DM, Proposition 1.17].

(2) The subgroup H ⊂ G is unique only up to conjugation; using the notation
introduced in the proof of the proposition, it depends on the subobject J ,
which cannot be chosen in any canonical way.

This proposition appears as [Be1, Proposition 1] with slightly different assump-
tions. (Namely, it is not assumed in [Be1] that 1 is simple, but one imposes the
extra assumption that K is uncountable.) Below we show how to adapt the proof
in [Be1] in order to fit with the present assumptions. (In later sections we will need
to apply this proposition in case K is an algebraic closure of a finite field, hence in
particular is countable.) No detail of this proof will be used in later sections.
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3.2. Preliminaries. The main ingredient needed to extend the proof of [Be1] will
be the following easy commutative algebra lemma.

Lemma 3.3. Let K be an algebraically closed field, and let L/K be a field extension.
Assume there exists a field extension K′/K, a finitely generated commutative K′-
algebra A, and an embedding of K′-algebras K′ ⊗K L ⊂ A. Then L = K.

Proof. One can of course assume that K′ is algebraically closed. Assume for a
contradiction that L 6= K, and let a ∈ L r K. Let ã = 1 ⊗ a ∈ K′ ⊗K L ⊂ A.
One can consider ã as a scheme morphism Spec(A) → A1

K′ . The image of this
morphism is constructible by Chevalley’s theorem, hence is either a finite subset
of K′ or the complement of such a subset. Now ã − t is invertible in A for any
t ∈ K, so that this image does not intersect K. We deduce that it is finite, so that
there exist a1, · · · , ar ∈ K′ such that the morphism Spec(A)→ A1

K′ associated with
the element

∏r
i=1(ã − ai) has image {0}, i.e. is nilpotent in A. Hence for some

N ≥ 1 the elements 1, ã, · · · , ãN are linearly dependent (over K′) in K′⊗K L. Then
the elements 1, a, · · · , aN must be linearly dependent (over K) in L, so that a is
algebraic over K. This is impossible since K is algebraically closed and a /∈ K. �

We will also require the following lemma.

Lemma 3.4. Let K be a field, and let (A,⊗) be a K-linear abelian monoidal category
which satisfies the following assumptions:

(1) the unit object 1 is simple and satisfies End(1) = K;
(2) for any X in A, the K-vector space HomA(1, X) is finite-dimensional;
(3) ⊗ is exact in each variable.

Then for all objects M and N in A, the morphism

HomA(1,M)⊗K HomA(1, N)→ HomA(1,M ⊗N)

which, for f ∈ HomA(1,M) and g ∈ HomA(1, N), sends f ⊗ g to the morphism

1 = 1⊗ 1 f⊗g−−−→M ⊗N,

is injective.

Proof. For any M in A, since dim HomA(1,M) < ∞ we can consider the object
HomA(1,M)⊗K 1, and we have an obvious morphism

(3.1) HomA(1,M)⊗K 1→M.

We claim that this morphism is injective. In fact, its kernel is a subobject of the
semisimple object HomA(1,M)⊗K 1, hence is itself a direct sum of copies of 1. If
it were nonzero, then there would exist a morphism 1→ HomA(1,M)⊗K 1 whose
composition with (3.1) vanishes. Now we have

HomA

(
1,HomA(1,M)⊗K 1

) ∼= HomA(1,M),

and for any nonzero f in the right-hand side, the composition of its image in the
left-hand side with (3.1) is f , hence is nonzero. The kernel under consideration
must therefore vanish.

Now, consider a second object N in A. Tensoring (3.1) on the right with N
(which is an exact functor by assumption) we deduce an embedding

HomA(1,M)⊗K N ↪→M ⊗N.
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Finally, applying the left-exact functor HomA(1,−) we deduce an embedding

HomA(1,M)⊗K HomA(1, N) ↪→ HomA(1,M ⊗N),

which is easily seen to be given by the formula in the statement. �

3.3. Proof of Proposition 3.1. In this subsection we assume that the condi-
tions in Proposition 3.1 are satisfied, and we explain how to prove [Be1, Lemma 1]
without relying on K being uncountable. Once that is in place, the argument for
Proposition 3.1 follows in the same manner as for [Be1, Proposition 1].

We recall the necessary notation from loc. cit. Let OG denote the ring of regular
functions on G regarded as a commutative ring object in the symmetric monoidal
category Ind(Rep(G)) of ind-objects in Rep(G) with G-action coming from left
multiplication of G on itself. Then, still denoting by F the natural extension of this
functor to ind-objects, F (OG) inherits a structure of ring object in the category
Ind(A) of ind-objects in A. Let J ⊂ F (OG) be a maximal left ideal subobject;
then as explained in [Be1, p. 73], J is automatically a right ideal subobject also,
so that OH := F (OG)/J acquires a natural ring object (in Ind(A)) structure. (For
details justifying the existence of a maximal left ideal subobject, see [AR3].) The
multiplication map for this algebra will be denoted mOH

: OH ⊗ OH → OH, and
the unit (inherited from the unital structure of OG) will be denoted ι : 1→ OH.

We may now consider the category of (left) OH-module ind-objects in A; we
denote morphisms in this category by HomOH

(−,−). Since OH is simple when
regarded as an OH-module, the K-algebra L := EndOH

(OH) is a division algebra.
The content of [Be1, Lemma 1] is then the following.

Lemma 3.5. We have L = K.

The proof of this lemma will be given at the end of the subsection, after some
preliminary results that we now consider.

Lemma 3.6. There exists a canonical isomorphism

ς : OH ⊗ OH
∼−→ OH ⊗ OH

which satisfies the following equalities:

(1) for any morphism f : δ0 → OH we have ς ◦ (idOH
⊗ f) = f ⊗ idOH

(where
we identify 1⊗ OH and OH ⊗ 1 with OH using the unit constraint);

(2) mOH
◦ ς = mOH

;
(3) (id⊗mOH

) ◦ (ς ⊗ id) ◦ (id⊗ ς) = ς ◦ (mOH
⊗ id);

(4) (mOH
⊗ id) ◦ (id⊗ ς) ◦ (ς ⊗ id) = ς ◦ (id⊗mOH

);

Proof. As part of the central structure on F , we have a canonical isomorphism

σOG,F (OG) : F (OG)⊗ F (OG)
∼−→ F (OG)⊗ F (OG).

By functoriality this isomorphism sends F (OG) ⊗ J to J ⊗ F (OG). Moreover,
this isomorphism is also (via the appropriate identifications) the image under F of
the commutativity constraint in Rep(G), which is symmetric; therefore it satisfies
σOG,F (OG)◦σOG,F (OG) = id, hence also sends J ⊗F (OG) to F (OG)⊗J . It follows

that this isomorphism sends J ⊗ F (OG) + F (OG)⊗J to itself, so that it induces
the wished-for isomorphism

ς : OH ⊗ OH
∼−→ OH ⊗ OH.
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All the desired equalities hold for the corresponding structures on OG in the
category Ind(Rep(G)); hence they hold for F (OG) in Ind(A), and finally for its
quotient OH. �

Corollary 3.7. The division algebra L is commutative, hence a field.

Proof. Composition with ι defines an isomorphism

L ∼−→ HomInd(A)(1,OH),

with inverse given by f 7→ mOH
◦ (idOH

⊗ f). In these terms multiplication can be
described as follows: given f, g : 1→ OH, the product f · g is the composition

1 = 1⊗ 1 f⊗g−−−→ OH ⊗ OH

mOH−−−→ OH.

Using the isomorphism ςOH
and properties (1)–(2) in Lemma 3.6, from this descrip-

tion it is not difficult to check that L is commutative, hence a field. �

Lemma 3.8. (1) For any V in Rep(G) we have a canonical isomorphism of
OH-modules

OH ⊗ F (V ) ∼= OH ⊗K V.

(2) For any M in A, the OH-module OH ⊗M is isomorphic to a finite direct
sum of copies of OH.

(3) The functor M 7→ HomInd(A)(1,OH ⊗M) is exact.

Proof. (1) We have a canonical isomorphism of OG-modules

OG ⊗ V
∼−→ OG ⊗K ForG(V ),

where in the left-hand side we consider the diagonal G-action and on the right-hand
side we consider the action on OG only. Applying F we deduce an isomorphism of
F (OG)-modules

F (OG)⊗ F (V )
∼−→ F (OG)⊗K V.

Being an isomorphism of F (OG)-modules, this morphism must send

J ·
(
F (OG)⊗ F (V )

)
= J ⊗ F (V )

to
J ·

(
F (OG)⊗K V

)
= J ⊗K V ;

we deduce the desired isomorphism by passing to the quotients by these submodules.
(2) By assumption, M is a subquotient of F (V ) for some V in Rep(G). Then,

in view of (1) the OH-module OH ⊗M is a subquotient of OH ⊗K V . The latter
object being a direct sum of copies of the simple module OH, OH ⊗M must also
be a direct sum of copies of this module.

(3) Consider an exact sequence 0 → M1 → M2 → M3 → 0 in A. By exactness
of ⊗, tensoring with OH we deduce an exact sequence

(3.2) 0→ OH ⊗M1 → OH ⊗M2 → OH ⊗M3 → 0

in Ind(A). Then, applying the left-exact functor HomInd(A)(1,−) we deduce a left
exact sequence

0→ HomInd(A)(1,OH⊗M1)→ HomInd(A)(1,OH⊗M2)→ HomInd(A)(1,OH⊗M3).

Now, each HomInd(A)(1,OH ⊗Mi) has a natural structure of L-vector space, and
each map in this sequence is L-linear. The dimension of HomInd(A)(1,OH ⊗Mi)
is the number of copies of OH appearing in OH ⊗Mi. The exact sequence (3.2)
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shows that the number of copies in OH ⊗M2 is the sum of the number of copies
in OH ⊗M1 and OH ⊗M3. Therefore the morphism HomInd(A)(1,OH ⊗M2) →
HomInd(A)(1,OH ⊗ M3) must be surjective, showing that the above sequence is
exact. �

Proof of Lemma 3.5. We set

R := HomInd(A)(1,OH ⊗ OH).

Properties (3)–(4) in Lemma 3.6 ensure that the composition(
OH ⊗ OH

)
⊗
(
OH ⊗ OH

) id⊗ς⊗id−−−−−→ OH ⊗ OH ⊗ OH ⊗ OH

mOH
⊗mOH−−−−−−−−→ OH ⊗ OH

defines a structure of ring-object on OH ⊗ OH; hence, copying the description of
the product in HomInd(A)(1,OH), we see that R admits a natural ring structure.
As for L one sees that this ring is commutative.

The embeddings

OH = OH ⊗ 1
id⊗ι−−−→ OH ⊗ OH and OH = 1⊗ OH

ι⊗id−−−→ OH ⊗ OH

induce two K-algebra morphisms L → R. We use the first one to turn R into an
L-algebra. Considering also the second one we obtain an L-linear morphism

L⊗K L→ HomA(1,OH ⊗ OH)

which, for f, g : 1→ OH, sends f ⊗ g to the morphism

1 = 1⊗ 1 f⊗g−−−→ OH ⊗ OH.

By Lemma 3.4 this morphism is injective. It is also easily seen to be an L-algebra
morphism.

Now by exactness of ⊗ we have a surjective morphism

OH ⊗ F (OG)� OH ⊗ OH,

which by Lemma 3.8(1) can be interpreted as a surjective morphism

OH ⊗K O(G)� OH ⊗ OH.

This morphism is an algebra-object morphism, where the structure on the left-hand
side is the tensor product of the ring structures on OH and O(G), and the structure
on the right-hand side is as above. Applying the functor HomInd(A)(1,−), in view
of Lemma 3.8(3) we deduce a surjective L-algebra morphism

L⊗K O(G)� R,

which shows that R is finitely generated over L.
We have now checked the assumptions of Lemma 3.3 for A = R and K′ = L;

this lemma implies that L = K, which finishes the proof. �

4. Geometric Satake, central sheaves and Wakimoto sheaves

In this section we provide a reminder on the geometric Satake equivalence and
the construction of “central sheaves” on the affine flag variety.
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4.1. The affine Grassmannian and the geometric Satake equivalence. We
let G be a connected reductive algebraic group over an algebraically closed field F of
characteristic p > 0, and k be an algebraic closure of a finite field of characteristic
` 6= p.

We will denote by LG, resp. L+G, the functor from F-algebras to groups defined
by

R 7→ G
(
R((z))

)
, resp. G

(
R[[z]]

)
,

where z is an indeterminate. It is well known that the functor LG is represented by
an ind-affine group ind-scheme (which will be denoted similarly), and that L+G is
represented by an affine group scheme (which will also be denoted similarly). One
can then define the affine Grassmannian GrG as the fppf quotient

GrG = (LG/L+G)fppf .

It is well known also that GrG is represented by an ind-projective ind-scheme of
ind-finite type, which will once again be denoted similarly.

If k′ is a finite subfield of k, then we can consider the L+G-equivariant derived
category of k′-sheaves on GrG, which will be denoted Db

sph(GrG,k′). (The definition

of this category requires a little bit of care; see [G1, §6] or [BR, §1.16.4] for discus-
sions of these subtleties.) Taking the direct limit of these categories over all finite
subfields of k one obtains a category which will be denoted Db

sph(GrG,k), and which

we will consider informally as the L+G-equivariant derived category of k-sheaves on
GrG. This category admits a natural convolution product ?, and an associativity
constraint ϕ for this product. The skyscraper sheaf δGr at the base point of GrG is
a unit for ?, so that we obtain a monoidal category (Db

sph(GrG,k), ?, ϕ, δGr).

On Db
sph(GrG,k) we also have a natural perverse t-structure, whose heart will

be denoted Pervsph(GrG,k). The bifunctor ? restricts to an exact bifunctor

Pervsph(GrG,k)× Pervsph(GrG,k)→ Pervsph(GrG,k),

see [BR, §1.6.3 and §1.10.3] for details and references; moreover the restriction of
? to the category Pervsph(GrG,k) admits a commutativity constraint which can be
constructed (following an idea of Drinfeld) using a description of this product as
a “fusion product;” see [BR, §1.7] for details. In this way, Pervsph(GrG,k) comes
equipped with the structure of an abelian symmetric monoidal category.

Using a detailed study of the so-called “weight functors,” Mirković–Vilonen con-

struct in [MV] an affine k-group scheme G̃k and an equivalence of abelian symmetric
monoidal categories

(4.1) S : Pervsph(GrG,k)
∼−→ Rep(G̃k),

where the right-hand side denotes the category of finite-dimensional G̃k-modules.
Following earlier work of Lusztig [Lu], Ginzburg [Gi] and Bĕılinson–Drinfeld [BD],
they then prove the following.

Theorem 4.1 (Geometric Satake equivalence, [MV]). The group scheme G̃k is a
connected reductive group, and its root datum is dual to that of G.

See [BR] for a detailed study of the proof of Theorem 4.1. In view of this theorem,

in the rest of the paper we will denote the reductive group G̃k byG∨k . In the course of
the proof of Theorem 4.1, Mirković and Vilonen construct a canonical maximal torus
of G∨k ; we will denote this maximal torus by T∨k . (More precisely, given a choice of
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Borel subgroup B ⊂ G and of maximal torus T ⊂ B, one obtains “weight functors”
which allow to define a maximal torus T∨k ⊂ G∨k with a canonical identification
X∗(T∨k ) = X∗(T ). The authors then prove that the resulting subgroup T∨k does
not depend on the choice of B and T , see [BR, §1.5.5] for details.)

4.2. The affine flag variety and Gaitsgory’s central functor. We now choose
a Borel subgroup B ⊂ G. We have a natural group scheme morphism

ev : L+G→ G,

induced by the evaluation of z at 0. The preimage of B under this morphism will
be denoted Iw. One can then define the affine flag variety as the fppf quotient

FlG = (LG/Iw)fppf .

As for GrG, this functor is represented by an ind-projective ind-scheme of ind-finite
type. Moreover the natural projection π : FlG → GrG is a smooth projective
morphism, all of whose fibers are isomorphic to the flag variety G/B.

As for the category Db
sph(GrG,k), there exists a natural structure of monoidal

category on the Iw-equivariant derived category Db
Iw(FlG,k), whose product will be

denoted ?Iw, and whose unit object is the skyscraper sheaf δFl at the base point of
FlG. This category also admits a perverse t-structure, whose heart will be denoted
PIw; however in this setting it is not true that a convolution of perverse sheaves is
perverse.

Following an earlier construction of Gaitsgory [G1] together with a remark of
Heinloth [Hei], Zhu constructs in [Zh] an ind-scheme

(4.2) GrCen
G → A1

whose fiber over 0 identifies canonically with FlG, and whose restriction to A1r{0}
identifies with GrG × (A1 r {0}). Using this ind-scheme one can then define the
“central functor”

Z : Pervsph(GrG,k)→ Perv(FlG,k)

by setting

Z(A ) := ΨGrCen
G

(
A

L

�k kA1r{0}[1]
)
,

where ΨGrCen
G

is the nearby cycles functor associated with the morphism (4.2).

(Here Perv(FlG,k) denotes the category of all k-perverse sheaves on FlG.)
This functor will be fundamental for our constructions. Its main properties are

summarized in the following statement.

Theorem 4.2 (Gaitsgory). (1) For any A ∈ Pervsph(GrG,k) the perverse
sheaf Z(A ) is Iw-equivariant; in other words, the functor Z factors through
a functor

Pervsph(GrG,k)→ PIw,

which will be denoted similarly.
(2) For any A ∈ Pervsph(GrG,k) the perverse sheaf Z(A ) is convolution-exact,

in the sense that for any F ∈ Perv(FlG,k) the convolution product F ?Iw

Z(A ) is a perverse sheaf.
(3) For any A ∈ Pervsph(GrG,k) and F ∈ Db

Iw(FlG,k), there exists a canoni-
cal (in particular, bifunctorial) isomorphism

σA ,F : Z(A ) ?Iw F
∼−→ F ?Iw Z(A ).
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(4) The composition

Pervsph(GrG,k)
Z−→ PIw → Db

Iw(FlG,k)

has a canonical monoidal structure; in other words we have an identification
Z(δGr) = δFl, for A ,B ∈ Pervsph(GrG,k) there is a canonical isomorphism

φA ,B : Z(A ?B)
∼−→ Z(A ) ?Iw Z(B),

and these isomorphisms intertwine the associativity constraints of the mono-
idal categories Pervsph(GrG,k) and Db

Iw(FlG,k) in the obvious way.
(5) For A ∈ Pervsph(GrG,k), we have a canonical isomorphism

π∗(Z(A ))
∼−→ A .

For the original proof of these properties (in the setting where k is replaced

by Q`, and using a different version of the ind-scheme GrCen
G ), see [G1].3 For a

modification of these proofs using the present definition of GrCen
G (but still in the

setting where k is replaced by Q`), see [Zh, §7]. For a detailed review of this proof,
which allows more general coefficient rings, see [AR3].

Recall the notion of a central functor (see §3.1). By Theorem 4.2 the functor
Z admits a natural monoidal structure, and we have the natural isomorphisms
σA ,F for A in Pervsph(GrG,k) and F in Db

Iw(FlG,k). These data are exactly the
ingredients that enter the definition of central functors. The following statement
says that this triple indeed is a central functor.

Theorem 4.3 (Gaitsgory). The triple (Z, φ−,−, σ−,−) is a central functor from
Pervsph(GrG,k) to Db

Iw(FlG,k).

See [G2] for the original proof of Theorem 4.3, written in the setting where k
is replaced by Q`. See [AR3] for a detailed review of this proof, adapted to the
present setting.

4.3. Monodromy. For any A in Pervsph(GrG,k), since the perverse sheaf Z(A )
is defined in terms of nearby cycles, it comes equipped with a canonical monodromy
automorphism4

mA : Z(A )
∼−→ Z(A ).

Below we will need the following properties of these automorphisms.

Proposition 4.4. (1) For any A ,B in Pervsph(GrG,k), under the isomor-
phism φA ,B we have

mA ?B = mA ?Iw mB.

(2) For any A in Pervsph(GrG,k), the automorphism mA is unipotent.
(3) For any A ,B ∈ Pervsph(GrG,k) and f ∈ HomPIw

(Z(A ),Z(B)) we have

mB ◦ f = f ◦mA .

3In [G1] the isomorphism σA ,F is constructed only in the special case when F is perverse,

which causes complications for our later considerations.
4More precisely, Z(A ) comes equipped with a canonical action of Z`(1), the inverse limit of the

groups of `n-th roots of unity in F for all n. Below we fix once and for all a topological generator
of this group, and consider the action of this element.
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Here the proof of (1) is easy, see [AR3, Proposition 3.4.2]. For the original proof
of (2), in the setting where k is replaced by Q`, see [G1, Proposition 7]. This proof
does not easily adapt to our present setting; however an alternative proof, which
also implies property (3), is provided in [BM]. This proof does work in our present
setting, see [AR3, Proposition 2.4.6] for details.

The proof of Proposition 4.4(2)–(3) requires a different (but equivalent) descrip-
tion of the automorphisms mA , which we now explain for later use. Consider
the “loop rotation” action of Gm on FlG, induced by the action on F((z)) which
“rescales” z. Since the Iw-orbits on FlG are stable under this action, every object
F of PIw is monodromic for this action in the sense of [Ve]; therefore it admits a
canonical automorphism MF

5 (see [BM] or [AR3, §9.5.3] for details and more pre-
cise references), and M(−) defines an endomorphism of the identity functor idPIw .
As explained in [BM, §5.2], for any A in Pervsph(GrG,k) we have

(4.3) mA = M−1
Z(A ).

4.4. Iwahori orbits. From now on we fix a choice of maximal torus T ⊂ B, and set
X∨ := X∗(T ). We then obtain a canonical identification X∨ = X∗(T∨k ), see §4.1.
We will denote by R the root system of (G,T ). The choice of B determines a choice
of positive roots R+ ⊂ R (such that the T -weights in the Lie algebra of B are the
negative roots), hence a subset X∨+ ⊂ X∨ of dominant coweights. We will also
denote by B∨k ⊂ G∨k the Borel subgroup containing T∨k such that the T∨k -weights
on the Lie algebra of B∨k are the negative coroots of G.

We denote by Wf the Weyl group of (G,T ). Then Wf acts canonically on X∨,
and the semi-direct product

W := Wf o X∨

is called the (extended) affine Weyl group. This group parametrizes the Iw-orbits
on FlG in the following way. For λ ∈ X∨, we will denote by t(λ) the image of λ in
W . Then if w = t(λ)x for some λ ∈ X∨ and x ∈ Wf , we denote by FlG,w ⊂ FlG
the Iw-orbit of the coset zλẋIw, where:

• zλ is the image of z under the morphism F((z))× → LG induced by λ;
• ẋ is any lift of x in NG(T ).

Then it is well known that we have

(FlG)red =
⊔
w∈W

FlG,w.

For w ∈W we will denote by jw : FlG,w → FlG the embedding, and set

`(w) := dim(FlG,w).

A formula due to Iwahori–Matsumoto [IM] states that if w = xt(λ) with x ∈ Wf

and λ ∈ X∨, we have

(4.4) `(w) =
∑
α∈R+

x(α)∈R+

|〈λ, α〉|+
∑
α∈R+

x(α)∈−R+

|〈λ, α〉+ 1|.

Set

WCox := Wf o ZR∨,

5More precisely, F admits a canonical action of Z`(1); we deduce a canonical automorphism
by taking the image of our fixed topological generator of this group.
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where R∨ ⊂ X∨ is the coroot system of (G,T ) and ZR∨ ⊂ X∨ is the coroot lattice.
If we set S = {w ∈ WCox | `(w) = 1}, then it is well known that (WCox, S) is a
Coxeter system, whose length function is the restriction of `. Moreover, if we set
Ω := {w ∈W | `(w) = 0}, then for any ω ∈ Ω conjugation by ω stabilizes S, hence
acts on WCox as a Coxeter group automorphism. Finally, the product induces a
group isomorphism

Ω nWCox ∼−→W,

such that `(ωw) = `(w) for ω ∈ Ω and w ∈WCox.
For any w ∈W , we define the standard and costandard perverse sheaves associ-

ated with w as

∆Iw
w := jw!kFlG,w

[`(w)], ∇Iw
w := jw∗kFlG,w

[`(w)].

These complexes are indeed perverse sheaves because jw is an affine embedding,
and are Iw-equivariant. It is well known that if w, y ∈ W are such that `(wy) =
`(w) + `(y) there exist canonical isomorphisms

(4.5) ∆Iw
w ?Iw ∆Iw

y
∼= ∆Iw

wy, ∇Iw
w ?Iw ∇Iw

y
∼= ∇Iw

wy,

and that for any w ∈W there exist isomorphisms

(4.6) ∆Iw
w ?Iw ∇Iw

w−1
∼= δFl

∼= ∇Iw
w−1 ?Iw ∆Iw

w .

In particular, the objects ∆Iw
w and ∇Iw

w are invertible (in the monoidal category
(Db

Iw(FlG,k), ?Iw)) for any w ∈W .
For any w ∈W , the intersection cohomology complex of FlG,w (i.e. the image of

the unique—up to scalar—nonzero morphism ∆Iw
w → ∇Iw

w ) will be denoted ICw;
then the assignment w 7→ ICw induces a bijection between W and the set of
isomorphism classes of simple objects in PIw.

The following lemma is an analogue of [BBM, Lemma 2.1] for FlG. The same
arguments as in [BBM] apply.

Lemma 4.5. Let w ∈W , and assume that w = ωx for some ω ∈ Ω and x ∈WCox.
Then the socle of ∆Iw

w is ICω, and the the cokernel of the embedding ICω ↪→ ∆Iw
w

does not contain any object of the form ICω′ with ω′ ∈ Ω as a composition factor.
Dually, the top of ∇Iw

w is ICω, and the kernel of the surjection ∇Iw
w � ICω does

not contain any object of the form ICω′ with ω′ ∈ Ω as a composition factor.

4.5. Wakimoto sheaves. Fix λ ∈ X∨. Given µ, ν ∈ X∨+ such that λ = µ− ν and

F in Db
Iw(FlG,k), we can consider the k-vector space

HomDb
Iw(FlG,k)(∇Iw

t(µ),∇
Iw
t(ν) ?Iw F ).

If µ′, ν′ ∈ X∨+ are such that λ = µ′ − ν′ and µ′ − µ ∈ X∨+, then convolution with

∇Iw
t(µ′−µ) induces a canonical isomorphism

HomDb
Iw(FlG,k)(∇Iw

t(µ),∇
Iw
t(ν) ?Iw F )

∼−→ HomDb
Iw(FlG,k)(∇Iw

t(µ′),∇
Iw
t(ν′) ?Iw F ).

One can check that if (µ′′, ν′′) is another pair such that λ = µ′′ − ν′′ and µ′′ − µ′ ∈
X∨+, the two isomorphisms

HomDb
Iw(FlG,k)(∇Iw

t(µ),∇
Iw
t(ν) ?Iw F )

∼−→ HomDb
Iw(FlG,k)(∇Iw

t(µ′′),∇
Iw
t(ν′′) ?Iw F )
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obtained by first convolving with ∇Iw
t(µ′−µ) and then with ∇Iw

t(µ′′−µ′), or directly with

∇Iw
t(µ′′−µ), coincide; we can therefore consider the (filtrant) direct limit

lim−→
(µ,ν)∈(X∨+)2

λ=µ−ν

HomDb
Iw(FlG,k)(∇Iw

t(µ),∇
Iw
t(ν) ?Iw F )

with respect to the order such that (µ, ν)E (µ′, ν′) if µ′ − µ ∈ X∨+. We denote by

Wλ ∈ Db
Iw(FlG,k) the object which represents the functor

F 7→ lim−→
(µ,ν)∈(X∨+)2

λ=µ−ν

HomDb
Iw(FlG,k)(∇Iw

t(µ),∇
Iw
t(ν) ?Iw F ).

(This functor is indeed representable since ∇Iw
t(ν) is invertible, see (4.6).)

Following Mirković (to whom this definition is due), the objects Wλ are called
Wakimoto sheaves. Their properties are investigated in [BM] (in the setting where
k is replaced by Q`) and in [AR3] (in the general setting). Those which will be
useful for us are the following. (Here, we denote by � the order on X∨ such that
λ � µ iff µ− λ is a sum of positive roots.)

(1) If λ = µ− ν with µ, ν ∈ X∨+ we have noncanonical isomorphisms

Wλ
∼= ∆Iw

t(−ν) ?Iw ∇Iw
t(µ)
∼= ∇Iw

t(µ) ?Iw ∆Iw
t(−ν).

(2) For any λ, λ′ ∈ X∨ there exists a canonical isomorphism

Wλ ?Iw Wλ′
∼−→ Wλ+λ′ .

(3) For any λ ∈ X∨, the object Wλ is a perverse sheaf supported on FlG,t(λ),
and its restriction to FlG,t(λ) is isomorphic to kFlG,t(λ)

[`(t(λ))].

(4) For λ, λ′ ∈ X∨ and n ∈ Z we have

HomDb
Iw(Fl,k)(Wλ,Wλ′ [n]) = 0 unless λ′ � λ.

(5) For λ ∈ X∨ we have

HomPIw(Wλ,Wλ) = k and Ext1
PIw

(Wλ,Wλ) = 0.

Remark 4.6. Following [Zh], in [AR3] Wakimoto sheaves are defined in a more
general setting, where X∨+ is replaced by the intersection of X∨ with any fixed
choice of Weyl chamber in R⊗Z X∨. All the properties listed above remain true in
this generality, with the appropriate replacement for (1) and for the order in (4).
Below we will also use the Wakimoto sheaves associated with the anti-dominant
chamber, which will be denoted W op

λ (λ ∈ X∨). So, if λ = µ − ν with µ, ν ∈ X∨+
then we have

W op
λ
∼= ∇Iw

t(−ν) ?Iw ∆Iw
t(µ)
∼= ∆Iw

t(µ) ?Iw ∇Iw
t(−ν).

We also have HomDb
Iw(Fl,k)(W

op
λ ,W op

λ′ [n]) = 0 unless λ′ � λ.

4.6. Wakimoto filtrations. We will denote by PW
Iw the full subcategory of PIw

whose objects are the perverse sheaves which admit a filtration by Wakimoto
sheaves, i.e. a filtration whose subquotients are of the form Wλ with λ ∈ X∨. This
category admits a natural structure of exact category, inherited from the ambiant
abelian category PIw. Since a convolution of Wakimoto sheaves is a Wakimoto sheaf
(in particular, is perverse), PW

Iw is a monoidal subcategory of (Db
Iw(FlG,k), ?Iw).
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It follows from properties (4)–(5) in §4.5 that for any F in PW
Iw and any ideal

Y ⊂ X∨ (i.e. any subset such that if λ ∈ Y and µ � λ then µ ∈ Y) there exists
a unique subobject FY ⊂ F which is an extension of objects Wλ with λ ∈ Y and
such that the quotient F/FY is an extension of objects Wµ with µ ∈ X∨ r Y;
moreover the assignment F 7→ FY is functorial.

In particular, given λ ∈ X∨ one can choose an ideal Y ⊂ X∨ such that λ ∈ Y is
maximal, and consider the quotient

grλ(F ) := FY/FYr{λ}.

By construction grλ(F ) is a direct sum of copies of Wλ, and we set

Gradλ(F ) := HomPIw
(Wλ, grλ(F )).

Lemma 4.7. The object grλ(F ) does not depend on the choice of Y. Moreover,
the functor F 7→ Gradλ(F ) is exact (for the exact structure on PW

Iw considered
above).

Proof. For the first claim, see [AR3, Lemma 4.3.4]. For the second claim, see [AR3,
Proposition 4.6.1]. �

The following result is due to Arkhipov and the first author [AB, Theorem 4(a)]
in the setting where k is replaced by Q`. The proof is also reproduced in [Zh, §7.3]
and (in the present setting) in [AR3].

Theorem 4.8 (Arkhipov–Bezrukavnikov). For any F in Pervsph(GrG,k), the per-
verse sheaf Z(F ) belongs to PW

Iw.

Remark 4.9. In [Zh] and [AR3], Theorem 4.8 is proved with the more general
definition of Wakimoto sheaves alluded to in Remark 4.6. In particular, for any F in
Pervsph(GrG,k) the perverse sheaf Z(F ) also admits a filtration with subquotients
of the form W op

λ with λ ∈ X∨.

To simplify notation, from now on we will use the notation

Z := Z ◦ S−1 : Rep(G∨k )→ PIw,

where S is as in (4.1), and write mV for mS−1(V ).
Thanks to Theorem 4.8, we can consider for any V in Rep(G∨k ) and any λ ∈ X∨

the vector space

Gradλ(Z (V )).

By [AR3, Lemma 4.8.1], we have a canonical identification

(4.7) Gradλ(Z (V )) ∼= Vw0(λ),

where w0 is the longest element in Wf . (Here, in the right-hand side we consider
the weight space for the action of the canonical maximal torus T∨k ⊂ G∨k .)

5. The regular quotient

In this section we introduce the main player of the paper, namely the “regular
quotient” of the category PIw.
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5.1. The regular quotient. We consider the Serre subcategory 〈ICw : `(w) >
0〉Serre ⊂ PIw generated by the objects ICw with `(w) > 0, and the Serre quotient

P0
Iw := PIw/〈ICw : `(w) > 0〉Serre.

The quotient functor PIw → P0
Iw will be denoted Π0. Every object in the category

P0
Iw has finite length, and the assignment w 7→ Π0(ICw) induces a bijection be-

tween Ω = {w ∈W | `(w) = 0} and the set of isomorphism classes of simple objects
in P0

Iw.
The proof of the following lemma can be copied verbatim from [AR3, §6.5.6].

Lemma 5.1. (1) If F belongs to 〈ICw : `(w) > 0〉Serre and G is any object of
PIw, then for any n ∈ Z the perverse sheaves pH n(F ?IwG ) and pH n(G ?Iw

F ) belong to 〈ICw : `(w) > 0〉Serre.
(2) For F ,G in PIw and any n ∈ Z r {0} we have Π0(pH n(F ?Iw G )) = 0.

Lemma 5.1 has the following consequence.

Proposition 5.2. (1) The bifunctor

PIw × PIw → P0
Iw

sending a pair (F ,G ) to Π0(pH 0(F ?Iw G )) factors through a bifunctor

(−) ?0
Iw (−) : P0

Iw × P0
Iw → P0

Iw.

(2) The bifunctor ?0
Iw is exact on both sides, and admits natural associativity

and unit constraints.

Proof. Lemma 5.1 implies that the bifunctor (F ,G ) 7→ Π0(pH 0(F ?Iw G )) is exact
on both sides, and vanishes on 〈ICw : `(w) > 0〉Serre × PIw and on PIw × 〈ICw :
`(w) > 0〉Serre. Therefore it factors through a bifunctor ?0

Iw, which is exact on both
sides (see [Gab, Corollaires 2–3, p. 368–369]). This observation also shows that for
F1,F2,F3 in P0

Iw we have canonical isomorphisms

(F1 ?
0
Iw F2) ?0

Iw F3
∼= Π0(pH 0(F1 ?Iw F2 ?Iw F3)) ∼= F1 ?

0
Iw (F2 ?

0
Iw F3),

which provides the desired associativity constraint. The unit object for this product
is δ0 := Π0(δFl). �

Thanks to Proposition 5.2, we can now consider the abelian monoidal category
(P0

Iw, ?
0
Iw). We set

Z 0 := Π0 ◦Z : Rep(G∨k )→ P0
Iw,

and for V in Rep(G∨k ) we set m0
V := Π0(mV ) ∈ EndP0

Iw
(Z 0(V )).

The following claim is an immediate consequence of Proposition 4.4(3).

Lemma 5.3. For any V, V ′ in Rep(G∨k ) and any f ∈ HomP0
Iw

(Z 0(V ),Z 0(V ′)) we

have f ◦m0
V = m0

V ′ ◦ f .

5.2. Main result: statement and strategy of proof. The main result of the
present paper can be stated as follows.

Theorem 5.4. Assume that the following conditions hold:

(1) either X∗(T )/ZR is free and X∗(T )/ZR∨ has no `-torsion, or ` is very
good;

(2) for any indecomposable factor of the root system R, the prime ` is strictly
bigger than the corresponding value in the table of Figure 5.1.
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An (n ≥ 1) Bn (n ≥ 2) Cn (n ≥ 3) Dn (n ≥ 4) E6 E7 E8 F4 G2

1 n 2 2 3 19 31 3 3

Figure 5.1. Bounds on `

Then there exists a regular unipotent element u ∈ G∨k and an equivalence of monoi-
dal categories

Φ0 : (P0
Iw, ?

0
Iw)

∼−→ (Rep(ZG∨k (u)),⊗)

such that Φ0 ◦Z 0 ∼= For
G∨k
ZG∨k

(u).

Remark 5.5. Let us briefly discuss the assumptions in Theorem 5.4. The condition
that X∗(T )/ZR is free is equivalent to requiring that the derived subgroup of G∨k
is simply connected. (Alternatively, since the quotient X∗(T )/ZR identifies with
the group of characters of the center Z(G) of G, this assumption is also equivalent
to the condition that Z(G) is a torus.) The assumption that X∗(T )/ZR∨ has no
`-torsion guarantees that Z(G∨k ) and ZG∨k (u) are smooth group schemes, see §2.3.

(This assumption in fact follows from (2) if R has no component of type A.) Finally,
assumption (2) is an artefact of our proof of the statement considered in (ii) below;
it is a likely that it can be refined (at least) to the condition that ` is good for G.

In the rest of the paper we will prove Theorem 5.4 assuming that (2) and the
first condition in (1) hold. The latter condition can be replaced a posteriori by the
condition that ` is very good for G, as follows. The diagonalizable group Z(G) can
be written as the product of a torus and a finite group. If G′ is the quotient of G
by this finite group, then if ` is very good for G Theorem 5.4 applies to G′. Now
Proposition 2.6 guarantees that the centralizer of a regular unipotent element in G∨k
is the quotient of the corresponding subgroup of (G′)∨k by a subgroup of Z((G′)∨k ).
One can check that the equivalence of Theorem 5.4 for G′ then restricts to a similar
equivalence for G.

Our proof of Theorem 5.4 will use Proposition 3.1, applied to the abelian monoi-
dal category (P0

Iw, ?
0
Iw) and the functor Z 0 : Rep(G∨k )→ P0

Iw. For this we will need
to construct a central structure on this functor; this will be done in §5.3, and does
not require any assumption. The first real difficulty appears when trying to show
that any object in P0

Iw is a subquotient of an object Z 0(V ). In fact we will not
show this directly; instead we will provisionally replace the category P0

Iw by the full

subcategory P̃0
Iw whose objects are precisely the subquotients of objects Z 0(V ).

With this replacement Proposition 3.1 applies, and provides a closed subgroup
H ⊂ G∨k , see §5.4. The rest of the paper will then be devoted to the proof of the
following two claims (under the assumptions of Theorem 5.4), which will imply the
theorem:

(a) the embedding P̃0
Iw ⊂ P0

Iw is an equality;
(b) the subgroup H is the centralizer of a regular unipotent element.

These properties will be proved in Section 9. The main two ingredients of these
proofs are the following:

(i) the construction of the unipotent element appearing in (b) (based on the
use of the monodromy automorphisms m0

V ) and the proof that this element
is regular, which will be explained in Section 6;
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(ii) the proof that the images of the central sheaves in the Iwahori–Whittaker
category PIW are tilting perverse sheaves, which will be obtained in Sec-
tion 8 after some preliminaries (including the definition of the category
PIW) in Section 7.

Here (i) only requires the assumption that X∗(T )/ZR is free; the proof of (ii) will
however require that ` is bigger than the corresponding values in Figure 5.1. The
other assumption in Theorem 5.4 will be used to deduce (a)–(b) from (i)–(ii).

5.3. Central structure on Z 0. The following claim is an easy consequence of
Theorem 4.3.

Lemma 5.6. The functor Z 0 admits a canonical structure of central functor from
Rep(G∨k ) to P0

Iw.

Proof. Let us first explain how to define the “monoidality” and “centrality” iso-
morphisms for the functor Z 0. Given V, V ′ in Rep(G∨k ), we have the canonical
isomorphism

φS−1(V ),S−1(V ′) : Z(S−1(V ) ? S−1(V ′))
∼−→ Z(S−1(V )) ?Iw Z(S−1(V ′)).

see Theorem 4.2(4). Using the monoidal structure on the functor S−1, one can
interpret that isomorphism as an identification

Z (V ⊗ V ′) ∼−→ Z (V ) ?Iw Z (V ′).

These complexes are perverse sheaves; applying the functor Π0 we deduce the
wished-for isomorphism

φ0
V,V ′ : Z 0(V ⊗ V ′) ∼−→ Z 0(V ) ?0

Iw Z 0(V ′).

It is easily seen that these isomorphisms define a monoidal structure on Z 0.
Next, for V in Rep(G∨k ) and F in P0

Iw, we must define a canonical isomorphism

σ0
V,F : Z 0(V ) ?0

Iw F
∼−→ F ?0

Iw Z 0(V ).

However, the objects of P0
Iw and PIw are the same; F can therefore also be consid-

ered as an object in PIw, for which we have the canonical isomorphism

σS−1(V ),F : Z(S−1(V )) ?Iw F
∼−→ F ?Iw Z(S−1(V )),

see Theorem 4.2(3). Here again both sides are perverse sheaves, see Theorem 4.2(2),
and applying the functor Π0 we obtain the wished-for isomorphism σ0

V,F .

We must now check that these data satisfy properties (1)–(3) from §3.1. Prop-
erties (1) and (3) immediately follow from the corresponding properties for the
functor Z by applying the functor Π0, since all the involved objects are perverse.
In order to check property (2), we consider some V in Rep(G∨k ) and F ,G in P0

Iw.
As above F and G can also be considered as objects in PIw, and we know that the
composition

Z (V ) ?Iw F ?Iw G
σS−1(V ),F?Iwid
−−−−−−−−−−→ F ?Iw Z (V ) ?Iw G

id?IwσS−1(V ),G−−−−−−−−−−→ F ?Iw G ?Iw Z (V )
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coincides with σS−1(V ),F?IwG . Let us apply the functor Π0 ◦ pH 0. By exactness of
the functors Z (V ) ?Iw (−) and (−) ?Iw Z (V ) (see Theorem 4.2(2)), the domain,
resp. codomain of the morphism we obtain identify with

Π0(Z (V ) ?Iw
pH 0(F ?Iw G )) = Z 0(V ) ?0

Iw F ?0
Iw G ,

resp. with
Π0(pH 0(F ?Iw G ) ?Iw Z (V )) = F ?0

Iw G ?0
Iw Z 0(V ).

It is clear also that under these identifications we have Π0 ◦ pH 0(σS−1(V ),F?IwG ) =

σ0
V,F?0IwG . On the other hand, since Z (V ) ?Iw F and F ?Iw Z (V ) are perverse we

have
Π0 ◦ pH 0(Z (V ) ?Iw F ?Iw G ) = Π0(Z (V ) ?Iw F ) ?0

Iw G

and
Π0 ◦ pH 0(F ?Iw Z (V ) ?Iw G ) = Π0(F ?Iw Z (V )) ?0

Iw G ,

and under these identifications we have Π0◦pH 0(σS−1(V ),F ?Iw idG ) = σ0
V,F ?0

Iw idG .
Similarly we have

Π0 ◦ pH 0(F ?Iw Z (V ) ?Iw G ) = F ?0
Iw Π0(Z (V ) ?Iw G )

and
Π0 ◦ pH 0(F ?Iw G ?Iw Z (V )) = F ?0

Iw Π0(G ?Iw Z (V )),

and under these identifications we have Π0◦pH 0(idF ?IwσS−1(V ),G ) = idF ?0
Iwσ

0
V,G .

Combining these descriptions we obtain that our data satisfy property (2), which
finishes the proof. �

5.4. Description of a subcategory of the regular quotient as a category of

representations. We will denote by P̃0
Iw the full abelian subcategory of P0

Iw whose
objects are the subquotients of objects of the form Z 0(V ) with V in Rep(G∨k ). It is
not difficult (using in particular Lemma 4.5) to check that this subcategory contains
all the simple objects of P0

Iw. Obviously, the functor Z 0 factors through a functor

Rep(G∨k )→ P̃0
Iw, which we will denote similarly.

Lemma 5.7. If F and G belong to P̃0
Iw, then F ?0

Iw G also belongs to P̃0
Iw.

Proof. If F is a subquotient of Z 0(V ) and G a subquotient of Z 0(V ′), then
by exactness of the product ?0

Iw (see Proposition 5.2) the object F ?0
Iw G is a

subquotient of Z 0(V ) ?0
Iw Z 0(V ′) ∼= Z 0(V ⊗ V ′), hence belongs to P̃0

Iw. �

As a consequence of Lemma 5.7, P̃0
Iw admits a natural structure of abelian

monoidal category. Moreover, Lemma 5.6 implies that Z 0 : Rep(G∨k ) → P̃0
Iw

has a canonical structure of central functor.

Proposition 5.8. There exist

(1) a subgroup scheme H ⊂ G∨k ;
(2) an element u ∈ G∨k such that H ⊂ ZG∨k (u);

(3) an equivalence of monoidal categories

Φ0 : (P̃0
Iw, ?

0
Iw)

∼−→ (Rep(H),⊗);

(4) and an isomorphism of functors η : Φ0 ◦Z 0 ∼−→ For
G∨k
H

such that for any V in Rep(G∨k ), the endomorphism η(Φ0(m0
V )) coincides with the

action of u on V .
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Proof. Using Proposition 3.1 we obtain the subgroup scheme H ⊂ G∨k and the

equivalence of monoidal categories Φ0 such that Φ0 ◦ Z 0 ∼= For
G∨k
H . Lemma 5.3

implies in particular that the morphisms (m0
V : V ∈ Rep(G∨k )) define an auto-

morphism of Z 0 as a monoidal functor; composing with ForH ◦ Φ0 (where ForH :
Rep(H) → Vectk is the forgetful functor) we obtain a tensor automorphism of

ForH ◦ Φ0 ◦ Z 0 ∼= ForG
∨
k , hence an element u ∈ G∨k (see [DM, Proposition 2.8]).

The fact that this automorphism is induced by an automorphism of For
G∨k
H means

that u commutes with H, i.e. that H ⊂ ZG∨k (u). �

Remark 5.9. The monodromy automorphism with respect to loop rotation action
defines, for any object F of P0

Iw, an automorphism M0
F . It follows from (4.3)

that for V in Rep(G∨k ) we have m0
V = (M0

Z 0(V ))
−1. This shows in particular that

the automorphism of the functor ForG
∨
k defining u is induced by an automorphism

of ForH : Rep(H) → Vectk. Hence u in fact belongs to the subgroup H. (This
observation will not play any role below.)

6. Regularity of u

In the rest of the paper we assume that X∗(T )/ZR is free.

6.1. Statement. The following statement will be crucial for us.

Theorem 6.1. The element u ∈ G∨k is regular unipotent.

In order to prove this statement we will construct a Borel subgroup B̃∨ ⊂ G∨k
containing u in its unipotent radical Ũ∨, and then show that the image of u in

Ũ∨/(Ũ∨, Ũ∨) has nontrivial components in each (simple) root subgroup, see Propo-
sition 6.2 below.

Recall (see §4.6) that for any V in Rep(G∨k ) and any ideal Y ⊂ X we have
a canonical subobject Z (V )Y ⊂ Z (V ). We define an increasing Z-filtration on
Z (V ) by setting, for n ∈ Z,

FnZ (V ) := Z (V ){λ∈X∨|〈λ,2ρ〉≤n}.

(Here, 2ρ denotes the sum of the positive roots of G.) Composing with the exact
functor Π0 we deduce a filtration on Z 0(V ), and then applying the fiber functor

ForH◦Φ0 we obtain an exact ⊗-filtration on the fiber functor ForH◦Φ0◦Z 0 ∼= ForG
∨
k

in the sense of [SR, Chap. IV, §2.1]. (In fact the associated graded for this filtration
is the functor sending V to

(6.1)
⊕
λ∈X∨

Gradλ(Z (V ))⊗k (Φ0 ◦Π0(Wλ)),

which is exact by Lemma 4.7.) By [SR, Théorème in Chap. IV, §2.4] (a general
result due to Deligne), such a filtration is automatically “splittable.” Hence [SR,

Chap. IV, Prop. 2.2.5] ensures that the subgroup scheme B̃∨ of G∨k consisting of

tensor automorphisms of ForG
∨
k which are compatible with this filtration (see [SR,

Chap. IV, §2.1.3]) is a parabolic subgroup, with unipotent radical the subgroup Ũ∨

of automorphisms inducing the identity on the associated graded. The Lie algebra

of B̃∨ is also described in [SR, Chap. IV, Prop. 2.2.5]; from the dimension of this

Lie algebra we see that in our case B̃∨ is in fact a Borel subgroup in G∨k . (In this
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computation we use (4.7) and the fact that in (6.1) the vector space Φ0 ◦ Π0(Wλ)
is 1-dimensional, since it is invertible in the monoidal category of vector spaces.)

For V in Rep(G∨k ), the automorphism m0
V is induced by the automorphism mV of

Z (V ), which must respect the filtration F •Z (V ) by functoriality of this filtration.

Therefore m0
V respects the filtration of Z 0(V ), showing that u belongs to B̃∨.

Moreover, since Wλ is equivariant under the loop-rotation action, (4.3) implies that
the action of m0

V on the associated graded for our filtration is trivial. Therefore, u

even belongs to Ũ∨.
We now consider the quotient

U
∨

:= Ũ∨/(Ũ∨, Ũ∨),

a commutative algebraic group. This group admits a natural action (by group
automorphisms) of the “universal maximal torus” A∨. (This group is defined as
the quotient of any Borel subgroup by its unipotent radical; so in particular we have

B̃∨/Ũ∨ ∼= A∨ canonically.) This action “breaks” U
∨

as a product of subgroups U
∨
α

isomorphic to Ga and naturally parametrized by the opposites of the simple roots
of (G∨k , T

∨
k ), seen as characters of T∨k

∼= B∨k /(B
∨
k , B

∨
k ) ∼= A∨.

By a well-known characterization of regular unipotent elements (see e.g. [Hu,
§4.1]), Theorem 6.1 will follow from the following claim.

Proposition 6.2. For any simple root α, the component u−α of u in U
∨
−α is non-

trivial.

The proof of this proposition will require some preparation; it will be given
in §6.3 below.

6.2. Computation in rank 1. In this subsection we fix a simple root α of (G,T ),
and set s := sα. We also choose an element $ ∈ X∨+ such that 〈$,α〉 = 1 (or
equivalently s($) = $ − α∨). (Our running assumption guarantees that such a
coweight exists.)

Lemma 6.3. We have

W$
∼= ∇Iw

t($)
∼= ∇Iw

t($)s ?Iw ∇Iw
s , W$−α∨ ∼= ∆Iw

s ?Iw ∇Iw
t($)s.

Proof. The equality W$ = ∇Iw
t($) follows from the definitions (and the fact that

$ is dominant), and the isomorphism ∇Iw
t($)s ?Iw ∇Iw

s
∼= ∇Iw

t($) from the fact that

`(t($)s) = `(t($)) − 1 (which can be checked using (4.4)) and (4.5). Next, we
observe that $ − α∨ = (2$ − α∨)−$, with 2$ − α∨ ∈ X∨+. Hence

W$−α∨ ∼= ∆Iw
t(−$) ?Iw ∇Iw

t(2$−α∨).

Now as above we have `(t($)s) = `(t($)) − 1, hence ∆Iw
t(−$)

∼= ∆Iw
s ?Iw ∆Iw

st(−$).

On the other hand we have `(t(2$ − α∨)) = `(t(2$)) − 2 = 2`(t($)) − 2, and
t(2$ − α∨) = (t($)s)2. It follows that

∇Iw
t(2$−α∨)

∼= ∇Iw
t($)s ?Iw ∇Iw

t($)s.

We deduce as desired that

W$−α∨ ∼= ∆Iw
s ?Iw ∇Iw

t($)s,

since ∆Iw
st(−$) ?Iw ∇Iw

t($)s
∼= δFl by (4.6). �
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We now set

X1 := FlG,t($), X2 := FlG,t($−α∨), Y := FlG,t($)s

and X := X1 tX2 t Y . Then X1, X2 and Y are isomorphic to affine spaces, X is
a locally closed subvariety in FlG, X1 and X2 are open in X, and Y is closed in X.
The corresponding embeddings will be denoted

j : X ↪→ Fl, j1 : X1 ↪→ X, j2 : X2 ↪→ X, i : Y → X.

Corollary 6.4. We have

W$ = j∗
(
j1∗kX1

[`(t($))]
)
, W$−α∨ = j∗

(
j2!kX2

[`(t($))]
)
.

Proof. The first isomorphism is clear from the first isomorphism in Lemma 6.3,
since j ◦ j1 = jt($). For the description of W$−α∨ , we start with the isomorphism

W$−α∨ ∼= ∆Iw
s ?Iw ∇Iw

t($)s from Lemma 6.3. By definition of convolution, we have

∆Iw
s ?Iw ∇Iw

t($)s = f∗(∆
Iw
s �̃kY [dim(Y )]),

where f : FlG,s ×Iw Y → FlG is the morphism induced by multiplication in LG.

Now f induces an isomorphism FlG,s ×Iw Y
∼−→ Y t X2, under which the open

subvariety FlG,s ×Iw Y identifies with X2. Hence ∆Iw
s ?Iw ∇Iw

t($)s is obtained from

kX2
[`(t($))] by taking !-pushforward under the embedding X2 ↪→ Y tX2, and then

∗-pushforward under the embedding Y tX2 ↪→ Fl. The latter map can be written
as the composition of the closed embedding Y t X2 ↪→ X followed by j, and we
deduce the desired identification. �

In the following lemma we denote by PervGrot
m nIw(FlG,k) the category of GmnIw-

equivariant perverse sheaves on FlG, where Gm acts on Iw and FlG by loop rotation.

Proposition 6.5. We have

Ext1
PervGrot

m nIw(FlG,k)(W$,W$−α∨) = 0.

Proof. Using Corollary 6.4 and adjunction, we see that

Ext1
PervGrot

m nIw(FlG,k)(W$,W$−α∨) ∼= Ext1
PervGrot

m nIw(X,k)(j1∗kX1
[d], j2!kX2

[d]),

where d := `(t($)). We denote by 2 : X2 = X2 t Y ↪→ X the embedding
of the closure X2 (a smooth closed subvariety) in X, and consider the natural
distinguished triangle

j2!kX2
[d]→ 2!kX2

[d]→ i∗kY [d]
[1]−→ .

Here the second term is a simple perverse sheaf, which we will denote by IC2, and
the third term is the shift by 1 of a simple perverse sheaf which will be denoted
ICY . Hence this triangle induces a short exact sequence of Grot

m n Iw-equivariant
perverse sheaves

(6.2) ICY ↪→ j2!kX2
[d]� IC2

on X. Similarly, we have a short exact sequence of Grot
m n Iw-equivariant perverse

sheaves

(6.3) ICY ↪→ j1!kX1
[d]� IC1
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where IC1 is the pushforward of the constant sheaf on X1 t Y shifted by d. Ap-
plying Verdier duality to (6.2)–(6.3) we deduce short exact sequences of Grot

m n Iw-
equivariant perverse sheaves

(6.4) IC2 ↪→ j2∗kX2
[d]� ICY , IC1 ↪→ j1∗kX1

[d]� ICY .

Applying the functor HomPervGrot
m nIw(FlG,k)(−, j2!kX2

[d]) to the second exact se-

quence in (6.4) we obtain an exact sequence

(6.5) Ext1(ICY , j2!kX2
[d])→ Ext1(j1∗kX1

[d], j2!kX2
[d])

→ Ext1(IC1, j2!kX2
[d])→ HomDb

Grot
m nIw

(X,k)(ICY , j2!kX2
[d+ 2]).

Hence to conclude, it suffices to prove that

Ext1(ICY , j2!kX2
[d]) = 0;(6.6)

the third map in (6.5) is injective.(6.7)

For this, consider (a portion of) the long exact sequence obtained by applying
the functor Hom(ICY ,−) to (6.2):

(6.8) Ext1(ICY ,ICY )→ Ext1(ICY , j2!kX1
[d])→ Ext1(ICY ,IC2)

→ HomDb
Grot
m nIw

(X,k)(ICY ,ICY [2])→ HomDb
Grot
m nIw

(X,k)(ICY , j2!kX2
[d+ 2])

→ HomDb
Grot
m nIw

(X,k)(ICY ,IC2[2]).

The first, resp. fourth, term in this sequence identifies with H1
Grot

m nIw(Y,k) = 0,

resp. with H2
Grot

m nIw(Y,k) = k ⊗Z X
∗(Gm × T ). It is also easy to check using

adjunction that we have

Ext1(ICY ,IC2) ∼= H0
Grot

m nIw(Y, k) = k

and

HomDb
Grot
m nI

(X,k)(ICY ,IC2[2]) ∼= H1
Grot

m nIw(Y,k) = 0.

For any β ∈ R+ we have a root subgroup Uβ ⊂ G, and for m ∈ Z we denote
by Uβ,m ⊂ LG the subgroup which identifies, for any choice of isomorphism uβ :
Ga → Uβ , with the image of t 7→ uβ(tzm). We set

J :=
∏

β∈R+r{α}
0<n≤〈$,β〉

Uβ,n,

where the product is taken in an arbitrary fixed order. Then the map j 7→ jz$ ṡI/I

induces an isomorphism J
∼−→ Y , and the map (u, j) 7→ ujz$ ṡI/I induces an iso-

morphism between Uα × J and an open neighborhood of Y in Y t X2. Hence,
arguing as in [BeR, Proof of Lemma 6.5], we see that the image of the map
Ext1(ICY ,IC2) → HomDb

Grot
m nI

(X,k)(ICY ,ICY [2]) in (6.8) is k ⊗ α. It follows

that the third map in (6.8) is injective, proving (6.6), and providing moreover an
isomorphism

(6.9) HomDb
Grot
m oI

(X,k)(ICY , j2!kX1
[d][2]) ∼= (k⊗Z X

∗(Gm × T ))/k⊗ α.
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Now, let us consider (a portion of) the long exact sequence obtained by applying
Hom(IC1,−) to (6.2):

Hom(IC1,IC2)→ Ext1(IC1,ICY )→
Ext1(IC1, j2!kX2

[d])→ Ext1(IC1,IC2).

Here the first term vanishes. The fourth term also vanishes: in fact this follows
from the observation that any extension of IC1 by IC2 must be the intermediate
extension of its restriction to the open subset X1 t X2 (because so are IC1 and
IC2); hence this extension must split. These considerations show that the natu-
ral morphism Ext1(IC1,ICY ) → Ext1(IC1, j2!kX2

[d]) is an isomorphism, which
allows to identify the third map in (6.5) with the composition

Ext1(IC1,ICY )→ HomDb
Grot
m nIw

(X,k)(ICY ,ICY [2])

→ HomDb
Grot
m nIw

(X,k)(ICY , j2!kX2
[d][2]).

As above the first term is 1-dimensional, the middle term identifies with k ⊗Z
X∗(Gm × T ), and the first map is injective with image k ⊗ (α − ~), where ~ is
the tautological character of Gm. (To see this, one observes that the map (j, u) 7→
jz$uṡI/I induces an isomorphism between J ×U−α and an open neighborhood of
Y in Y tX1.) In view of (6.9) we deduce that our composition is indeed injective,
finishing the proof of (6.7), hence of the proposition. �

6.3. Proof of Proposition 6.2. We can now give the proof of Proposition 6.2.
We fix a simple root α, with corresponding simple reflection s. We also fix an
element $ ∈ X∗(T ) = X∗(T∨k ) such that 〈$,α〉 = 1 and 〈$,β〉 = 0 for any simple
root β different from α, and use it as our choice of cocharacter denoted similarly
in §6.2. To simplify notation, we set r := 〈$, 2ρ〉 = `($).

Let V := Ind
G∨k
B̃∨k

($) (where $ is identified with a character of A∨ = B̃∨/Ũ∨ via

the canonical isomorphism T∨k
∼= A∨, see §6.1). For the filtration on V constructed

in §6.1 we have V = F r(V ), V/F r−2(V ) is one-dimensional (with weight $ for the
action of A∨), and so is F r−2(V )/F r−4(V ) (with weight $ − α∨ for the action of
A∨). This shows that the perverse sheaf

F := Z (V )/F r−4Z (V )

fits in an exact sequence of Iw-equivariant perverse sheaves

(6.10) W$−α∨ ↪→ F � W$.

Lemma 6.6. The extension (6.10) is nonsplit.

Proof. Let W($) be the set of T∨k -weights of V . Then since Z (V ) admits a filtra-
tion whose subquotients are of the form Wλ with λ ∈ W($) (see §4.6), in view of
Property (3) in §4.5 its support must be⋃

λ∈W($)

FlG,t(λ).

It is clear that the subvariety X of §6.2 is contained (and open) in the closed
subvariety FlG,t($) ∪ FlG,t($−α∨). Moreover, X does not intersect any subvariety

FlG,t(λ) with λ ∈ W($) r {$,$ − α∨}; in fact this is clear for dimension reasons
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if λ /∈Wf ·$, and if λ ∈Wf ·$r {$,$− α∨} then t($)s is not smaller than t(λ)
in the Bruhat order.

From this observation we deduce that the restriction of Z (V ) toX coincides with
that of F , and is a perverse sheaf. Restricting (6.10) to X and using Corollary 6.4
we see moreover that we have an exact sequence

(6.11) (j2)!kX2
[r] ↪→ Z (V )|X � (j1)∗kX1

[r].

Now, similar considerations using the “opposite” Wakimoto sheaves (see Re-
mark 4.6 and Remark 4.9) show that Z (V ) has a canonical subobject F ′ such that
Z (V )|X = F ′|X and which fits in a short exact sequence W op

$ ↪→ F ′ � W op
$−α∨ .

Restricting to X and using the “opposite” version of Corollary 6.4 we obtain a short
exact sequence

(j1)!kX1
[r] ↪→ Z (V )|X � (j2)∗kX2

[r].

The existence of this exact sequence forces (6.11) (and hence (6.10)) to be nonsplit.
(For instance, if (6.11) were split there would exist no injective map (j1)!kX1

[r] ↪→
Z (V )|X .) �

Now we consider the action of u on the 2-dimensional B̃∨-module V/F r−4(V ).

(Since u belongs to B̃∨, it stabilizes F r−4(V ), hence indeed induces an endomor-
phism of this quotient.) It is clear from the description of this module that this
action coincides with the action of the component u−α. Hence to conclude the
proof it suffices to prove that this action is nontrivial, or in other words that the
endomorphism of Π0(F ) induced by m0

V is nontrivial. In view of (4.3), for this it
suffices to prove that Π0(MF ) is nontrivial.

First, we claim that MF is nontrivial. In fact, in view of [BeR, Lemma 2.6] (see
also [BeR, §10.1] for a discussion of the étale version) this is equivalent to saying
that F is not equivariant under the action of Grot

m . However, by construction F is
Iw-equivariant. If it were Grot

m -equivariant, then it would be Grot
m n Iw-equivariant,

which is impossible by Proposition 6.5 and Lemma 6.6.
Now that this claim is established, we know that the nilpotent endomorphism

MF − idF is nonzero. This endomorphism stabilizes the filtration (6.10), and
induces the zero endomorphism on the associated graded. It therefore factors as a
composition

F � W$
f−→ W$−α∨ ↪→ F ,

where f 6= 0. Now we have W$ = ∇Iw
$ , whose top is isomorphic to ICω for some

ω ∈ Ω by Lemma 4.5. Hence the image of f admits ICω as a composition factor.
Since ICω is not killed by Π0 it follows that Π0(f) 6= 0, so that Π0(MF ) 6= idΠ0(F),
which finishes the proof.

7. Antispherical and Iwahori–Whittaker categories

We continue with the assumption of Section 6, namely that X∗(T )/ZR is free.

7.1. Iwahori–Whittaker perverse sheaves. We denote by B+ ⊂ G the Borel
subgroup containing T and opposite to B, and by Iw+ ⊂ L+G the corresponding
Iwahori subgroup. Let also Iw+

u be the pro-unipotent radical of Iw+, i.e. the inverse
image of the unipotent radical U+ of B+ under the natural map Iw+ → B+. We
choose a nondegenerate character χ′ : U+ → Ga (i.e. a group morphism nontrivial
on each simple root subgroup), and denote by χ its composition with the projection
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Iw+
u → U+. Finally we choose an Artin–Schreier k-local system LAS on Ga, and

consider the derived category Db
IW(FlG,k) of Iwahori–Whittaker sheaves on FlG,

i.e. the (Iw+
u , χ

∗(LAS))-equivariant derived category of k-sheaves on FlG. (As for
the L+G-equivariant derived category of GrG or the Iw-equivariant derived category
of FlG, the “true” definition of this category requires restricting to finite unions
of orbits, and considering a finite-type quotient of Iw+

u through which the action
factors; this procedure is standard, and will be omitted.) This category is endowed
with the perverse t-structure, whose heart will be denoted PIW .

The Iw+
u -orbits on FlG are parametrized in the standard way by W . Those which

support a nonzero (Iw+
u , χ

∗(LAS))-equivariant local system are those corresponding
to elements in the subset fW ⊂ W of elements w which are minimal in Wfw. For
any λ ∈ X∨ we will denote by wλ the minimal length element in Wf · t(λ), by FlIWG,λ
the corresponding orbit, and by Lχ,λ the unique rank-1 (Iw+

u , χ
∗(LAS))-equivariant

local system on FlIWG,λ. We also denote by jIWλ : FlIWG,λ → FlG the embedding, and
set

∆IWλ := (jIWλ )!Lχ,λ[dim(FlIWG,λ)], ∇IWλ := (jIWλ )∗Lχ,λ[dim(FlIWG,λ)].

(These objects are perverse sheaves because jIWλ is an affine embedding.) As usual
we have

(7.1) HomDb
IW(FlG,k)(∆

IW
λ ,∇IWµ [n]) ∼=

{
k if λ = µ and n = 0;

0 otherwise,

and the image of any nonzero morphism ∆IWλ → ∇IWλ is simple; this simple object
will be denoted IC IWλ . It is well known also that the category PIW has a natural
structure of highest weight category, with weight poset X∨ (for the order ≤IW

defined by λ ≤IW µ iff FlIWG,λ ⊂ FlIWG,µ) and standard, resp. costandard, objects

(∆IWλ : λ ∈ X∨), resp. (∇IWλ : λ ∈ X∨).
In Section 8 we will need some properties of the associated order on X∨. Here,

for λ ∈ X∨, with dominant Wf -conjugate λ+, we set

W(λ) = {µ ∈ X∨ | µ+ � λ+},

where � is as in §4.5. In other words, W(λ) is the set of T∨k -weights of the Weyl
module for G∨k of highest weight λ+ (so that this notation extends the notation
used already in the proof of Lemma 6.6). The other standard description of these
weights shows that W(λ) coincides with the set denoted conv(λ) in [AR2], i.e. the
intersection of the convex hull of Wfλ with λ+ ZR∨.

Lemma 7.1. (1) If λ, µ ∈ X∨ and FlIWG,λ ⊂ FlIWG,µ, then λ ∈W(µ).

(2) If λ ∈ X∨+ and µ ∈Wf(λ), then FlIWG,µ ⊂ FlIWG,λ.

Proof. It is not difficult to see that for any ν ∈ X∨ we have

FlIWG,ν = FlG,w0wν ,

where (as in §4.6) w0 is the longest element in Wf . Hence FlIWG,λ ⊂ FlIWG,µ iff w0wλ ≤
w0wµ in the Bruhat order. In view of [Dou, Lemma 2.2], this is equivalent to the
property that wλ ≤ wµ. Hence (1) follows from [AR2, Lemma 9.12(3)], and (2)
from the fact that wµ ≤ wλ = t(λ) in this case (see e.g. [MR2, Lemma 2.4]). �
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7.2. Statement. Note that since the closure FlIWG,0 does not contain any orbit

FlIWG,λ with λ 6= 0, the natural morphism ∆IW0 → ∇IW0 is an isomorphism (and this

complex coincides with IC IW0 ). We consider the functor

(7.2) AvIW : Db
Iw(FlG,k)→ Db

IW(FlG,k)

defined by

AvIW(F ) = ∆IW0 ?Iw F .

We will denote by Pasp
Iw the Serre quotient of the category PIw by the Serre

subcategory generated by the simple objects ICw with w /∈ fW . The associated
quotient functor will be denoted Πasp : PIw → Pasp

Iw . (Here, “asp” standard for
“anti-spherical.”)

The main result of the present section is the following statement.

Theorem 7.2. (1) The functor AvIW is t-exact for the perverse t-structures
on Db

Iw(FlG,k) and Db
IW(FlG,k).

(2) The functor

AvIW : PIw → PIW

factors through a fully-faithful functor

Avasp
IW : Pasp

Iw → PIW .

Moreover, the essential image of this functor is closed under subquotients.

Remark 7.3. We will see later (see §9.1) that, under appropriate assumptions, the
functor in Theorem 7.2(2) is an equivalence of categories.

The proof of Theorem 7.2 is very close to the corresponding proof in [AB, §2],
which is repeated with more details in [AR3, Chap. 6]. We will not repeat the
proofs that can simply be copied from these references.

7.3. Exactness. We start by proving Theorem 7.2(1).
The following lemma can be proved as in [AR3, Lemma 6.4.4 & Lemma 6.4.5].

Lemma 7.4. (1) For w ∈W we have AvIW(ICw) = 0 unless w ∈ fW .
(2) For any w ∈W we have

AvIW(∆Iw
w ) ∼= ∆IWλ and AvIW(∇Iw

w ) ∼= ∇IWλ ,

where λ ∈ X∨ is the unique element such that Wf · w = Wf · wλ.

As in [AR3, Corollary 6.4.7] one deduces the following corollary, which in par-
ticular establishes Theorem 7.2(1).

Corollary 7.5. The functor AvIW is t-exact. Moreover, for any λ ∈ X we have

AvIW(ICwλ) ∼= IC IWλ .

7.4. An adjoint functor. The functor AvIW admits another description. Namely,
we will denote by Iw0 the intersection of Iw and Iw+

u , or in other words the kernel
of the morphism ev : L+G → G from §4.2. We can then consider the associated
equivariant derived category Db

Iw0
(FlG,k), and the functor

!IndIWIw0
: Db

Iw0
(FlG,k)→ Db

IW(FlG,k)



AFFINE HECKE CATEGORY AND REGULAR UNIPOTENT CENTRALIZER, I 39

sending a complex F to a!(χ
∗(LAS) �̃F )[dim(U+)], where a : Iw+

u ×Iw0 FlG → FlG
is the action morphism. It is not difficult to see that we have

AvIW = !IndIWIw0
◦ ForIwIw0

,

where ForIwIw0
: Db

Iw(FlG,k) → Db
Iw0

(FlG,k) is the forgetful functor, and more-

over that the functor !IndIWIw0
is left adjoint to ForIWIw0

[dim(U+)], where ForIWIw0
:

Db
IW(FlG,k) → Db

Iw0
(FlG,k) is the forgetful functor (see e.g. [AR1, Lemma A.3]

for similar considerations).
Now we also consider the induction functor

∗IndIw
Iw0

: Db
Iw0

(FlG,k)→ Db
Iw(Fl,k)

sending a complex F to b∗(k �̃F )[dim(B)], where b : Iw ×Iw0 FlG → FlG is the

action morphism. This functor is right adjoint to the functor ForIwIw0
[−dim(B)].

Therefore, the functor
∗IndIw

Iw0
◦ ForIWIw0

[−dim(T )]

is right adjoint to the functor AvIW .
As seen in Corollary 7.5 the functor AvIW is t-exact; therefore its right adjoint

∗IndIw
Iw0
◦ ForIWIw0

[− dim(T )] is left t-exact, and the functor

(7.3) F : PIW → PIw

defined by

F(F ) = pH 0
(∗IndIw

Iw0
◦ ForIWIw0

(F )[−dim(T )]
)

is right adjoint to the functor AvIW : PIw → PIW .

7.5. Some properties of tilting objects. As explained in §7.1 the category PIW
has a natural highest weight structure, with weight poset X∨ (which we have iden-
tified with fW ). In such a category we can consider the tilting objects, and the
general theory of highest weight categories (see e.g. [Ri, §7]) shows that the set of
isomorphism classes of indecomposable tilting objects in PIW is in a natural bijec-
tion with X∨; the object associated with λ will be denoted T IWλ . In this subsection
we prove some properties of these objects which will not play any role in the proof
of Theorem 7.2, but which will be needed in Section 9 below.

We begin with the following claim. Here we denote by P0
IW the quotient of

the abelian category PIW by the Serre subcategory generated by the objects of
the form IC IWλ with `(wλ) > 0; the associated quotient functor will be denoted
Π0
IW : PIW → P0

IW .

Lemma 7.6. For any tilting objects T and T ′ in PIW , the quotient functor Π0
IW

induces an isomorphism

HomPIW (T ,T ′)
∼−→ HomP0

IW
(Π0
IW(T ),Π0

IW(T ′)).

Proof. The idea of this proof is copied from [BBM, §2.1]. From the definition of
morphism spaces in a quotient category, the lemma will follow if we prove that the
socle, resp. top, of each object ∆IWλ , resp. ∇IWλ , is a sum of objects IC IWµ with

`(wµ) = 0. Here it suffices to prove the claim for ∇IWλ ; the other one will follow
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by Verdier duality. If we choose w ∈ W such that Wf · w = Wf · wλ, then for any
µ ∈ X∨ we have

HomPIW (∇IWλ ,IC IWµ ) ∼= HomPIW (AvIW(∇Iw
w ),IC IWµ )

∼= HomPIw
(∇Iw

w ,F(IC IWµ ))

by Lemma 7.4(2) and adjunction. By Lemma 4.5, the top of ∇Iw
w is IC Iw

ω , where
ω ∈ Ω is the unique element such that ωWCox = wWCox. If `(wµ) > 0, and if s ∈ S
is such that `(wµs) < `(wµ), then wµs ∈ fW , and IC IWµ is the shifted pullback
of a simple perverse sheaf on the partial affine flag variety FlsG associated with s.
Then F(IC IWµ ) also the shifted pullback of a perverse sheaf on FlsG, which shows
that

HomPIw
(∇Iw

w ,F(IC IWµ )) = 0

and finishes the proof. �

The other result we will need is the following.

Lemma 7.7. For any λ ∈ X∨, the object T IWλ is isomorphic to a subobject of a
direct sum of objects of the form T IWµ with µ ∈ X∨+.

Proof. We denote by Iwu the pro-unipotent radical of Iw, by PervIwu
(FlG,k) the

category of Iwu-equivariant perverse sheaves on FlG (or equivalently the category
of perverse sheaves which are constructible with respect to the stratification by
Iw-orbits), and set for w ∈W

∆Iwu
w := ForIwIwu

(∆Iw
w ), ∇Iwu

w := ForIwIwu
(∇Iw

w ),

where ForIwIwu
: Db

Iw(FlG,k) → Db
Iwu

(FlG,k) is the forgetful functor. Then the
category PervIwu

(FlG,k) admits a structure of highest weight category with weight
poset W (for the Bruhat order) and standard, resp. costandard, objects the objects
∆Iwu
w with w ∈W , resp. ∇Iwu

w with w ∈W .
The setup of §7.4 allows us to construct a functor Av′IW : Db

Iwu
(FlG,k) →

Db
IW(FlG,k) such that AvIW = Av′IW ◦ For

Iw
Iwu

. Then by Lemma 7.4(2), for any
w ∈W we have

Av′IW(∆Iwu
w ) ∼= ∆IWλ and Av′IW(∇Iwu

w ) ∼= ∇IWλ ,

where λ ∈ X∨ is the unique element such that Wf · w = Wf · wλ. These formulas
show that Av′IW is t-exact, and sends tilting objects in PervIwu

(FlG,k) to tilting
objects in PIW . Moreover, if we denote by T Iwu

w the indecomposable tilting object
in PervIwu(FlG,k) associated with w ∈ W , then one can check that the indecom-
posable tilting object in PIW associated with λ ∈ X∨ is a direct summand in
Av′IW(T Iwu

wλ
). Therefore, to conclude we only have to prove that any indecom-

posable tilting object in PervIwu
(FlG,k) is isomorphic to a subobject of a tilting

object whose image under Av′IW is a direct sum of tilting objects associated with
dominant weights.

Let us fix an indecomposable tilting object T in PervIwu(FlG,k). Denote by

F̃lG the “extended” affine flag variety, i.e. the ind-scheme representing the fppf

quotient (LG/Iwu)fppf ; then we have a T -bundle π : F̃lG → FlG. Recall the “free

pro-unipotently monodromic” tilting perverse sheaves on F̃lG, see [BY] or [BR,
§5.4]. By [BR, Proposition 5.12] (see also [BY, Lemma A.7.3] for a closely related
statement) there exists an indecomposable free pro-unipotently monodromic tilting
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perverse sheaf T̂ such that T = π!T̂ [dim(T )]. Now we have a convolution ac-
tion ?̂ of free pro-unipotently monodromic tilting perverse sheaves on the category
Db

Iwu
(FlG,k) (see [BR, §7.3] for a discussion of a similar construction in the context

of usual flag varieties), and the considerations in the proof of [BR, Lemma 7.8] show

that for any free pro-unipotently monodromic tilting perverse sheaf T̂ ′ the functor

T̂ ′ ?̂ (−) is t-exact and sends tilting perverse sheaves to tilting perverse sheaves.
In particular, since ∆Iwu

e is a subobject of T Iwu
w0

by Lemma 4.5, the tilting object

T = π!T̂ [dim(T )] = T̂ ?̂∆Iwu
e is a subobject of the tilting object T ′ = T̂ ?̂T Iwu

w0
.

What remains to be proved is that Av′IW(T ′) is a direct sum of tilting objects
associated with dominant weights. However if λ ∈ X∨ is not dominant then there
exists s ∈ S∩Wf such that wλs > wλ and wλs ∈ fW (see e.g. [MR1, Lemma 2.4 and
its proof]). Then if qs is the projection from FlG to the partial affine flag variety FlsG
associated with s, the indecomposable tilting object in PIW associated with λ is
not killed by the functor (qs)! (because the restriction of its image to the Iw+

u -orbit
associated with wλ is nonzero). Hence to prove the claim we only have to observe
that (qs)!T ′ = 0 for any s ∈ S ∩Wf . This fact follows from the properties that
(qs)!T Iwu

w0
= 0 (which is standard, and can e.g. be deduced from the fact that T Iwu

w0

is the projective cover of ∆Iwu
e in PervIwu

(L+G/I), see [AR1, Proposition 5.26]),

and that the functor T̂ ?̂ (−) commutes with (qs)! in the appropriate sense. �

Recall that in a highest weight category, any object is isomorphic to a subquotient
of a tilting object (see e.g. [Ri, Proposition 7.17]). Therefore, Lemma 7.7 has the
following consequence.

Corollary 7.8. Any object in PIW is isomorphic to a subquotient of a direct sum
of objects of the form T IWµ with µ ∈ X∨+.

7.6. Proof of Theorem 7.2(2). We have now introduced all the tools needed for
the proof of Theorem 7.2(2). We begin with a general lemma.

Lemma 7.9. Let A and B be abelian categories, let M be a Serre subcategory of
A, let N be a Serre subcategory of B, and consider the associated quotient functors
ΠA : A→ A/M and ΠB : B→ B/N. Assume we are given functors F : A→ B,
G : B → A and F 0 : A/M → B/N, G0 : B/N → A/M such that the following
diagram commutes:

A

ΠA

��

F // B
G

oo

ΠB

��
A/M

F 0
// B/N.

G0
oo

If F is left adjoint to G, then F 0 is left adjoint to G0.

Proof. We have adjunction morphisms F ◦G→ id and id→ G◦F . Composing with
ΠB and ΠA respectively on the left, we deduce morphisms of functors F 0◦G0◦ΠB →
ΠB and ΠA → G0 ◦ F 0 ◦ ΠA. Such morphisms must be induced by morphisms
F 0 ◦ G0 → id and id → G0 ◦ F 0. Since our original morphisms satisfy the zig-zag
relations, so do these morphisms, which implies the desired claim. �
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By Lemma 7.4(1) and [Gab, Corollaires 2–3, p. 368–369], the restriction of AvIW
to the hearts of the perverse t-structures factors through an exact functor

Avasp
IW : Pasp

Iw → PIW ;

i.e. we have AvIW = Avasp
IW ◦ Πasp. Moreover, by Lemma 7.9, the functor Fasp :=

Πasp ◦ F is right adjoint to Avasp
IW .

The following lemma can be proved using the same arguments as in [AR3, Proof
of Lemma 6.4.10].

Lemma 7.10. Let F in PIw. If G ∈ Db
Iw(FlG,k) belongs to the full subcategory

generated under extensions by the objects of the form ICw[n] with (w, n) ∈Wf×Z≤0

and either n < 0 or n = 0 and w 6= e, then we have

Πasp ◦ pH −1(G ?Iw F ) = Πasp ◦ pH 0(G ?Iw F ) = 0.

The fact that the functor Avasp
IW is fully faithful is now equivalent to the following

lemma.

Lemma 7.11. The adjunction morphism id→ Fasp ◦ Avasp
IW is an isomorphism.

Proof. We have to prove that for any F in Pasp
Iw the morphism

F → Fasp ◦ Avasp
IW(F )

is an isomorphism, or in other words that for any F in PIw the morphism

Πasp(F )→ Πasp ◦ F ◦ AvIW(F )

induced by the adjunction morphism id → F ◦ AvIW is an isomorphism. Now we
have

F ◦ AvIW(F ) = pH 0
(∗IndIw

Iw0
(∆IW0 ?Iw F )[−dim(T )]

)
∼= pH 0

(∗IndIw
Iw0

(∆IW0 ) ?Iw F [−dim(T )]
)
,

and the adjunction morphism considered here is induced by the adjunction mor-
phism

(7.4) ∆Iw
e → ∗IndIw

Iw0
(AvIW(∆Iw

e ))[−dim(T )] = ∗IndIw
Iw0

(∆IW0 )[− dim(T )].

Hence to conclude we must show that for any F in PIw the latter morphism induces
an isomorphism

Πasp(F )→ Πasp
(

pH 0
(∗IndIw

Iw0
(∆IW0 ) ?Iw F [−dim(T )]

))
.

We start by analyzing the morphism (7.4). The G-action on the base point of
FlG induces an isomorphism between FlG,w0 = L+G/Iw and the flag variety G/B,
from which we obtain equivalences of categories

Db
Iw(Flw0

,k) ∼= Db
B(G/B, k),

Db
(Iw+

u ,χ∗(LAS))
(FlG,w0 ,k) ∼= Db

(U+,(χ′)∗(LAS))(G/B, k).

Using these equivalences, we can apply [BeR, Lemma 12.1], which guarantees that
the complex on the right-hand side of (7.4) is concentrated in non-negative (per-
verse) degrees, and that moreover we have

pH 0(∗IndIw
Iw0

(∆IW0 )[−dim(T )]) = pH − dim(T )
(
∗IndIw

Iw0
(∆IW0 )

)
∼= ∆Iw

w0
.
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It follows that (7.4) is induced by a nonzero morphism ∆Iw
e → ∆Iw

w0
. Such a mor-

phism is automatically injective, and the composition factors of its cokernel are of
the form ICw with w ∈Wfr{e}, see Lemma 4.5. In particular, the cone C of (7.4)
belongs to the full subcategory of Db

Iw(FlG,k) generated under extensions by the
objects of the form ICw[n] with (w, n) ∈Wf × Z≤0 and either n < 0 or n = 0 and
w 6= e. By Lemma 7.10 it follows that we have

Πasp ◦ pH −1(C ?Iw F ) = Πasp ◦ pH 0(C ?Iw F ) = 0.

The desired claim follows, using the long exact sequence in cohomology associated
with the distinguished triangle

F → ∗IndIw
Iw0

(∆IW0 ) ?Iw F [−dim(T )]→ C ?Iw F
[1]−→

induced by (7.4) and the exactness of Πasp. �

To complete the proof of Theorem 7.2(2), it only remains to prove that the
essential image of Avasp

IW is closed under subquotients. This property follows from
Corollary 7.5 and the following general lemma.

Lemma 7.12. Let A and B be abelian categories, and let F : A → B be an exact
fully faithful functor. Assume that every object in A has finite length, and that
F (M) is simple for any simple object M in A. Then the essential image of F is
closed under subquotients.

Proof. Our assumption implies that every object in the essential image of F has
finite length, and that each of its composition factors is of the form F (M) with
M simple in A. Any subquotient of such an object can be obtained by repeatedly
taking a cokernel of a morphism from an object of the form F (M) with M simple
in A, or a kernel of a morphism to an object of this form. To prove the lemma it
therefore suffices to show that if M,N are objects of A with M simple and if f :
F (M)→ F (N), resp. f : F (N)→ F (M) is an embedding, resp. a surjection, then
cok(f), resp. ker(f), belongs to the essential image of F . However, since F is fully
faithful we can write f = F (g) for some morphism g : M → N , resp. g : N → M ,
and by exactness we then have cok(f) = F (cok(g)), resp. ker(f) = F (ker(g)). �

Remark 7.13. Lemma 7.12 is stated in [BBD, Lemme 4.2.6.1] under the extra
assumption that F admits left and right adjoints. Our arguments above show that
this condition is in fact not necessary.

8. Central and tilting perverse sheaves

We continue with the assumption of Sections 6–7, namely that X∗(T )/ZR has
no torsion. (In fact, one can easily check that this assumption is not required for
the proof of the main result of this section.)

8.1. Statement and strategy of proof. To simplify notation, we now set

Z IW := AvIW ◦Z : Rep(G∨k )→ PIW .

Our goal in this section is to prove the following result.

Theorem 8.1. Assume that for any indecomposable factor of the root system R,
the prime ` is strictly bigger than the corresponding value in the table of Figure 5.1.
Then for any tilting G∨k -module V , the perverse sheaf Z IW(V ) is tilting.
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Remark 8.2. It is likely that the assumption on ` in Theorem 8.1 can be weakened;
however, in view of [JMW, §3.8], this extension will require a different strategy.

The first step towards Theorem 8.1 is the following claim, whose proof can be
copied from [AB, Lemma 25] or [AR3, Proposition 6.5.7]. (This statement does not
require any assumption on G or `.)

Proposition 8.3. If V, V ′ are tilting G∨k -modules such that Z IW(V ) and Z IW(V ′)
are tilting, then Z IW(V ⊗ V ′) is tilting.

Assume now for a moment that G is simple (i.e. quasi-simple of adjoint type),
so that G∨k is quasi-simple and simply-connected. Recall that in this context a
dominant coweight λ ∈ X∨+ is called minuscule if for any root α we have 〈λ, α〉 ∈
{0,±1}, and moreover that in this case we have W(λ) = Wfλ (where the left-hand
side is as in §7.1). We will also denote by α0 the maximal root of (G,T ) (for our
given choice of positive roots), and by α∨0 the associated coroot.6 Then we have
W(α∨0 ) = Wfα

∨
0 ∪ {0}.

The following result is proved in [JMW, §§3.6–3.7].

Proposition 8.4. Assume that G is simple and that ` is strictly bigger than the
value corresponding to its type in the table of Figure 5.1. Then any indecomposable
tilting G∨k -module appears as a direct summand of a tensor product of indecom-
posable tilting modules whose highest weights are either minuscule or equal to α∨0 .
Moreover, if G is of type A then only minuscule coweights are needed.

This proposition shows the importance of understanding the objects Z (V ) (or
Z IW(V )) when V is an indecomposable tilting module whose highest weight is
either minuscule or equal to α∨0 . These objects will be studied in the rest of the
section. In particular, in §8.3 we will prove the following claim.

Proposition 8.5. Assume that G is simple, and let V be an indecomposable tilting
G∨k -module with highest weight λ. We assume that

(1) either λ is minuscule;
(2) or λ = α∨0 , G is not of type A, and ` satisfies the conditions in Figure 2.1

with respect to the type of G∨k .

Then Z IW(V ) is tilting.

For now, let us explain why these results imply Theorem 8.1.

Proof of Theorem 8.1. Consider the quotient group G/Z(G) (which is semisimple
of adjoint type), and the associated affine Grassmannian GrG/Z(G). The quotient
morphism G→ G/Z(G) induces a morphism

(8.1) GrG → GrG/Z(G).

We claim that this morphism restricts, on the reduced ind-subscheme associated
with each connected component of GrG, to a universal homeomorphism onto the
reduced ind-scheme associated with a connected component of GrG/Z(G). In fact,
since the connected components of GrG are permuted by the action of LG it suf-
fices to check this claim for the reduced ind-scheme (GrG)0

red associated with the

6Note the slight conflict with the notation of §2.8. But here the group under consideration is
G = G∨

k , whose highest short root is α∨
0 .
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connected component containing the base point. Now by [PR, Proposition 6.6], if
DG is the derived subgroup of G, the embedding DG ↪→ G induces an isomorphism

(GrDG)0
red

∼−→ (GrG)0
red.

We have Z(DG) = Z(G)∩DG, and the morphism DG/Z(DG)→ G/Z(G) induced
by the embedding DG ↪→ G is an isomorphism, which reduces the proof of our
claim to the case G is semisimple. In this case the claim follows from the results
of [PR, §6]; see [BR, Footnote on p. 3]. (In case p does not divide the order of the
fundamental group of G/Z(G), then it is proved in [PR] that GrG and GrG/Z(G)

are reduced, and that the above morphism restricts to an isomorphism on each
connected component of GrG.)

Our claim implies that pushforward along the morphism (8.1) induces a fully
faithful exact functor

PervL+G(GrG,k)→ PervL+(G/Z(G))(GrG/Z(G),k).

(To justify the fact that this functor takes values in L+(G/Z(G))-equivariant per-
verse sheaves, we use the fact that equivariance follows from constructibility with re-
spect to the stratification by L+(G/Z(G))-orbits; see [MV, Proposition 2.1] or [BR,
Proposition 1.10.8].) It can be easily seen that this functor is monoidal; hence in
view of Theorem 4.1 it provides a monoidal functor Rep(G∨k )→ Rep((G/Z(G))∨k ).
It is well known that this functor is induced by a natural morphism (G/Z(G))∨k →
G∨k which identifies (G/Z(G))∨k with the simply-connected cover of the derived
subgroup of G∨k .

Since the morphism FlG → GrG is a (Zariski) locally trivial fibration with fibers
G/B, and similarly for the morphism FlG/Z(G) → GrG/Z(G), we also have a similar
claim as above for the natural morphism FlG → FlG/Z(G), which allows to identify,
for any connected component of FlG, the subcategory of PIw consisting of perverse
sheaves supported on this orbit with a full category of the corresponding category
for G/Z(G). Since the construction of the functor Z is compatible with these
identifications in the obvious way, since Z (V ) is supported on a single connected
component if V is indecomposable, and since the pullback to (G/Z(G))∨k of a tilting
G∨k -module is a tilting (G/Z(G))∨k -module, this reduces the proof of the theorem
to the case G is semisimple of adjoint type. Then, since such a group is a product
of simple groups, we can further assume that G is simple.

Recall that (by the general theory of highest weight categories) a direct summand
of a tilting object in PIW is again tilting. If G is of type A, then by Proposition 8.4
any indecomposable tilting G∨k -module is a direct summand of a tensor product of
tilting modules with minuscule highest weights; hence in this case the theorem fol-
lows from Proposition 8.3 and Case (1) in Proposition 8.5. If G is not of type A, the
claim follows similarly from Proposition 8.3, Proposition 8.4, and Proposition 8.5
(cases (1) and (2)). �

8.2. Stalks and costalks of objects Z IW(V ). The proof of the following propo-
sition can be copied from [AB, Lemma 27] or [AR3, Proposition 6.5.4].
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Proposition 8.6. For any G∨k -module V and any µ ∈ X∨ we have∑
i≥0

(−1)i · dim
(
HomDb

IW(FlG,k)(∆
IW
µ ,Z IW(V )[i])

)
= dim(Vµ),

∑
i≥0

(−1)i · dim
(
HomDb

IW(FlG,k)(Z
IW(V ),∇IWµ [i])

)
= dim(Vµ).

Remark 8.7. Once Theorem 8.1 will be proved, in view of (7.1) we will know that
the morphism spaces

HomDb
IW(FlG,k)(∆

IW
µ ,Z IW(V )[i]) and HomDb

IW(FlG,k)(Z
IW(V ),∇IWµ [i])

vanish for i 6= 0. Proposition 8.6 will then imply that for any V tilting and λ ∈ X∨

we have

(Z IW(V ) : ∆IWλ ) = (Z IW(V ) : ∇IWλ ) = dim(Vλ),

where the first, resp. second, expression means the multiplicity in a standard,
resp. costandard, filtration. From this one can in particular deduce that if V has
a highest weight λ ∈ X∨+, then the indecomposable tilting object T IWλ is a direct

summand of Z IW(V ).

Corollary 8.8. Let V in Rep(G∨k ) and λ ∈ X∨+. If the T∨k -weights of V all belong

to W(λ), then Z IW(V ) is supported on the closed subvariety
⋃
µ∈W(λ)∩X∨+

FlIWG,µ.

Proof. Let U be the open complement of
⋃
µ∈W(λ)∩X∨+

FlIWG,µ. Then Lemma 7.1

shows that FlIWG,ν ⊂ U iff ν ∈ X∨ r W(λ). Our assumption and Proposition 8.6
show that the Euler characteristic of the restriction to any such orbit of the perverse
sheaf Z IW(V )|U vanishes. Hence this perverse sheaf is 0 (because the restriction
of a perverse sheaf to a stratum open in its support is nonzero, and concentrated
in one degree). �

The proof of the following lemma is similar to that of [AB, Lemma 28] or [AR3,
Lemma 6.5.11].

Lemma 8.9. For any V in Rep(G∨k ), any λ ∈ X∨, any x ∈Wf and any n ∈ Z we
have

HomDb
IW(FlG,k)

(
∆IWλ ,Z IW(V )[n]

) ∼= HomDb
IW(FlG,k)

(
∆IWx(λ),Z

IW(V )[n]
)

and

HomDb
IW(FlG,k)

(
Z IW(V ),∇IWλ [n]

) ∼= HomDb
IW(FlG,k)

(
Z IW(V ),∇IWx(λ)[n]

)
.

The next statement involves the element u from Proposition 5.8.

Lemma 8.10. For any G∨k -module V which admits a good filtration, we have

dim
(

HomPIW

(
∆IW0 ,AvIW(Z (V ))

))
≤ dim(V u).

For any G∨k -module V which admits a Weyl filtration, we have

dim
(

HomPIW

(
AvIW(Z (V )),∇IW0

))
≤ dim(V u).
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Proof. We prove the first claim only; the second one can be treated similarly (us-
ing the fact that the invariants and coinvariants of u acting on V have the same
dimension).

We have ∆IW0 = AvIW(ICe); hence Theorem 7.2 provides an isomorphism

HomPIW

(
∆IW0 ,AvIW(Z (V ))

) ∼= HomPasp
Iw

(
Πasp(ICe),Π

asp(Z (V ))
)
.

Recall now the quotient functor Π0 : PIw → P0
Iw. It is clear that this functor factors

through an exact functor Pasp
Iw → P0

Iw; one can easily show that the latter functor
identifies P0

Iw with the Serre quotient of Pasp
Iw by the Serre subcategory generated

by the simple objects Πasp(ICw) with w ∈ fW r Ω. Since Πasp(ICe) is simple,
any nonzero morphism Πasp(ICe)→ Πasp(Z (V )) is injective, and its image is not
killed by the quotient functor Pasp

Iw → P0
Iw; we deduce that this functor induces an

injective morphism

HomPasp
Iw

(
Πasp(ICe),Π

asp(Z (V ))
)
↪→ HomP0

Iw

(
Z 0(k),Z 0(V )

)
.

Next, since m0
k = id, using Lemma 5.3 we see that

HomP0
Iw

(
Z 0(k),Z 0(V )

)
= HomP0

Iw

(
Z 0(k), ker(m0

V − id)
)
.

And then using Proposition 5.8 we obtain an injection

HomP0
Iw

(
Z 0(k), ker(m0

V − id)
)
↪→ Homk(k, V u) = V u.

The desired inequality follows. �

8.3. Proof of Proposition 8.5. In this subsection we assume that G is simple,
and give the proof of Proposition 8.5. We will use the easy observation that a
perverse sheaf in PervIW(FlG,k) is tilting iff its restriction and corestriction to

each orbit FlIWG,λ contained in its support are perverse.

Let us first consider case (1). Corollary 8.8 shows that Z IW(V ) is supported on

FlIWG,λ, which contains the orbit FlIWG,µ iff µ ∈Wf · λ. The orbit FlIWG,λ is open in this

subvariety; hence the restriction and corestriction of the perverse sheaf Z IW(V )
to this stratum are perverse. Using Lemma 8.9, we deduce the same property for
each orbit FlIWG,µ with µ ∈Wf · λ, which completes the proof in this case.

Now we consider case (2). In particular we assume that λ = α∨0 , that G is not of
type A, and that ` satisfies the conditions in Figure 2.1 with respect to the type of

G∨k . The perverse sheaf Z IW(V ) is supported on FlIWG,λ∪FlIWG,0 , which contains the

orbit FlIWG,µ iff µ ∈ Wf · λ ∪ {0}. As in case (1), the restriction and corestriction of

Z IW(V ) to any orbit FlIWG,µ with µ ∈Wf · λ are perverse, so to conclude it suffices

to prove the similar claim for FlIWG,0 . Let i : FlIWG,0 → FlG be the embedding, and let
j be the embedding of the open complement. Then we have distinguished triangles

j!j
∗Z IW(V )→ Z IW(V )→ i∗i

∗Z IW(V )
[1]−→,

i∗i
!Z IW(V )→ Z IW(V )→ j∗j

∗Z IW(V )
[1]−→ .

What we have proved so far implies that j∗Z IW(V ) admits a filtration with
standard subquotients, and a filtration with costandard subquotients; hence both
j!j
∗Z IW(V ) and j∗j

∗Z IW(V ) are perverse sheaves; it follows that i∗Z IW(V )
is concentrated in perverse degrees 0 and −1, while i!Z IW(V ) is concentrated in
perverse degrees 0 and 1.
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By Lemma 8.10 we have

dim HomPIW

(
∆IW0 ,Z IW(V )

)
≤ dim(V u).

Now by Theorem 6.1 the element u is regular unipotent, so that by Lemma 2.16 we
have

dim(V u) = dim(V0).

Finally, by Proposition 8.6 we have

dim(V0) =
∑
n≥0

(−1)n · dim HomDb
IW(FlG,k)(∆

IW
0 ,Z IW(V )[n]).

Combining all these remarks, we obtain that

dim HomPIW

(
∆IW0 ,Z IW(V )

)
≤
∑
n≥0

(−1)n · dim HomDb
IW(FlG,k)(∆

IW
0 ,Z IW(V )[n]).

The remarks in the preceding paragraph imply that the right-hand side equals

dim HomPIW

(
∆IW0 ,Z IW(V )

)
− dim HomDb

IW(FlG,k)

(
∆IW0 ,Z IW(V )[1]

)
,

so that we necessarily have dim HomDb
IW(FlG,k)

(
∆IW0 ,Z IW(V )[1]

)
= 0; in other

words, the corestriction of Z IW(V ) to FlIWG,0 vanishes in perverse degree 1, hence
is perverse. Similar arguments show that the restriction of this perverse sheaf to
FlIWG,0 is perverse, which completes the proof.

9. Proof of Theorem 5.4

In this section we finally give the proof of Theorem 5.4 (assuming that (2) and the
first condition in (1) hold). As in the preceding sections we assume that X∗(T )/ZR
is free. All our results will be obtained as consequences of Theorem 8.1; we therefore
also assume that for any indecomposable factor of the root system R, the prime `
is strictly bigger than the corresponding value in the table of Figure 5.1.

9.1. Comparison of P̃0
Iw and P0

Iw. We start with the following consequence of
Theorem 8.1.

Proposition 9.1. Any object in PIW is isomorphic to a subquotient of an object
of the form Z IW(V ) with V in Rep(G∨k ).

Proof. In view of Corollary 7.8, to prove the proposition it suffices to prove that
each object T IWµ with µ ∈ X∨+ is a subquotient of an object Z IW(V ). This
property follows from Theorem 8.1, see Remark 8.7. �

Using this proposition we obtain the following.

Corollary 9.2. The functor Avasp
IW of Theorem 7.2(2) is an equivalence of cate-

gories.

Proof. By Theorem 7.2(2) we already know that Avasp
IW is fully faithful, and that its

essential image is stable under subquotients. Now this essential image contains the
objects Z IW(V ) with V in Rep(G∨k ); hence Proposition 9.1 implies that it contains
all objects, or in other words that Avasp

IW is essentially surjective. �
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Corollary 9.2 allows us to restate Proposition 9.1 as saying that any object in
Pasp

Iw is a subquotient of an object Πasp(Z (V )) with V in Rep(G∨k ). Now, recall the
quotient functor Pasp

Iw → P0
Iw considered in the proof of Lemma 8.10. Applying this

functor we deduce the following, which establishes Property (a) in §5.2.

Corollary 9.3. The inclusion P̃0
Iw → P0

Iw is an equivalence of categories.

9.2. Description of H. Recall the subgroup H ⊂ ZG∨k (u) introduced in Proposi-
tion 5.8. Corollary 9.3 allows us to restate this proposition as providing an equiv-
alence of monoidal categories P0

Iw
∼= Rep(H). In view of the comments in §5.2, to

complete the proof of Theorem 5.4, it therefore only remains to prove the following.

Proposition 9.4. Assume (in addition to our running assumptions) that the Z-
module X∗(T )/ZR∨ has no `-torsion. Then the embedding H ⊂ ZG∨k (u) is an
equality.

Proof. The proof will be based on the results of §§2.5–2.7, which will be applied to
G∨k . Since the conditions in Figure 5.1 imply in particular that ` is good for G∨k ,
our assumptions indeed guarantee that these results are applicable.

Recall that the connected components of GrG are in a canonical bijection with
the quotient of X∨ by the coroot lattice of (G,T ), which itself indentifies with
X∗(Z(G∨k )). In particular, every object of Pervsph(GrG,k) has a canonical de-
composition as a direct sum of subobjects parametrized by X∗(Z(G∨k )); under
the geometric Satake equivalence (see §4.1), this decomposition corresponds to the
canonical decomposition of a G∨k -module according to the (diagonalizable) action
of Z(G∨k ).

The projection FlG → GrG induces a bijection between the sets of connected
components of FlG and GrG. Hence any object of P0

Iw also admits a canonical
decomposition as a direct sum of subobjects parametrized by X∗(Z(G∨k )), and
from this we see that the embedding Z(G∨k ) ↪→ G∨k factors through H; in other
words H contains Z(G∨k ).

We have proved in Theorem 6.1 that u is regular unipotent. Hence the proposi-
tion will follow from Lemma 2.12 provided we prove that for any finite-dimensional
tilting G∨k -module V the embedding

V
ZG∨k

(u)
↪→ V H

is an equality, or in other words that dim(V
ZG∨k

(u)
) = dim(V H). Now, by Lem-

ma 2.15 the left-hand side is equal to the dimension of the 0-weight space V0 of V .
On the other hand, in view of Proposition 5.8 we have

V H ∼= HomH(k, V ) ∼= HomP0
Iw

(δ0,Z 0(V )).

Corollary 9.2 allows to identify the category P0
Iw with the category P0

IW of §7.5,
and using Lemma 7.6 we deduce an isomorphism

HomP0
Iw

(δ0,Z 0(V )) ∼= HomPIW (∆IW0 ,Z IW(V )).

Theorem 8.1 implies that the right-hand side is equal to the multiplicity (Z IW(V ) :
∆IW0 ). Finally, by Remark 8.7 this multiplicity is also equal to dim(V0), which

shows that dim(V
ZG∨k

(u)
) = dim(V H) and therefore finishes the proof. �
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9.3. Complement: indecomposability of the objects Z IW(V ). We finish
this section by observing that Proposition 9.4 allows to prove the following com-
plement to Theorem 8.1.

Proposition 9.5. Assume that the conditions in Proposition 9.4 are satisfied.
Then if V is an indecomposable tilting G∨k -module, Z IW(V ) is indecomposable.

Proof. We assume that V is an indecomposable tilting G∨k -module. Let Π0
IW :

PIW → P0
IW be the quotient functor. In view of Lemma 7.6, to prove that Z IW(V )

is indecomposable it suffices to prove that Π0
IW(Z IW(V )) is indecomposable. As

observed in the course of the proof of Proposition 9.4, Corollary 9.2 allows us to
identify P0

Iw with P0
IW , so that to conclude it suffices to prove that Z 0(V ) is

indecomposable. Now Proposition 5.8 and Proposition 9.4 imply that we have an
algebra isomorphism

EndP0
Iw

(Z 0(V )) ∼= EndZG∨k (u)(V );

hence to conclude we have to show that the algebra EndZG∨k (u)(V ) is local. By

Frobenius reciprocity we have an algebra isomorphism

EndZG∨k (u)(V ) ∼= HomG∨k
(V, V ⊗ O(G∨k /ZG∨k (u)))

(where the description of the algebra structure on the right-hand side involves the
multiplication in the ring O(G∨k /ZG∨k (u))), and as seen in the course of the proof

of Lemma 2.14 we have an algebra isomorphism O(G∨k /ZG∨k (u)) ∼= O(NG∨k ), where

NG∨k is the nilpotent cone of G∨k . The dilation action of Gm on NG∨k induces

a grading on O(NG∨k ), such that G∨k acts by graded algebra automorphisms, and

whose degree-0 part is k. This structure induces a grading on EndZG∨k (u)(V ), whose

degree-0 part is the algebra EndG∨k (V ), which is local since V is indecomposable.

We deduce that EndZG∨k (u)(V ) is local, see [GG, Theorem 3.1]. �
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